Iterated Regularization for High-Dimensional Data: from Boosting to Twin Boosting

Peter Bühlmann

Seminar für Statistik, ETH Zürich

The starting points

Regarding iterated regularization

1 tuning parameter (as in e.g. Lasso, Ridge, etc.) may not be sufficient to regularize in 1000-dimensional space

2-3 tuning parameters may be (much) better

Regarding Boosting: with a version of LogitBoost

Roman Lutz

Statistics, ETH Zurich
winner of the prediction/classification challenge World Congress of Computational Intelligence 2006
\rightsquigarrow Boosting is not an "out-dated" method competitors were: weighted LS-SVM (S. Cawley)

Bayesian Neural Networks (R. Neal)
Random Forests (C. Dahinden)
SVM/Gaussian process classifier (W. Chu)

High-dimensional data setting

$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. or stationary
$X_{i} p$-dimensional predictor variable
Y_{i} univariate response variable, e.g. $Y_{i} \in \mathbb{R}$ or $Y_{i} \in\{0,1\}$

areas of application: astronomy, biology, imaging, marketing research, text classification,...
sometimes n is large as well (and $p \approx n$ or $p \gg n$) \rightsquigarrow computational challenqes

High-dimensional data setting
$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. or stationary
$X_{i} p$-dimensional predictor variable
Y_{i} univariate response variable, e.g. $Y_{i} \in \mathbb{R}$ or $Y_{i} \in\{0,1\}$

high-dimensional: $p \gg n$

areas of application: astronomy, biology, imaging, marketing research, text classification,...
sometimes n is large as well (and $p \approx n$ or $p \gg n$)
\rightsquigarrow computational challenges

Examples from molecular biology

- Microarray data

$$
p \approx 5^{\prime} 000-20^{\prime} 000, n \approx 10-200
$$

- Motif finding with motif regression $p \approx 4^{\prime} 000-10^{\prime} 000, n \approx 4^{\prime} 000-30^{\prime} 000$
- Dynamic (w.r.t. time) motif regression $p \approx 4^{\prime} 000-10^{\prime} 000$ and $n \approx 40^{\prime} 000-300^{\prime} 000$

Boosting

AdaBoost (Freund \& Schapire, 1996): ensemble method
Breiman (1998) has demystified boosting as a functional gradient descent method

Aim: find $f^{*}(\cdot)=\operatorname{argmin}_{f(\cdot)} \mathbb{E}[\rho(Y, f(X))]$

$$
\text { e.g. for } \rho(y, f)=|y-f|^{2} \rightsquigarrow f^{*}(x)=\mathbb{E}[Y \mid X=x]
$$

FGD solution: consider empirical risk $n^{-1} \sum_{i=1}^{n} \rho\left(Y_{i}, f\left(X_{i}\right)\right)$ and do iterative steepest descent in function space
with the use of a base procedure (weak learner)

$$
\left(X_{1}, U_{1}\right), \ldots,\left(X_{n}, U_{n}\right) \longrightarrow \hat{\theta}(\cdot) \approx \mathbb{E}[U \mid X=\cdot]
$$

e.g. regression tree, componentwise smoothing spline, etc ...

Functional gradient descent: the concept
empirical risk functional: $C(f)=n^{-1} \sum_{i=1}^{n} \rho\left(Y_{i}, f\left(X_{i}\right)\right)$ inner product: $\quad\langle f, g\rangle=n^{-1} \sum_{i=1}^{n} f\left(X_{i}\right) g\left(X_{i}\right)$
rough idea:

1. Initialize $\hat{f}_{0}(\cdot)$; then, for $m=1,2, \ldots m_{\text {stop }}$:
2. Calculate negative gradient (negative Gateaux derivative):

$$
-d C(f)(x)=\frac{\partial}{\partial \alpha}-\left.C\left(f+\alpha 1_{x}\right)\right|_{\alpha=0}
$$

Approximate

$$
-d C\left(\hat{f}_{m-1}\right)(\cdot) \text { by base procedure fit } \hat{\theta}_{m}(\cdot)
$$

3. Up-date

$$
\hat{f}_{m}(\cdot)=\hat{f}_{m-1}(\cdot)+\underbrace{\nu}_{\text {step-length }} \cdot \hat{\theta}_{m}(\cdot)
$$

Computational implementation: Generic FGD algorithm

Step 1. $\hat{f}_{0} \equiv 0$ (or $\equiv \bar{Y}$); set $m=0$.
Step 2. Increase m by 1. Compute negative gradient $-\frac{\partial}{\partial t} \rho(Y, f)$ and evaluate at $f=\hat{f}_{m-1}\left(X_{i}\right)=U_{i}(i=1, \ldots, n)$
Step 3. Fit negative gradient vector U_{1}, \ldots, U_{n} by base proced.

$$
\left(X_{i}, U_{i}\right)_{i=1}^{n} \xrightarrow{\text { base proced. }} \hat{\theta}_{m}(\cdot)
$$

i.e. $\hat{\theta}_{m}(\cdot)$ is an approximation of the negative gradient vector

Step 4. Up-date $\hat{f}_{m}(\cdot)=\hat{f}_{m-1}(\cdot)+\nu \cdot \hat{\theta}_{m}(\cdot)$
($0<\nu \leq 1$ step-length)
i.e: proceed along an estimate of the negative gradient vector

Step 5. Iterate Steps 2-4 until $m=m_{\text {stop }}$
ν small will be good, e.g. $\nu=0.1$

L_{2} Boosting (Friedman, 2001; PB \& Yu, 2003)

loss function $\rho(y, f)=|y-f|^{2}$
population minimizer: $f^{*}(x)=\mathbb{E}[Y \mid X=x]$
FGD with base procedure $\hat{\theta}(\cdot)$: repeated fitting of residuals

$$
\begin{array}{cc}
m=1:\left(X_{i}, Y_{i}\right)_{i=1}^{n} \rightsquigarrow \hat{\theta}_{1}(\cdot), \hat{f}_{1}=\nu \hat{\theta}_{1} & \rightsquigarrow \text { resid. } U_{i}=Y_{i}-\hat{f}_{1}\left(X_{i}\right) \\
m=2:\left(X_{i}, U_{i}\right)_{i=1}^{n} \rightsquigarrow \hat{\theta}_{2}(\cdot), \hat{f}_{2}=\hat{f}_{1}+\nu \hat{\theta}_{2} & \rightsquigarrow \text { resid. } U_{i}=Y_{i}-\hat{f}_{2}\left(X_{i}\right) \\
\ldots & \ldots \\
\hat{f}_{m_{\text {stop }}(\cdot)=\nu \sum_{m=1}^{m_{\text {stop }}} \hat{\theta}_{m}(\cdot)} \quad \text { (greedy fitting of residuals) } \\
\text { Tukey (1977): twicing for } m_{\text {stop }}=2 \text { and } \nu=1
\end{array}
$$

any gain over classical methods?

Ozone data: $\mathrm{n}=300, \mathrm{p}=8$

- not at all if n / p is reasonable

Regression: $\mathrm{n}=200, \mathrm{p}=100$

Componentwise linear least squares base procedure
linear ordinary least squares against the one predictor variable which reduces RSS most
first round: selected predictor variable $X^{\left(\hat{\mathcal{S}}_{1}\right)}$ (e.g. $\left.=X^{(3)}\right)$ corresponding $\hat{\beta}_{\hat{\mathcal{S}}_{1}} \rightsquigarrow$ fitted function $\hat{f}_{1}(x)$
2nd round: selected predictor variable $X^{\left(\hat{\mathcal{S}}_{2}\right)}$ (e.g. $\left.=X^{(21)}\right)$ corresponding $\hat{\beta}_{\hat{\mathcal{S}}_{2}} \rightsquigarrow$ fitted function $\hat{f}_{2}(x)$
etc.
L_{2} Boosting: $\hat{f}_{m}(x)=\hat{f}_{m-1}(x)+\nu \cdot \hat{\theta}(x)$
\rightsquigarrow linear model fit, including variable selection

Componentwise linear least squares base procedure
linear ordinary least squares against the one predictor variable which reduces RSS most
first round: selected predictor variable $X^{\left(\hat{\mathcal{S}}_{1}\right)}$ (e.g. $=X^{(3)}$) corresponding $\hat{\beta}_{\hat{\mathcal{S}}_{1}} \rightsquigarrow$ fitted function $\hat{f}_{1}(x)$
2nd round: selected predictor variable $X^{\left(\hat{\mathcal{S}}_{2}\right)}$ (e.g. $\left.=X^{(21)}\right)$ corresponding $\hat{\beta}_{\hat{\mathcal{S}}_{2}} \rightsquigarrow$ fitted function $\hat{f}_{2}(x)$
etc.
L_{2} Boosting: $\hat{f}_{m}(x)=\hat{f}_{m-1}(x)+\nu \cdot \hat{\theta}(x)$
\rightsquigarrow linear model fit, including variable selection

i.e. a structured model fit

for $\nu=1$, this is known as
Matching Pursuit (Mallat and Zhang, 1993)
Weak greedy algorithm (deVore \& Temlyakov, 1997)
a version of Boosting (Schapire, 1992; Freund \& Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gauss in 1803
R.V. Southwell in 1933
for $\nu=1$, this is known as
Matching Pursuit (Mallat and Zhang, 1993)
Weak greedy algorithm (deVore \& Temlyakov, 1997)
a version of Boosting (Schapire, 1992; Freund \& Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gauss in 1803
"Princeps Mathematicorum"

R.V. Southwell in 1933

Professor in Oxford

Binary lymph node classification using gene expressions: a high noise problem $n=49$ samples, $p=7129$ gene expressions
cross-validated misclassification error ($2 / 3$ training; $1 / 3$ test)

Lasso	L_{2} Boosting	FPLR	Pelora	1-NN	DLDA	SVM
21.1%	17.7%	35.25%	27.8%	43.25%	36.12%	36.88%

multivariate gene selection
best 200 genes (Wilcoxon test) no additional gene selection

42 (out of 7129) selected genes $(n=49)$ and gene importance

sorted regression coefficients

identifiability problem: strong correlations among some genes
\rightsquigarrow consider groups of highly correlated genes biological categories (e.g. GO ontology),

Connections to Lasso (for linear models):
Efron, Hastie, Johnstone, Tibshirani (2004): for special design matrices,
iterations of L_{2} Boosting with "infinitesimally" small ν yield all Lasso solutions when varying λ

Zhao and Yu (2005): for general design matrices,
when adding some backward steps
the solutions from Lasso and modified Boosting "coincide'

Connections to Lasso (for linear models):
Efron, Hastie, Johnstone, Tibshirani (2004): for special design matrices,
iterations of L_{2} Boosting with "infinitesimally" small ν yield all Lasso solutions when varying λ

Zhao and Yu (2005): for general design matrices, when adding some backward steps the solutions from Lasso and modified Boosting "coincide"
greedy (plus backward steps) and convex optimization are surprisingly similar

Consistency for high dimensions: an analysis of an algorithm

$$
Y_{i}=\beta_{0}+\sum_{j=1}^{p} \beta_{j} X_{i}^{(j)}+\epsilon_{i}(i=1, \ldots, n), \quad p \gg n
$$

"no" assumptions about the predictor variables/design matrix

Consistency for high dimensions: an analysis of an algorithm

$$
Y_{i}=\beta_{0}+\sum_{j=1}^{p} \beta_{j} X_{i}^{(j)}+\epsilon_{i}(i=1, \ldots, n), \quad p \gg n
$$

Theorem (PB, 2006)
L_{2} Boosting with comp. linear LS is consistent (with suitable number of boosting iterations) if:

- $p_{n}=O\left(\exp \left(C n^{1-\xi}\right)\right)(0<\xi<1) \quad$ (high-dimensional) essentially exponentially many variables relative to n
- $\sup _{n} \sum_{j=1}^{p_{n}}\left|\beta_{j, n}\right|<\infty \quad \ell^{1}$-sparseness of true function
i.e. for suitable, slowly growing $m=m_{n}$:

$$
\mathbb{E}_{X}\left|\hat{f}_{m_{n}, n}(X)-f_{n}(X)\right|^{2}=o_{P}(1)(n \rightarrow \infty)
$$

"no" assumptions about the predictor variables/design matrix
(similar result for Lasso: Greenshtein \& Ritov (2004))

$$
\begin{array}{ll}
\text { population version: } & \langle f, g\rangle=\int f(x) g(x) d P(x) \\
& g_{j}(x)=x^{(j)},\left\|g_{j}\right\|=1
\end{array}
$$

population version:

$$
\begin{aligned}
& \langle f, g\rangle=\int f(x) g(x) d P(x) \\
& g_{j}(x)=x^{(j)},\left\|g_{j}\right\|=1
\end{aligned}
$$

$$
\begin{aligned}
& R_{0} f=f \\
& R_{m} f=R_{m-1} f-\left\langle R_{m-1} f, g_{\hat{S}_{m}}\right\rangle g_{\hat{S}_{m}}, m=1,2, \ldots \\
& \hat{S}_{m}=\operatorname{argmax}_{j}\left|\left\langle R_{m-1} f, g_{j}\right\rangle\right|
\end{aligned}
$$

population version:

$$
\begin{aligned}
& \langle f, g\rangle=\int f(x) g(x) d P(x) \\
& g_{j}(x)=x^{(j)}, \quad\left\|g_{j}\right\|=1
\end{aligned}
$$

$$
\begin{aligned}
& R_{0} f=f \\
& R_{m} f=R_{m-1} f-\left\langle R_{m-1} f, g_{\hat{S}_{m}}\right\rangle g_{\hat{S}_{m}}, m=1,2, \ldots \\
& \hat{S}_{m}=\operatorname{argmax}_{j} \mid\left\langle R_{m-1} f, g_{j}\right\rangle
\end{aligned}
$$

$$
\left\|R_{m} f\right\|^{2}=\left\|f-\sum_{k=1}^{m} \gamma_{k} g_{\hat{S}_{k}}\right\|^{2}
$$

population version:

$$
\begin{aligned}
& \langle f, g\rangle=\int f(x) g(x) d P(x) \\
& g_{j}(x)=x^{(j)}, \quad\left\|g_{j}\right\|=1
\end{aligned}
$$

$$
\begin{aligned}
& R_{0} f=f \\
& R_{m} f=R_{m-1} f-\left\langle R_{m-1} f, g_{\hat{S}_{m}}\right\rangle g_{\hat{S}_{m}}, m=1,2, \ldots \\
& \hat{S}_{m}=\operatorname{argmax}_{j}\left|\left\langle R_{m-1} f, g_{j}\right\rangle\right| \\
& \begin{array}{l}
\left\|R_{m} f\right\|^{2}=\left\|f-\sum_{k=1}^{m} \gamma_{k} g_{\hat{S}_{k}}\right\|^{2} \\
\quad=\left\|R_{m-1} f\right\|^{2}-\left|\left\langle R_{m-1} f, g_{\hat{S}_{m}}\right\rangle\right|^{2}
\end{array}
\end{aligned}
$$

population version:

$$
\begin{aligned}
& \langle f, g\rangle=\int f(x) g(x) d P(x) \\
& g_{j}(x)=x^{(j)}, \quad\left\|g_{j}\right\|=1
\end{aligned}
$$

$$
\begin{aligned}
& R_{0} f=f \\
& R_{m} f=R_{m-1} f-\left\langle R_{m-1} f, g_{\hat{S}_{m}}\right\rangle g_{\hat{S}_{m}}, m=1,2, \ldots \\
& \hat{S}_{m}=\operatorname{argmax}_{j} \mid\left\langle R_{m-1} f, g_{j}\right\rangle
\end{aligned}
$$

$$
\left\|R_{m} f\right\|^{2}=\left\|f-\sum_{k=1}^{m} \gamma_{k} g_{\hat{S}_{k}}\right\|^{2}
$$

$$
=\left\|R_{m-1} f\right\|^{2}-\left|\left\langle R_{m-1} f, g_{\hat{S}_{m}}\right\rangle\right|^{2}
$$

$$
\begin{array}{ll}
\text { population version: } & \langle f, g\rangle=\int f(x) g(x) d P(x) \\
& g_{j}(x)=x^{(j)},\left\|g_{j}\right\|=1
\end{array}
$$

$$
\begin{aligned}
& R_{0} f=f \\
& R_{m} f=R_{m-1} f-\left\langle R_{m-1} f, g_{\hat{S}_{m}}\right\rangle g_{\hat{S}_{m}}, m=1,2, \ldots \\
& \hat{S}_{m}=\operatorname{argmax}_{j}\left|\left\langle R_{m-1} f, g_{j}\right\rangle\right|
\end{aligned}
$$

$$
\left\|R_{m} f\right\|^{2}=\left\|f-\sum_{k=1}^{m} \gamma_{k} g_{\hat{S}_{k}}\right\|^{2}
$$

$$
=\left\|R_{m-1} f\right\|^{2}-\left|\left\langle R_{m-1} f, g_{\hat{S}_{m}}\right\rangle\right|^{2}
$$

- $\searrow 0$?
- uniform bound?

$$
\begin{array}{ll}
\text { population version: } & \langle f, g\rangle=\int f(x) g(x) d P(x) \\
& g_{j}(x)=x^{(j)},\left\|g_{j}\right\|=1
\end{array}
$$

$$
\begin{aligned}
& R_{0} f=f \\
& R_{m} f=R_{m-1} f-\left\langle R_{m-1} f, g_{\hat{S}_{m}}\right\rangle g_{\hat{S}_{m}}, m=1,2, \ldots \\
& \hat{S}_{m}=\operatorname{argmax}_{j}\left|\left\langle R_{m-1} f, g_{j}\right\rangle\right|
\end{aligned}
$$

$$
\left\|R_{m} f\right\|^{2}=\left\|f-\sum_{k=1}^{m} \gamma_{k} g_{\hat{S}_{k}}\right\|^{2}
$$

$$
=\left\|R_{m-1} f\right\|^{2}-\left|\left\langle R_{m-1} f, g_{\hat{S}_{m}}\right\rangle\right|^{2}
$$

- $\searrow 0$?
- uniform bound?

Temlyakov (2000):
$\leq\|\beta\|_{1} m^{-1 / 6}$
linear model \rightsquigarrow "prototype"-result the methodology (and some of theory) is much more general

Other loss functions for boosting: beyond regression

 for binary classification with $Y \in\{0,1\}$:$\rho(y, f)=\log _{2}(1+\exp (-(2 \cdot y-1) f))$ negative binomial log-likelihood population minimizer: $f^{*}(x)=\frac{1}{2} \log \left(\frac{p(x)}{1-p(x)}\right)$
\rightsquigarrow can estimate probabilities $p(\cdot)$ from estimate $\hat{f}(\cdot)$
this is LogitBoost (Friedman, Hastie and Tibshirani, 2000)

Other loss functions for boosting: beyond regression

 for binary classification with $Y \in\{0,1\}$:$\rho(y, f)=\log _{2}(1+\exp (-(2 \cdot y-1) f))$ negative binomial log-likelihood population minimizer: $f^{*}(x)=\frac{1}{2} \log \left(\frac{p(x)}{1-p(x)}\right)$
\rightsquigarrow can estimate probabilities $p(\cdot)$ from estimate $\hat{f}(\cdot)$
this is LogitBoost (Friedman, Hastie and Tibshirani, 2000)
for count data with $Y \in\{0,1,2, \ldots\}$:
$\rho(y, f)=\exp (f)-y f$
negative Poisson log-likelihood population minimizer: $f^{*}(x)=\log (\mathbb{E}[Y \mid X=x])$

Other loss functions for boosting: beyond regression

 for binary classification with $Y \in\{0,1\}$:$\rho(y, f)=\log _{2}(1+\exp (-(2 \cdot y-1) f))$
negative binomial log-likelihood
population minimizer: $f^{*}(x)=\frac{1}{2} \log \left(\frac{p(x)}{1-p(x)}\right)$
\rightsquigarrow can estimate probabilities $p(\cdot)$ from estimate $\hat{f}(\cdot)$
this is LogitBoost (Friedman, Hastie and Tibshirani, 2000)
for count data with $Y \in\{0,1,2, \ldots\}$:
$\rho(y, f)=\exp (f)-y f$
negative Poisson log-likelihood population minimizer: $f^{*}(x)=\log (\mathbb{E}[Y \mid X=x])$
for survival data with $Y \in \mathbb{R}^{+}$: $\rho(y, f)$ from Cox's partial likelihood
etc...

Computation

computation for general loss functions involves a
trivial extension only!
very different for LARS-type path-following algorithms for Lasso
instead of residuals in L_{2} Boosting

$$
U_{i}=Y_{i}-\hat{f}_{m-1}\left(X_{i}\right), i=1, \ldots, n
$$

we use "generalized residuals"

$$
U_{i}=-\left.\frac{\partial}{\partial f} \rho(Y, f)\right|_{f=\hat{f}_{m-1}\left(X_{i}\right)}, i=1, \ldots, n
$$

since there is (usually) a closed form, simple expression of the partial derivative
\rightsquigarrow same computational cost as for L_{2} Boosting

The mboost package in R (Hothorn \& PB, 2006)

for various boosting algorithms and corresponding model fitting

- easy to use and coherent implementation for
- regression
- classification
- Poisson regression
- survival analysis with Cox's partial likelihood
- your own loss function
- allows for various base procedures
- componentwise linear least squares
- componentwise smoothing splines
- trees
- computationally very fast for high-dimensional generalized linear models

CPU time
Binary lymph node classification example: $p=7129, n=49$ with L_{2} Boosting or BinomialBoosting (LogitBoost) for large range of solutions
in comparison:
for linear models, col uutino Lasso solutions toral λ s

CPU time
Binary lymph node classification example: $p=7129, n=49$ with L_{2} Boosting or BinomialBoosting (LogitBoost) for large range of solutions

it's less than a second!

in comparison:
for linear models, computing Lasso solutions for all λ 's
nenn scoonds using 1 atrs in m (with use, grann- -)

CPU time
Binary lymph node classification example: $p=7129, n=49$ with L_{2} Boosting or BinomialBoosting (LogitBoost) for large range of solutions

it's less than a second!

0.906 seconds using mboost in R (Hothorn \& PB, 2006)
in comparison:
for linear models, computing Lasso solutions for all λ 's
2.603 seconds using lars in R (with use. gram=F)
because it is so fast
\rightsquigarrow local modeling over different inhomogeneous but related sub-populations ("borrowing strength from neighborhood")

$$
\beta(t) \approx \beta \text { (neighb. }(t))
$$

Motif detection using DNA sequence and gene expression data (Meier, Liu, Liu \& PB; work in progress) $p=4^{\prime} 312, n=79^{\prime} 974$ from 18 sub-populations

Can we easily improve?

maybe (?) not that much with respect to prediction but often substantially with respect to variable/feature selection
approach for variable selection with Boosting:
variables which have been selected by the base procedure in
the process of boosting
e.g. in a (generalized) linear model fit:
variables with corresponding regression coefficient $\neq 0$
\rightsquigarrow no significance testing involved

Can we easily improve?

maybe (?) not that much with respect to prediction
approach for variable selection with Boosting: variables which have been selected by the base p ocedure in the process of boosting
e.g. in a (generalized) linear model fit:
variables with corresponding regression coefficient $\neq 0$

Can we easily improve?

maybe (?) not that much with respect to prediction but often substantially with respect to variable/feature selection
approach for variable selection with Boosting:
variables which have been selected by the base procedure in the process of boosting
e.g. in a (generalized) linear model fit:
variables with corresponding regression coefficient $\neq 0$
\rightsquigarrow no significance testing involved

Building on the analogy with the Lasso
Meinshausen \& PB (2006):
for linear models

- Lasso is consistent for variable selection, even for $p \gg n$, if the design matrix is not "too correlated" $P[$ selected model $=$ true model $] \underbrace{\rightarrow 0}(n \rightarrow \infty)$ quickly
- if the design is "too correlated"
\rightsquigarrow Lasso is inconsistent for variable selection
see also Zou (2006), Zhao and Yu (2006)

The "reason"
too much bias (or shrinkage), even for large values

Bias in soft-thresholding is disturbing (at least sometimes)
better:
Nonnegative Garrote (Breiman, 1995) and similar proposals

Twin Boosting (PB, 2006):
 Boosting-type answer addressing the problem of bias

is different from Sparse Boosting (PB \& Yu, 2006)
but much more general and computationally much faster

Rough idea of Twin Boosting

- first round of boosting as usual: first twin
s second round of boostina which is forced to resemble the first round: second twin
$>$ final estimate from the second round

Rough idea of Twin Boosting

- first round of boosting as usual: first twin
> second round of boosting which is forced to resemble the first round: second twin
- final astimate fram the second round

Rough idea of Twin Boosting

- first round of boosting as usual: first twin
- second round of boosting which is forced to resemble the first round: second twin
- final estimate from the second round

Twin L_{2} Boosting for linear models
recap: $\quad L_{2}$ Boosting with componentwise linear least squares chooses variable j which reduces RSS most

$$
\Leftrightarrow \quad\left|n^{-1} \sum_{i=1}^{n} U_{i} X_{i}^{(j)}\right|=\left|\widehat{\operatorname{Cor}}\left(U, X^{(j)}\right)\right| \text { maximal w.r.t. } j
$$

if predictor variables are standardized
first round: boosting estimate $\hat{\beta}_{\text {init }}$ from L_{2} Boosting
second round: as L_{2} Boosting but selecting variable using

$$
\left|n^{-1} \sum_{i=1}^{n} U_{i} X_{i}^{(j)}\right| \cdot\left|\hat{\beta}_{i n i t, j}\right| \text { maximal w.r.t. } j
$$

final estimate from second round, "pulled toward" initial estim. \rightsquigarrow very easy and computationally efficient modification

Twin Boosting = iterated regularization

(we first tune round 1; and fixing the tuning from round 1 , we then tune round 2)

PB (2006):
for orthogonal linear models, as step-size factor $\nu \rightarrow 0$
Twin L_{2} Boosting and Adaptive Lasso coincide (with $\beta_{\text {init }}=$ estimate from first round of boosting)
and Twin Boosting extends to very general settings

Adaptive Lasso (Zou, 2006)

$$
\hat{\beta}=\operatorname{argmin}_{\beta} \sum_{i=1}^{n}\left(Y_{i}-(X \beta)_{i}\right)^{2}+\lambda \sum_{j=1}^{p} \frac{\left|\beta_{j}\right|}{\underbrace{\left|\beta_{\text {init,j}}\right|}_{\text {e.g. OLS if } p<n}}
$$

nice result (Zou, 2006):
adaptive Lasso is consistent for variable selection "in general" (proof for low-dimensional problems only)
for orthogonal design
if $\beta_{\text {init }}=$ OLS,
Adaptive Lasso $=$ NN-garrote

Simulated example: $n=50, p=500$

$$
Y=\sum_{j=1}^{500} \beta_{j} X^{(j)}+\varepsilon, \beta_{1}=5, \beta_{j}=0(j=2, \ldots, 500)
$$

no. incorrect variables

black: L_{2} Boosting
red: Twin L_{2} Boosting
Twin L_{2} Boosting: more sparse and better variable selection than boosting

Response Y versus $p=4088$ gene expressions
in Bacillus Subtilis

neighbours of Y (selected genes) and their conditional dependencies $n=115, p=4088$

Boosting with regression tree base procedure very popular in machine learning
trees can be very useful because:

- they can easily handle missing data
- they can easily deal with mixed categorical, ordinal, continuous data
- they are invariant under monotone covariate-transformations

Twin L_{2} Boosting for trees first round: boosting estimate $\hat{f}_{\text {init }}$
second round: as boosting but select in each iteration the best tree $\hat{g}(\cdot)$ which reduces RSS and "resembles" $\hat{f}_{\text {init }}$

$$
\underbrace{C^{2}(\hat{g})}_{\operatorname{Cor}^{2}\left(\hat{g}, \hat{\mathrm{f}}_{\text {init }}\right)} \cdot \underbrace{\left(2 \sum_{i=1}^{n} U_{i} \hat{g}\left(X_{i}\right)-\sum_{i=1}^{n} \hat{g}\left(X_{i}\right)^{2}\right)}_{\text {"penalized correlation" }} \text { is maximized w.r.t. } \hat{g}
$$

in case of componentwise least squares and uncorrelated design

$$
\propto\left|\hat{\beta}_{i n i t, j}\right|^{2} \cdot\left|\widehat{\operatorname{Cor}}\left(U, X^{(j)}\right)\right|^{2}
$$

\rightsquigarrow concept easily extends to other loss functions (e.g. classification)

Sonar data: binary classification with $n=208, p=60$
misclassification error

no. variables

black: BinomialBoosting
red: Twin BinomialBoosting
Twin Boosting: more sparse than boosting
with synthetically enlarged predictor space adding $500 \mathcal{N}(0,1)$-distributed ineffective predictor variables

black: BinomialBoosting
red: Twin BinomialBoosting
\rightsquigarrow improved variable selection with Twin Boosting

Conclusions

Boosting

- is mainly useful for high-dimensional and/or large datasets
- is computationally very efficient
- is very competitive for prediction

- Twin Boosting (e.g. iterated regularization) improves upon - variable selection
- assigning variable importance in structured models (linear, additive, interaction)

