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The starting points

Regarding iterated regularization

1 tuning parameter (as in e.g. Lasso, Ridge, etc.) may not be
sufficient to regularize in 1000-dimensional space

2-3 tuning parameters may be (much) better



Regarding Boosting: with a version of LogitBoost

Roman Lutz
Statistics, ETH Zurich

winner of the prediction/classification challenge
World Congress of Computational Intelligence 2006

 Boosting is not an “out-dated” method
competitors were: weighted LS-SVM (S. Cawley)

Bayesian Neural Networks (R. Neal)
Random Forests (C. Dahinden)
SVM/Gaussian process classifier (W. Chu)



High-dimensional data setting

(X1, Y1), . . . , (Xn, Yn) i.i.d. or stationary
Xi p-dimensional predictor variable
Yi univariate response variable, e.g. Yi ∈ R or Yi ∈ {0, 1}

high-dimensional: p � n

areas of application: astronomy, biology, imaging,
marketing research, text classification,...

sometimes n is large as well (and p ≈ n or p � n)
 computational challenges
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Examples from molecular biology

I Microarray data
p ≈ 5′000− 20′000, n ≈ 10− 200

I Motif finding with motif regression
p ≈ 4′000− 10′000, n ≈ 4′000− 30′000

I Dynamic (w.r.t. time) motif regression
p ≈ 4′000− 10′000 and n ≈ 40′000− 300′000



Boosting

AdaBoost (Freund & Schapire, 1996): ensemble method

Breiman (1998) has demystified boosting as a
functional gradient descent method

Aim: find f ∗(·) = argminf (·)E[ρ(Y , f (X ))]

e.g. for ρ(y , f ) = |y − f |2  f ∗(x) = E[Y |X = x ]

FGD solution: consider empirical risk n−1∑n
i=1 ρ(Yi , f (Xi)) and

do iterative steepest descent in function space

with the use of a base procedure (weak learner)

(X1, U1), . . . , (Xn, Un) −→ θ̂(·) ≈ E[U|X = ·]

e.g. regression tree, componentwise smoothing spline, etc ...



Functional gradient descent: the concept

empirical risk functional: C(f ) = n−1∑n
i=1 ρ(Yi , f (Xi))

inner product: 〈f , g〉 = n−1∑n
i=1 f (Xi)g(Xi)

rough idea:
1. Initialize f̂0(·); then, for m = 1, 2, . . . mstop:
2. Calculate negative gradient (negative Gateaux derivative):

−dC(f )(x) =
∂

∂α
− C(f + α1x)|α=0

Approximate

−dC(f̂m−1)(·) by base procedure fit θ̂m(·)

3. Up-date

f̂m(·) = f̂m−1(·) + ν︸︷︷︸
step-length

·θ̂m(·)



Computational implementation: Generic FGD algorithm

Step 1. f̂0 ≡ 0 (or ≡ Y ); set m = 0.

Step 2. Increase m by 1. Compute negative gradient − ∂
∂f ρ(Y , f )

and evaluate at f = f̂m−1(Xi) = Ui (i = 1, . . . , n)

Step 3. Fit negative gradient vector U1, . . . , Un by base proced.

(Xi , Ui)
n
i=1

base proced.
−→ θ̂m(·)

i.e. θ̂m(·) is an approximation of the negative gradient vector

Step 4. Up-date f̂m(·) = f̂m−1(·) + ν · θ̂m(·)
(0 < ν ≤ 1 step-length)

i.e: proceed along an estimate of the negative gradient vector

Step 5. Iterate Steps 2-4 until m = mstop

ν small will be good, e.g. ν = 0.1



L2Boosting (Friedman, 2001; PB & Yu, 2003)

loss function ρ(y , f ) = |y − f |2
population minimizer: f ∗(x) = E[Y |X = x ]
FGD with base procedure θ̂(·): repeated fitting of residuals

m = 1 : (Xi , Yi)
n
i=1  θ̂1(·), f̂1 = νθ̂1  resid. Ui = Yi − f̂1(Xi)

m = 2 : (Xi , Ui)
n
i=1  θ̂2(·), f̂2 = f̂1 + νθ̂2  resid. Ui = Yi − f̂2(Xi)
... ...

f̂mstop(·) = ν
∑mstop

m=1 θ̂m(·) (greedy fitting of residuals)

Tukey (1977): twicing for mstop = 2 and ν = 1



any gain over classical methods?

• not at all if n/p is reasonable

Ozone data: n=300, p=8

boosting iterations
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• substantial gain if n/p is small

Regression: n=200, p=100

boosting iterations
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Componentwise linear least squares base procedure

linear ordinary least squares against the one predictor variable
which reduces RSS most

θ̂(x) = β̂Ŝx(Ŝ)
, β̂j =

nX
i=1

Yi X
(j)
i /

nX
i=1

(X (j)
i )2

, Ŝ = argminj

nX
i=1

(Yi − β̂j X
(j)
i )2

first round: selected predictor variable X (Ŝ1) (e.g. = X (3))
corresponding β̂Ŝ1

 fitted function f̂1(x)

2nd round: selected predictor variable X (Ŝ2) (e.g.= X (21))
corresponding β̂Ŝ2

 fitted function f̂2(x)
etc.
L2Boosting: f̂m(x) = f̂m−1(x) + ν · θ̂(x)

 linear model fit, including variable selection

i.e. a structured model fit
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for ν = 1, this is known as
Matching Pursuit (Mallat and Zhang, 1993)
Weak greedy algorithm (deVore & Temlyakov, 1997)
a version of Boosting (Schapire, 1992; Freund & Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gauss in 1803
“Princeps Mathematicorum”

R.V. Southwell in 1933
Professor in Oxford
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Binary lymph node classification using gene expressions:
a high noise problem

n = 49 samples, p = 7129 gene expressions

cross-validated misclassification error (2/3 training; 1/3 test)

Lasso L2Boosting FPLR Pelora 1-NN DLDA SVM
21.1% 17.7% 35.25% 27.8% 43.25% 36.12% 36.88%

multivariate gene selection best 200 genes (Wilcoxon test)
no additional gene selection



42 (out of 7129) selected genes (n = 49)
and gene importance
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identifiability problem: strong correlations among some genes

 consider groups of highly correlated genes
biological categories (e.g. GO ontology), ....



Connections to Lasso (for linear models):
Efron, Hastie, Johnstone, Tibshirani (2004): for special design
matrices,

iterations of L2Boosting with “infinitesimally” small ν
yield all Lasso solutions when varying λ

Zhao and Yu (2005): for general design matrices,
when adding some backward steps
the solutions from Lasso and modified Boosting “coincide”

greedy (plus backward steps) and convex optimization are
surprisingly similar
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Consistency for high dimensions: an analysis of an algorithm

Yi = β0 +

p∑
j=1

βjX
(j)
i + εi (i = 1, . . . , n), p � n

Theorem (PB, 2006)
L2Boosting with comp. linear LS is consistent (with suitable
number of boosting iterations) if:
• pn = O(exp(Cn1−ξ)) (0 < ξ < 1) (high-dimensional)

essentially exponentially many variables relative to n
• supn

∑pn
j=1 |βj,n| < ∞ `1-sparseness of true function

i.e. for suitable, slowly growing m = mn:

EX |̂fmn,n(X )− fn(X )|2 = oP(1) (n →∞)

“no” assumptions about the predictor variables/design matrix

(similar result for Lasso: Greenshtein & Ritov (2004))
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population version: 〈f , g〉 =

∫
f (x)g(x)dP(x)

gj(x) = x (j), ‖gj‖ = 1

R0f = f
Rmf = Rm−1f − 〈Rm−1f , gŜm

〉gŜm
, m = 1, 2, . . .

Ŝm = argmaxj |〈Rm−1f , gj〉|

‖Rmf‖2 = ‖f −
m∑

k=1

γkgŜk
‖2

= ‖Rm−1f‖2 − |〈Rm−1f , gŜm
〉|2 ↘

I ↘ 0 ?
I uniform bound ?

Temlyakov (2000):
≤ ‖β‖1m−1/6
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〉|2 ↘

I ↘ 0 ?
I uniform bound ?

Temlyakov (2000):
≤ ‖β‖1m−1/6



population version: 〈f , g〉 =

∫
f (x)g(x)dP(x)

gj(x) = x (j), ‖gj‖ = 1

R0f = f
Rmf = Rm−1f − 〈Rm−1f , gŜm

〉gŜm
, m = 1, 2, . . .
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‖2

= ‖Rm−1f‖2 − |〈Rm−1f , gŜm
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linear model “prototype”-result
the methodology (and some of theory) is much more general



Other loss functions for boosting: beyond regression
for binary classification with Y ∈ {0, 1}:
ρ(y , f ) = log2(1 + exp(−(2 · y − 1)f ))
negative binomial log-likelihood
population minimizer: f ∗(x) = 1

2 log( p(x)
1−p(x))

 can estimate probabilities p(·) from estimate f̂ (·)

this is LogitBoost (Friedman, Hastie and Tibshirani, 2000)

for count data with Y ∈ {0, 1, 2, . . .}:
ρ(y , f ) = exp(f )− yf
negative Poisson log-likelihood
population minimizer: f ∗(x) = log(E[Y |X = x ])

for survival data with Y ∈ R+:
ρ(y , f ) from Cox’s partial likelihood

etc...
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Computation

computation for general loss functions involves a
trivial extension only!
very different for LARS-type path-following algorithms for Lasso

instead of residuals in L2Boosting

Ui = Yi − f̂m−1(Xi), i = 1, . . . , n

we use “generalized residuals”

Ui = − ∂

∂f
ρ(Y , f )|f=f̂m−1(Xi )

, i = 1, . . . , n

since there is (usually) a closed form, simple expression of the
partial derivative
 same computational cost as for L2Boosting



The mboost package in R (Hothorn & PB, 2006)

for various boosting algorithms and corresponding model fitting

I easy to use and coherent implementation for
• regression
• classification
• Poisson regression
• survival analysis with Cox’s partial likelihood
• your own loss function

I allows for various base procedures
• componentwise linear least squares
• componentwise smoothing splines
• trees

I computationally very fast for high-dimensional generalized
linear models



CPU time
Binary lymph node classification example: p = 7129, n = 49
with L2Boosting or BinomialBoosting (LogitBoost)
for large range of solutions

it’s less than a second!

0.906 seconds using mboost in R (Hothorn & PB, 2006)

in comparison:
for linear models, computing Lasso solutions for all λ’s

2.603 seconds using lars in R (with use.gram=F)
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because it is so fast
 local modeling over different inhomogeneous but related

sub-populations (“borrowing strength from neighborhood”)

β(t) ≈ β(neighb.(t))

Motif detection using DNA sequence and gene expression data
(Meier, Liu, Liu & PB; work in progress)
p = 4′312, n = 79′974 from 18 sub-populations



Can we easily improve?

maybe (?) not that much with respect to prediction but often
substantially with respect to variable/feature selection

approach for variable selection with Boosting:
variables which have been selected by the base procedure in
the process of boosting

e.g. in a (generalized) linear model fit:
variables with corresponding regression coefficient 6= 0

 no significance testing involved
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Building on the analogy with the Lasso

Meinshausen & PB (2006):
for linear models

I Lasso is consistent for variable selection, even for p � n,
if the design matrix is not “too correlated”
P[selected model = true model] → 0︸︷︷︸

quickly

(n →∞)

I if the design is “too correlated”
 Lasso is inconsistent for variable selection

see also Zou (2006), Zhao and Yu (2006)



The “reason”

too much bias (or shrinkage), even for large values
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hard−thresholding
nn−garrote
soft−thresholding

Bias in soft-thresholding
is disturbing (at least sometimes)

better:
Nonnegative Garrote (Breiman, 1995)
and similar proposals



Twin Boosting (PB, 2006):
Boosting-type answer addressing the problem of bias

is different from Sparse Boosting (PB & Yu, 2006)
but much more general and computationally much faster



Rough idea of Twin Boosting

I first round of boosting as usual: first twin
I second round of boosting which is forced to resemble the

first round: second twin
I final estimate from the second round
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Twin L2Boosting for linear models

recap: L2Boosting with componentwise linear least squares
chooses variable j which reduces RSS most

⇔ |n−1
n∑

i=1

UiX
(j)
i | = |Ĉor(U, X (j))| maximal w.r.t. j

if predictor variables are standardized

first round: boosting estimate β̂init from L2Boosting

second round: as L2Boosting but selecting variable using

|n−1
n∑

i=1

UiX
(j)
i | · |β̂init ,j | maximal w.r.t. j

final estimate from second round, “pulled toward” initial estim.
 very easy and computationally efficient modification



Twin Boosting = iterated regularization

(we first tune round 1;
and fixing the tuning from round 1, we then tune round 2)



PB (2006):
for orthogonal linear models, as step-size factor ν → 0

Twin L2Boosting and Adaptive Lasso coincide
(with βinit = estimate from first round of boosting)

and Twin Boosting extends to very general settings



Adaptive Lasso (Zou, 2006)

β̂ = argminβ

n∑
i=1

(Yi − (Xβ)i)
2 + λ

p∑
j=1

|βj |
|βinit ,j |︸ ︷︷ ︸

e.g. OLS if p < n

nice result (Zou, 2006):
adaptive Lasso is consistent for variable selection “in general”
(proof for low-dimensional problems only)

for orthogonal design
if βinit = OLS,
Adaptive Lasso = NN-garrote
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Simulated example: n = 50, p=500

Y =
500∑
j=1

βjX (j) + ε, β1 = 5, βj = 0 (j = 2, . . . , 500)
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Twin L2Boosting: more sparse and better variable selection
than boosting



Response Y versus p = 4088 gene expressions
in Bacillus Subtilis
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dependencies n=115, p=4088



Boosting with regression tree base procedure
very popular in machine learning

trees can be very useful because:
I they can easily handle missing data
I they can easily deal with mixed categorical, ordinal,

continuous data
I they are invariant under monotone

covariate-transformations



Twin L2Boosting for trees
first round: boosting estimate f̂init

second round: as boosting but select in each iteration the
best tree ĝ(·) which reduces RSS and “resembles” f̂init

C2(ĝ)︸ ︷︷ ︸dCor
2
(ĝ ,̂finit )

·

(
2

n∑
i=1

Ui ĝ(Xi)−
n∑

i=1

ĝ(Xi)
2

)
︸ ︷︷ ︸

“penalized correlation”

is maximized w.r.t. ĝ

in case of componentwise least squares and uncorrelated
design

∝ |β̂init,j |2 · |Ĉor(U, X (j))|2

 concept easily extends to other loss functions
(e.g. classification)



Sonar data: binary classification with n=208, p = 60
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Twin Boosting: more sparse than boosting



with synthetically enlarged predictor space
adding 500 N (0, 1)-distributed ineffective predictor variables
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 improved variable selection with Twin Boosting



Conclusions

Boosting
I is mainly useful for high-dimensional and/or large datasets
I is computationally very efficient
I is very competitive for prediction

I Twin Boosting (e.g. iterated regularization) improves upon
• variable selection
• assigning variable importance in structured models

(linear, additive, interaction)


