
Iterated Regularization
for High-Dimensional Data:

from Boosting to Twin Boosting

Peter Bühlmann

Seminar für Statistik, ETH Zürich

The starting points

Regarding iterated regularization

1 tuning parameter (as in e.g. Lasso, Ridge, etc.) may not be
sufficient to regularize in 1000-dimensional space

2-3 tuning parameters may be (much) better

Regarding Boosting: with a version of LogitBoost

Roman Lutz
Statistics, ETH Zurich

winner of the prediction/classification challenge
World Congress of Computational Intelligence 2006

 Boosting is not an “out-dated” method
competitors were: weighted LS-SVM (S. Cawley)

Bayesian Neural Networks (R. Neal)
Random Forests (C. Dahinden)
SVM/Gaussian process classifier (W. Chu)

High-dimensional data setting

(X1, Y1), . . . , (Xn, Yn) i.i.d. or stationary
Xi p-dimensional predictor variable
Yi univariate response variable, e.g. Yi ∈ R or Yi ∈ {0, 1}

high-dimensional: p � n

areas of application: astronomy, biology, imaging,
marketing research, text classification,...

sometimes n is large as well (and p ≈ n or p � n)
 computational challenges

High-dimensional data setting

(X1, Y1), . . . , (Xn, Yn) i.i.d. or stationary
Xi p-dimensional predictor variable
Yi univariate response variable, e.g. Yi ∈ R or Yi ∈ {0, 1}

high-dimensional: p � n

areas of application: astronomy, biology, imaging,
marketing research, text classification,...

sometimes n is large as well (and p ≈ n or p � n)
 computational challenges

Examples from molecular biology

I Microarray data
p ≈ 5′000− 20′000, n ≈ 10− 200

I Motif finding with motif regression
p ≈ 4′000− 10′000, n ≈ 4′000− 30′000

I Dynamic (w.r.t. time) motif regression
p ≈ 4′000− 10′000 and n ≈ 40′000− 300′000

Boosting

AdaBoost (Freund & Schapire, 1996): ensemble method

Breiman (1998) has demystified boosting as a
functional gradient descent method

Aim: find f ∗(·) = argminf (·)E[ρ(Y , f (X))]

e.g. for ρ(y , f) = |y − f |2 f ∗(x) = E[Y |X = x]

FGD solution: consider empirical risk n−1∑n
i=1 ρ(Yi , f (Xi)) and

do iterative steepest descent in function space

with the use of a base procedure (weak learner)

(X1, U1), . . . , (Xn, Un) −→ θ̂(·) ≈ E[U|X = ·]

e.g. regression tree, componentwise smoothing spline, etc ...

Functional gradient descent: the concept

empirical risk functional: C(f) = n−1∑n
i=1 ρ(Yi , f (Xi))

inner product: 〈f , g〉 = n−1∑n
i=1 f (Xi)g(Xi)

rough idea:
1. Initialize f̂0(·); then, for m = 1, 2, . . . mstop:
2. Calculate negative gradient (negative Gateaux derivative):

−dC(f)(x) =
∂

∂α
− C(f + α1x)|α=0

Approximate

−dC(f̂m−1)(·) by base procedure fit θ̂m(·)

3. Up-date

f̂m(·) = f̂m−1(·) + ν︸︷︷︸
step-length

·θ̂m(·)

Computational implementation: Generic FGD algorithm

Step 1. f̂0 ≡ 0 (or ≡ Y); set m = 0.

Step 2. Increase m by 1. Compute negative gradient − ∂
∂f ρ(Y , f)

and evaluate at f = f̂m−1(Xi) = Ui (i = 1, . . . , n)

Step 3. Fit negative gradient vector U1, . . . , Un by base proced.

(Xi , Ui)
n
i=1

base proced.
−→ θ̂m(·)

i.e. θ̂m(·) is an approximation of the negative gradient vector

Step 4. Up-date f̂m(·) = f̂m−1(·) + ν · θ̂m(·)
(0 < ν ≤ 1 step-length)

i.e: proceed along an estimate of the negative gradient vector

Step 5. Iterate Steps 2-4 until m = mstop

ν small will be good, e.g. ν = 0.1

L2Boosting (Friedman, 2001; PB & Yu, 2003)

loss function ρ(y , f) = |y − f |2
population minimizer: f ∗(x) = E[Y |X = x]
FGD with base procedure θ̂(·): repeated fitting of residuals

m = 1 : (Xi , Yi)
n
i=1 θ̂1(·), f̂1 = νθ̂1 resid. Ui = Yi − f̂1(Xi)

m = 2 : (Xi , Ui)
n
i=1 θ̂2(·), f̂2 = f̂1 + νθ̂2 resid. Ui = Yi − f̂2(Xi)
... ...

f̂mstop(·) = ν
∑mstop

m=1 θ̂m(·) (greedy fitting of residuals)

Tukey (1977): twicing for mstop = 2 and ν = 1

any gain over classical methods?

• not at all if n/p is reasonable

Ozone data: n=300, p=8

boosting iterations

M
S

E

0 20 40 60 80 100

18
19

20
21

22

• substantial gain if n/p is small

Regression: n=200, p=100

boosting iterations

M
S

E

0 50 100 150 200 250 300

11
12

13
14

15
16

Componentwise linear least squares base procedure

linear ordinary least squares against the one predictor variable
which reduces RSS most

θ̂(x) = β̂Ŝx(Ŝ)
, β̂j =

nX
i=1

Yi X
(j)
i /

nX
i=1

(X (j)
i)2

, Ŝ = argminj

nX
i=1

(Yi − β̂j X
(j)
i)2

first round: selected predictor variable X (Ŝ1) (e.g. = X (3))
corresponding β̂Ŝ1

 fitted function f̂1(x)

2nd round: selected predictor variable X (Ŝ2) (e.g.= X (21))
corresponding β̂Ŝ2

 fitted function f̂2(x)
etc.
L2Boosting: f̂m(x) = f̂m−1(x) + ν · θ̂(x)

 linear model fit, including variable selection

i.e. a structured model fit

Componentwise linear least squares base procedure

linear ordinary least squares against the one predictor variable
which reduces RSS most

θ̂(x) = β̂Ŝx(Ŝ)
, β̂j =

nX
i=1

Yi X
(j)
i /

nX
i=1

(X (j)
i)2

, Ŝ = argminj

nX
i=1

(Yi − β̂j X
(j)
i)2

first round: selected predictor variable X (Ŝ1) (e.g. = X (3))
corresponding β̂Ŝ1

 fitted function f̂1(x)

2nd round: selected predictor variable X (Ŝ2) (e.g.= X (21))
corresponding β̂Ŝ2

 fitted function f̂2(x)
etc.
L2Boosting: f̂m(x) = f̂m−1(x) + ν · θ̂(x)

 linear model fit, including variable selection

i.e. a structured model fit

for ν = 1, this is known as
Matching Pursuit (Mallat and Zhang, 1993)
Weak greedy algorithm (deVore & Temlyakov, 1997)
a version of Boosting (Schapire, 1992; Freund & Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gauss in 1803
“Princeps Mathematicorum”

R.V. Southwell in 1933
Professor in Oxford

for ν = 1, this is known as
Matching Pursuit (Mallat and Zhang, 1993)
Weak greedy algorithm (deVore & Temlyakov, 1997)
a version of Boosting (Schapire, 1992; Freund & Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gauss in 1803
“Princeps Mathematicorum”

R.V. Southwell in 1933
Professor in Oxford

Binary lymph node classification using gene expressions:
a high noise problem

n = 49 samples, p = 7129 gene expressions

cross-validated misclassification error (2/3 training; 1/3 test)

Lasso L2Boosting FPLR Pelora 1-NN DLDA SVM
21.1% 17.7% 35.25% 27.8% 43.25% 36.12% 36.88%

multivariate gene selection best 200 genes (Wilcoxon test)
no additional gene selection

42 (out of 7129) selected genes (n = 49)
and gene importance

0 10 20 30 40

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05

sorted regression coefficients

selected genes

108

identifiability problem: strong correlations among some genes

 consider groups of highly correlated genes
biological categories (e.g. GO ontology),

Connections to Lasso (for linear models):
Efron, Hastie, Johnstone, Tibshirani (2004): for special design
matrices,

iterations of L2Boosting with “infinitesimally” small ν
yield all Lasso solutions when varying λ

Zhao and Yu (2005): for general design matrices,
when adding some backward steps
the solutions from Lasso and modified Boosting “coincide”

greedy (plus backward steps) and convex optimization are
surprisingly similar

Connections to Lasso (for linear models):
Efron, Hastie, Johnstone, Tibshirani (2004): for special design
matrices,

iterations of L2Boosting with “infinitesimally” small ν
yield all Lasso solutions when varying λ

Zhao and Yu (2005): for general design matrices,
when adding some backward steps
the solutions from Lasso and modified Boosting “coincide”

greedy (plus backward steps) and convex optimization are
surprisingly similar

Consistency for high dimensions: an analysis of an algorithm

Yi = β0 +

p∑
j=1

βjX
(j)
i + εi (i = 1, . . . , n), p � n

Theorem (PB, 2006)
L2Boosting with comp. linear LS is consistent (with suitable
number of boosting iterations) if:
• pn = O(exp(Cn1−ξ)) (0 < ξ < 1) (high-dimensional)

essentially exponentially many variables relative to n
• supn

∑pn
j=1 |βj,n| < ∞ `1-sparseness of true function

i.e. for suitable, slowly growing m = mn:

EX |̂fmn,n(X)− fn(X)|2 = oP(1) (n →∞)

“no” assumptions about the predictor variables/design matrix

(similar result for Lasso: Greenshtein & Ritov (2004))

Consistency for high dimensions: an analysis of an algorithm

Yi = β0 +

p∑
j=1

βjX
(j)
i + εi (i = 1, . . . , n), p � n

Theorem (PB, 2006)
L2Boosting with comp. linear LS is consistent (with suitable
number of boosting iterations) if:
• pn = O(exp(Cn1−ξ)) (0 < ξ < 1) (high-dimensional)

essentially exponentially many variables relative to n
• supn

∑pn
j=1 |βj,n| < ∞ `1-sparseness of true function

i.e. for suitable, slowly growing m = mn:

EX |̂fmn,n(X)− fn(X)|2 = oP(1) (n →∞)

“no” assumptions about the predictor variables/design matrix

(similar result for Lasso: Greenshtein & Ritov (2004))

population version: 〈f , g〉 =

∫
f (x)g(x)dP(x)

gj(x) = x (j), ‖gj‖ = 1

R0f = f
Rmf = Rm−1f − 〈Rm−1f , gŜm

〉gŜm
, m = 1, 2, . . .

Ŝm = argmaxj |〈Rm−1f , gj〉|

‖Rmf‖2 = ‖f −
m∑

k=1

γkgŜk
‖2

= ‖Rm−1f‖2 − |〈Rm−1f , gŜm
〉|2 ↘

I ↘ 0 ?
I uniform bound ?

Temlyakov (2000):
≤ ‖β‖1m−1/6

population version: 〈f , g〉 =

∫
f (x)g(x)dP(x)

gj(x) = x (j), ‖gj‖ = 1

R0f = f
Rmf = Rm−1f − 〈Rm−1f , gŜm

〉gŜm
, m = 1, 2, . . .

Ŝm = argmaxj |〈Rm−1f , gj〉|

‖Rmf‖2 = ‖f −
m∑

k=1

γkgŜk
‖2

= ‖Rm−1f‖2 − |〈Rm−1f , gŜm
〉|2 ↘

I ↘ 0 ?
I uniform bound ?

Temlyakov (2000):
≤ ‖β‖1m−1/6

population version: 〈f , g〉 =

∫
f (x)g(x)dP(x)

gj(x) = x (j), ‖gj‖ = 1

R0f = f
Rmf = Rm−1f − 〈Rm−1f , gŜm

〉gŜm
, m = 1, 2, . . .

Ŝm = argmaxj |〈Rm−1f , gj〉|

‖Rmf‖2 = ‖f −
m∑

k=1

γkgŜk
‖2

= ‖Rm−1f‖2 − |〈Rm−1f , gŜm
〉|2 ↘

I ↘ 0 ?
I uniform bound ?

Temlyakov (2000):
≤ ‖β‖1m−1/6

population version: 〈f , g〉 =

∫
f (x)g(x)dP(x)

gj(x) = x (j), ‖gj‖ = 1

R0f = f
Rmf = Rm−1f − 〈Rm−1f , gŜm

〉gŜm
, m = 1, 2, . . .

Ŝm = argmaxj |〈Rm−1f , gj〉|

‖Rmf‖2 = ‖f −
m∑

k=1

γkgŜk
‖2

= ‖Rm−1f‖2 − |〈Rm−1f , gŜm
〉|2 ↘

I ↘ 0 ?
I uniform bound ?

Temlyakov (2000):
≤ ‖β‖1m−1/6

population version: 〈f , g〉 =

∫
f (x)g(x)dP(x)

gj(x) = x (j), ‖gj‖ = 1

R0f = f
Rmf = Rm−1f − 〈Rm−1f , gŜm

〉gŜm
, m = 1, 2, . . .

Ŝm = argmaxj |〈Rm−1f , gj〉|

‖Rmf‖2 = ‖f −
m∑

k=1

γkgŜk
‖2

= ‖Rm−1f‖2 − |〈Rm−1f , gŜm
〉|2 ↘

I ↘ 0 ?
I uniform bound ?

Temlyakov (2000):
≤ ‖β‖1m−1/6

population version: 〈f , g〉 =

∫
f (x)g(x)dP(x)

gj(x) = x (j), ‖gj‖ = 1

R0f = f
Rmf = Rm−1f − 〈Rm−1f , gŜm

〉gŜm
, m = 1, 2, . . .

Ŝm = argmaxj |〈Rm−1f , gj〉|

‖Rmf‖2 = ‖f −
m∑

k=1

γkgŜk
‖2

= ‖Rm−1f‖2 − |〈Rm−1f , gŜm
〉|2 ↘

I ↘ 0 ?
I uniform bound ?

Temlyakov (2000):
≤ ‖β‖1m−1/6

population version: 〈f , g〉 =

∫
f (x)g(x)dP(x)

gj(x) = x (j), ‖gj‖ = 1

R0f = f
Rmf = Rm−1f − 〈Rm−1f , gŜm

〉gŜm
, m = 1, 2, . . .

Ŝm = argmaxj |〈Rm−1f , gj〉|

‖Rmf‖2 = ‖f −
m∑

k=1

γkgŜk
‖2

= ‖Rm−1f‖2 − |〈Rm−1f , gŜm
〉|2 ↘

I ↘ 0 ?
I uniform bound ?

Temlyakov (2000):
≤ ‖β‖1m−1/6

linear model “prototype”-result
the methodology (and some of theory) is much more general

Other loss functions for boosting: beyond regression
for binary classification with Y ∈ {0, 1}:
ρ(y , f) = log2(1 + exp(−(2 · y − 1)f))
negative binomial log-likelihood
population minimizer: f ∗(x) = 1

2 log(p(x)
1−p(x))

 can estimate probabilities p(·) from estimate f̂ (·)

this is LogitBoost (Friedman, Hastie and Tibshirani, 2000)

for count data with Y ∈ {0, 1, 2, . . .}:
ρ(y , f) = exp(f)− yf
negative Poisson log-likelihood
population minimizer: f ∗(x) = log(E[Y |X = x])

for survival data with Y ∈ R+:
ρ(y , f) from Cox’s partial likelihood

etc...

Other loss functions for boosting: beyond regression
for binary classification with Y ∈ {0, 1}:
ρ(y , f) = log2(1 + exp(−(2 · y − 1)f))
negative binomial log-likelihood
population minimizer: f ∗(x) = 1

2 log(p(x)
1−p(x))

 can estimate probabilities p(·) from estimate f̂ (·)

this is LogitBoost (Friedman, Hastie and Tibshirani, 2000)

for count data with Y ∈ {0, 1, 2, . . .}:
ρ(y , f) = exp(f)− yf
negative Poisson log-likelihood
population minimizer: f ∗(x) = log(E[Y |X = x])

for survival data with Y ∈ R+:
ρ(y , f) from Cox’s partial likelihood

etc...

Other loss functions for boosting: beyond regression
for binary classification with Y ∈ {0, 1}:
ρ(y , f) = log2(1 + exp(−(2 · y − 1)f))
negative binomial log-likelihood
population minimizer: f ∗(x) = 1

2 log(p(x)
1−p(x))

 can estimate probabilities p(·) from estimate f̂ (·)

this is LogitBoost (Friedman, Hastie and Tibshirani, 2000)

for count data with Y ∈ {0, 1, 2, . . .}:
ρ(y , f) = exp(f)− yf
negative Poisson log-likelihood
population minimizer: f ∗(x) = log(E[Y |X = x])

for survival data with Y ∈ R+:
ρ(y , f) from Cox’s partial likelihood

etc...

Computation

computation for general loss functions involves a
trivial extension only!
very different for LARS-type path-following algorithms for Lasso

instead of residuals in L2Boosting

Ui = Yi − f̂m−1(Xi), i = 1, . . . , n

we use “generalized residuals”

Ui = − ∂

∂f
ρ(Y , f)|f=f̂m−1(Xi)

, i = 1, . . . , n

since there is (usually) a closed form, simple expression of the
partial derivative
 same computational cost as for L2Boosting

The mboost package in R (Hothorn & PB, 2006)

for various boosting algorithms and corresponding model fitting

I easy to use and coherent implementation for
• regression
• classification
• Poisson regression
• survival analysis with Cox’s partial likelihood
• your own loss function

I allows for various base procedures
• componentwise linear least squares
• componentwise smoothing splines
• trees

I computationally very fast for high-dimensional generalized
linear models

CPU time
Binary lymph node classification example: p = 7129, n = 49
with L2Boosting or BinomialBoosting (LogitBoost)
for large range of solutions

it’s less than a second!

0.906 seconds using mboost in R (Hothorn & PB, 2006)

in comparison:
for linear models, computing Lasso solutions for all λ’s

2.603 seconds using lars in R (with use.gram=F)

CPU time
Binary lymph node classification example: p = 7129, n = 49
with L2Boosting or BinomialBoosting (LogitBoost)
for large range of solutions

it’s less than a second!

0.906 seconds using mboost in R (Hothorn & PB, 2006)

in comparison:
for linear models, computing Lasso solutions for all λ’s

2.603 seconds using lars in R (with use.gram=F)

CPU time
Binary lymph node classification example: p = 7129, n = 49
with L2Boosting or BinomialBoosting (LogitBoost)
for large range of solutions

it’s less than a second!

0.906 seconds using mboost in R (Hothorn & PB, 2006)

in comparison:
for linear models, computing Lasso solutions for all λ’s

2.603 seconds using lars in R (with use.gram=F)

because it is so fast
 local modeling over different inhomogeneous but related

sub-populations (“borrowing strength from neighborhood”)

β(t) ≈ β(neighb.(t))

Motif detection using DNA sequence and gene expression data
(Meier, Liu, Liu & PB; work in progress)
p = 4′312, n = 79′974 from 18 sub-populations

Can we easily improve?

maybe (?) not that much with respect to prediction but often
substantially with respect to variable/feature selection

approach for variable selection with Boosting:
variables which have been selected by the base procedure in
the process of boosting

e.g. in a (generalized) linear model fit:
variables with corresponding regression coefficient 6= 0

 no significance testing involved

Can we easily improve?

maybe (?) not that much with respect to prediction but often
substantially with respect to variable/feature selection

approach for variable selection with Boosting:
variables which have been selected by the base procedure in
the process of boosting

e.g. in a (generalized) linear model fit:
variables with corresponding regression coefficient 6= 0

 no significance testing involved

Can we easily improve?

maybe (?) not that much with respect to prediction but often
substantially with respect to variable/feature selection

approach for variable selection with Boosting:
variables which have been selected by the base procedure in
the process of boosting

e.g. in a (generalized) linear model fit:
variables with corresponding regression coefficient 6= 0

 no significance testing involved

Building on the analogy with the Lasso

Meinshausen & PB (2006):
for linear models

I Lasso is consistent for variable selection, even for p � n,
if the design matrix is not “too correlated”
P[selected model = true model] → 0︸︷︷︸

quickly

(n →∞)

I if the design is “too correlated”
 Lasso is inconsistent for variable selection

see also Zou (2006), Zhao and Yu (2006)

The “reason”

too much bias (or shrinkage), even for large values

−3 −2 −1 0 1 2 3

−2
−1

0
1

2

threshold functions

z

hard−thresholding
nn−garrote
soft−thresholding

Bias in soft-thresholding
is disturbing (at least sometimes)

better:
Nonnegative Garrote (Breiman, 1995)
and similar proposals

Twin Boosting (PB, 2006):
Boosting-type answer addressing the problem of bias

is different from Sparse Boosting (PB & Yu, 2006)
but much more general and computationally much faster

Rough idea of Twin Boosting

I first round of boosting as usual: first twin
I second round of boosting which is forced to resemble the

first round: second twin
I final estimate from the second round

Rough idea of Twin Boosting

I first round of boosting as usual: first twin
I second round of boosting which is forced to resemble the

first round: second twin
I final estimate from the second round

Rough idea of Twin Boosting

I first round of boosting as usual: first twin
I second round of boosting which is forced to resemble the

first round: second twin
I final estimate from the second round

Twin L2Boosting for linear models

recap: L2Boosting with componentwise linear least squares
chooses variable j which reduces RSS most

⇔ |n−1
n∑

i=1

UiX
(j)
i | = |Ĉor(U, X (j))| maximal w.r.t. j

if predictor variables are standardized

first round: boosting estimate β̂init from L2Boosting

second round: as L2Boosting but selecting variable using

|n−1
n∑

i=1

UiX
(j)
i | · |β̂init ,j | maximal w.r.t. j

final estimate from second round, “pulled toward” initial estim.
 very easy and computationally efficient modification

Twin Boosting = iterated regularization

(we first tune round 1;
and fixing the tuning from round 1, we then tune round 2)

PB (2006):
for orthogonal linear models, as step-size factor ν → 0

Twin L2Boosting and Adaptive Lasso coincide
(with βinit = estimate from first round of boosting)

and Twin Boosting extends to very general settings

Adaptive Lasso (Zou, 2006)

β̂ = argminβ

n∑
i=1

(Yi − (Xβ)i)
2 + λ

p∑
j=1

|βj |
|βinit ,j |︸ ︷︷ ︸

e.g. OLS if p < n

nice result (Zou, 2006):
adaptive Lasso is consistent for variable selection “in general”
(proof for low-dimensional problems only)

for orthogonal design
if βinit = OLS,
Adaptive Lasso = NN-garrote

−3 −2 −1 0 1 2 3

−2
−1

0
1

2

threshold functions

z

hard−thresholding
adaptive Lasso
soft−thresholding

Simulated example: n = 50, p=500

Y =
500∑
j=1

βjX (j) + ε, β1 = 5, βj = 0 (j = 2, . . . , 500)

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MSE

boosting iteration

M
S

E

0 50 100 150 200

0
10

20
30

40

no. variables

boosting iteration

no
. o

f v
ar

ia
bl

es

0 20 40 60 80 100

0
2

4
6

8
10

no. incorrect variables

boosting iteration

no
. o

f i
nc

or
re

ct
 v

ar
ia

bl
es

black: L2Boosting red: Twin L2Boosting

Twin L2Boosting: more sparse and better variable selection
than boosting

Response Y versus p = 4088 gene expressions
in Bacillus Subtilis

out

Gene.48

Gene.289

Gene.385

Gene.412

Gene.447

Gene.535

Gene.816

Gene.837

Gene.942

Gene.943
Gene.945

Gene.946

Gene.948

Gene.960

Gene.1025

Gene.1027

Gene.1058

Gene.1123

Gene.1223

Gene.1251

Gene.1273

Gene.1358

Gene.1546

Gene.1564

Gene.1640

Gene.1706

Gene.1712

Gene.1885

Gene.1932

Gene.2360

Gene.2438

Gene.2439

Gene.2928

Gene.2929

Gene.2937

Gene.3031

Gene.3032

Gene.3033

Gene.3034

Gene.3132

Gene.3312

Gene.3693

Gene.3694

Gene.3943

neighbours of Y (selected genes) and their conditional
dependencies n=115, p=4088

Boosting with regression tree base procedure
very popular in machine learning

trees can be very useful because:
I they can easily handle missing data
I they can easily deal with mixed categorical, ordinal,

continuous data
I they are invariant under monotone

covariate-transformations

Twin L2Boosting for trees
first round: boosting estimate f̂init

second round: as boosting but select in each iteration the
best tree ĝ(·) which reduces RSS and “resembles” f̂init

C2(ĝ)︸ ︷︷ ︸dCor
2
(ĝ ,̂finit)

·

(
2

n∑
i=1

Ui ĝ(Xi)−
n∑

i=1

ĝ(Xi)
2

)
︸ ︷︷ ︸

“penalized correlation”

is maximized w.r.t. ĝ

in case of componentwise least squares and uncorrelated
design

∝ |β̂init,j |2 · |Ĉor(U, X (j))|2

 concept easily extends to other loss functions
(e.g. classification)

Sonar data: binary classification with n=208, p = 60

0 100 200 300 400 500

0.
17

0.
18

0.
19

0.
20

0.
21

0.
22

misclassification error

boosting iteration

m
is

cl
as

si
fic

at
io

n
er

ro
r

0 100 200 300 400 500

0
10

20
30

40

no. variables

boosting iteration

no
. o

f v
ar

ia
bl

es

black: BinomialBoosting red: Twin BinomialBoosting

Twin Boosting: more sparse than boosting

with synthetically enlarged predictor space
adding 500 N (0, 1)-distributed ineffective predictor variables

0 100 200 300 400 500

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

0.
25

misclassification error

boosting iteration

m
is

cl
as

si
fic

at
io

n
er

ro
r

0 100 200 300 400 500

0
20

40
60

80

no. variables

boosting iteration

no
. o

f v
ar

ia
bl

es

0 100 200 300 400 500

0
10

20
30

40
50

no. incorrect variables

boosting iteration

no
. o

f v
ar

ia
bl

es

black: BinomialBoosting red: Twin BinomialBoosting

 improved variable selection with Twin Boosting

Conclusions

Boosting
I is mainly useful for high-dimensional and/or large datasets
I is computationally very efficient
I is very competitive for prediction

I Twin Boosting (e.g. iterated regularization) improves upon
• variable selection
• assigning variable importance in structured models

(linear, additive, interaction)

