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1. High-dimensional data

(X1,Y1),...,(Xn,Yy,) iid. orstationary
X,; € RP predictor variable

Y; univariate response variable, e.g. Y; € RorY; € {0,1}

high-dimensional: p > n

areas of application: astronomy, biology, imaging, marketing research, text

classification,...
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High-dimensional linear models

Y
Y= BiX +e,i=1,...,n

j=1
p>n

includes basis expansion with highly overcomplete dictionary

goal: variable selection; but how?

approaches include:
variable selection via AIC, BIC, gMDL (in a forward manner);

Bayesian methods for regularization and variable selection; boosting; .

Lasso: new relaxed Lasso, ...
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our requirements:
e computationally feasible

e statistically accurate for selecting the correct variables and for prediction

computational feasibility for high-dimensional problems

A
greedy methods, heuristic search
or

convex optimization




3. Lasso-relaxation is “quite” good forp > n

Lasso or NH-_om:m__NmQ regression (Tibshirani, 1996):

n p p
Qh@mmo — m:d_.:_:QS\IH MAM\M T MQ@N&CJM T v, M 7ﬁu_
i=1

. { .
=1 >0; penalty par. =1

e does variable selection: some (many) Q\ 's exactly equal to O
e does shrinkage

® involves a convex optimization only
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this is convex relaxation:

replace the computationally hard/infeasible subset selection &o-cm:m_g

n p p
m@BEm:L MC\S - M @.N@vaw +7 MEF«»S
i=1 j=1 j=1
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e.g. AIC, BIC, ...

by the convex £!-penalized problem
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3.1. Prediction with convex Lasso-relaxation

consistency for prediction in high-dimensions (Greenshtein & Ritov, 2004)
ep=p, =0(n*) forany 0 < a < 0o (high-dimensional)
o wwH 1Bj.n| = o(n**log(n)~1/4) (sparse)

~ Ex[(f(X) = f(X))*] = 0op(1), f,  linear

Donoho, Candes, Tao, Tanner,... &~ 2003-2005: many results on the Ly-norm

(prediction) for basis pursuit and Lasso if p = p, = O(n)
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\w.m. Variable selection and graphical modeling with the rmwmo/

goal: use the Lasso for determining presence/absence of associations between

random variables (~~ includes regression)

Gaussian conditional independence graph

assumethat X = XN . X®) ~ N (u, X)

graph:
set of nodes I' = ,ﬁ“ 2,... ;&,. corresponding to the p random variables
setof edges £ C I' X I' defined as:

there is an undirected edge between node ¢ and
def

& X @ conditionally dependent of X /) given all other { X *); k # 4, 5}
~1
& X 70
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T
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.yl O .
note: 333" correspondsto 8,7 = X7 /X7, where

@ — @6 X0 4% 8D X ®) 1 error
k#1,5
~~ we can infer the graph from variable selection in regression

&s =0 X! =0 (& Y =0)

huge computational problem when using e.g. subset selection a la BIC:
worst case ﬁw@L least squares problems!

and still infeasible with up- down-dating strategies
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Just relax!

replace the computationally hard problem by a convex problem:

compute the Lasso estimates Q@C ) (for all regressions)

Estimation of graph:

estimate an edge between node 7 and j if
3(1) 3(7)
B;7 # 0and 5;7" # 0

(for finite samples: it could happen that only one of the m%vu @.C.v is # 0)

this involves only convex optimizations!

instead of checking exhaustively BM@L least squares problems (e.g. using BIC)

. K
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Comparison of Lasso and classical stepwise selection
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ROC-curves for estimated graphs with p = 10, 30 nodes and n = 40 obs.

ém graphs are sparse, having at most 4 edges out of every node

k
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Some theory for high dimensions

Theorem (Meinshausen & PB, 2004)
For \,, ~ Cn—1/214/2

IP [estimated graph()\,,) = true graph] = 1 4+ O(exp(—Cn°)) (n — 00)

(0<dé <1

e Gaussian data
e p=p, = O0(n%)forany a > 0 (high-dimensional)
e maximal number of edges out of a node = O(n”) (0 < kK < 1) (sparseness)

® plus some other technical conditions (one of them being “a bit” restrictive)

justification for relaxation with computationally simple convex problems!

12




4 N

Choice of A

Theorem doesn’t say much about choosing ...

first (not so good) idea: choose A to optimize prediction

e.g. via some cross-validation scheme
but: for prediction oracle solution

A = argminE[(X® - 37 (\) X0
A .
J7F1

IP [estimated neighborh.(A™); = true neighborh.;] — 0 (pn — 0o, N — )
IP [estimated graph(A*) = true graph] — 0 (p, — o0, n — o0)

asymptotically: the prediction optimal graph is too large
(Meinshausen & PB, 2004; related example by Leng et al., 2004)

N

k
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The good message

Lasso produces a set of sub-models

MyC...C... Mipred—opt C...C My

\ .

"

optimal for prediction with Lasso
with N = O(min(n,p))

and M, is with probability 1 — O (exp(—Cn?)) among these models
but i?ém wm iﬁm&loﬁu

N
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4. Beyond _ummmo-

consider linear model Y = X3 + ¢

for orthonormal design: XTX = I: Lasso yields the soft-threshold estimator

Is soft-thresholding or Lasso a good thing?

® (31,...0piid. ~ Double-Exponential,
soft-thresholding and the Lasso yield the MAP (which often performs well)

® minimax results for soft-thresholding (Donoho & Johnstone, ...)

N
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but: a different story in the very high-dimensional sparse case

assume:
op=7p, ~Crexp(Con!=%) (0 < £ < 1)
e effective number of variables is finite (finite No-:o:sv

non-effective variables are independent

Theorem (Meinshausen, 2005)

Plinf L(A) >en™"]—=1(n—o0)forr>¢
A ———
risk of Lasso

while optimal rate is n~1 (achieved e.g. by OLS with the true variables)

~» Lasso can have very poor convergence rate

N
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reason: need large A for variable selection ~~ strong bias of soft-thresholding

threshold functions

--- hard-thresholding
—— nn-garrote
--- soft-thresholding

Better:
- SCAD (Fan and Li, 2001)
- Nonnegative Garrote (Breiman, 1995)
- Bridge estimation
(Frank and Friedman, 1993)

they all work for general X

for non-orthogonal X:
® non-convex optimization for SCAD or Bridge estimation

e NN-Garrote only forp < n

. K

17




\ 4.1. The relaxed Lasso (Meinshausen, 2005)

forA>0,0<¢<1
Brs = argminn ™" > (¥; - 3 B; X )2 + ¢Al18]lx
B i=1 ic M,
—~
model from Lasso(\)

for @ = 0: OLS on selected variables from Lasso(\)
for = 1: Lasso(\)

amount of computation for finding all solutions over A and ¢:

often, the same computational complexity as for Lasso/LARS (surprising):
O(npmin(n,p)) = O(p)ifp>n

worst case: O(npmin(n,p)?) = O(p)ifp>n sl linearin p

/ this is “quasi-convex” optimization: two levels of a convex problem
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relaxed Lasso

—— hard-theshold
— soft-threshold
—— relaxed Lasso

for orthonormal case:

XTX =1

Theorem (Meinshausen, 2005)

in general, with essentially the same assumptions as for the Lasso

inf L(A, ¢) = Op(n™) (n — o0)

N
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relaxed Lasso for variable selection and graphs/dependency networks

prediction optimal (or cross-validated) tuning parameters yield (for suitably regular

cases) consistent variable selection and graph estimates
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Qo biosynthesis pathways in Arabidopsis

n = 118 Affymetrix gene expression measurements, p = 39 genes
plus additional biological information

~~ the relaxed Lasso has been used as a “starting point” (Wille et al., 2004)

Chloroplast (MEP pathway) Cytoplasm (MVA pathway)

\ // Chloroplast (MEP pathway) Cytoplasm (MVA pathway)
(DxPs1) (DxPs2) (DXPS3)

ﬁxvm: (DXPs2) Tux_uw&/

(BXR)
(wen)
(i)

(WiECPS)
(MPDCD)  (MPDC2)

CPhz)

. 1 Y Ay
2 200es (GGPSisY) Tu_umw i3 hoo_w_wm 70 26,8,10,11,12 |—(PPDSLHPPDS2)|  |(GGPPSL59) (DPPS13) (GGPPS34 )
> - Chlorophylls Carotenoids Mitochondrion  phytosterolsSesquiterpenes

Chlorophylls Carotencids | Mitochondrion  phytosterol sSesquiterpenes //qooou%mw_m >cmo_nomnmﬁ Brassinoseroids

//.ﬂooou:mB_m Abscisic mn_@ Brassinosteroids
13 ”n
._ " edges from MVA “module” to MEP
edges from MEP “module” to MVA 9

/_o_o_om_om__v\ most interesting novel connection: from IPPI1 to MVA “module”
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\ Regression: n = 300, p = 20,...690, pesr = 20 /

the price of collecting too many covariates

L2-loss number of selected variables
N~ o
S H\H = \H
< | \ & - 1
S 1 \
o \ m | 1
4 1 /
o 1
ol \ < 7 /
© 41 1
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p p
1: Lasso 2: relaxed Lasso

pure noise variables are much less damaging with the relaxed Lasso than for Lasso

Kw:o_ they are very disturbing for Ridge-type regularization (e.g. SVM) K
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number of selected variables

2: relaxed Lasso

the relaxed Lasso is the larger search space 0 < ¢ < 1 (Lasso: ¢ = 1)

relaxed Lasso never substantially worse than the Lasso: the price for the flexibility of

k
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4 N

relaxed Lasso is also better than Lasso-OLS hybrid
——~

for prediction and variable selection

in particular if, e.g.

B1, ..., Bp.;; ii.d. ~ Double-Exponential
Q@SJT_.H — ...HQ@ =0

and p large, p¢ s ¢ Not so large

. K
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\ binary lymph node classification in breast cancer using gene expressions:
a high noise problem

n = 49 samples, p = 7129 gene expressions

cross-validated misclassification rate;
relaxed Lasso (tuned by 5-fold CV): 16.3%

Lasso (tuned by 5-fold CV): 21.0%
SVM: 36.9%
DLDA: 36.1%

selected genes (on whole data set):

relaxed Lasso: 2 genes (!) Lasso: 23 genes

average from CV: 7.3 genes

the 2 genes from relaxed Lasso are also selected by Lasso

/306 the identifiability problem among highly correlated predictor variables
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Do: DNA motif modeling and prediction of 5’ splice sites (Meier & PB, 2005) /

Y € {0, 1}: 5"is a splice site or not
X € {A,C,G, T}: 9 DNA sequence positions

log-linear model with main effects and second-order interactions
but: NH-_omsm__NmQ MLE depends on parameterization
Group Lasso (Yuan & Lin, 2004) helps

~~ whole terms (e.g. an interaction term) are selected

training data 7 = 10’000 (only a fraction from Burge et al. (1999))
test data n¢esp = 4208
slightly better (w.r.t. ROC) than maximum entropy modeling (Yeo and Burge, 2004)

pred.0 | pred. 1

true 0 | 87212 2505

/ true 1 804 3404 could also tune for low false positives K
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but:

computations (of the whole path of relaxed group Lasso solutions) are subtle

due to non-quadratic loss function and non-strict convexity of NH-_om:m__Nmao:

~~ problem-specific implementations are required

N
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5. Relations to Boosting

Boosting is “related to” Lasso
cf. Efron, Hastie, Johnstone, Tibshirani (2004)

and Boosting is much more generic than Lasso
e.g. other loss functions, nonparametric models, factors (i.e. group of variables),...

. K
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5.1. LyBoosting
(Friedman, 2001)

specify a base procedure (“weak learner”):

algorithm A A . .
data — 6(-)  (afunction estimate)

e.g.: simple linear regression, tree (CART), ...

LsBoosting with base procedure 0 (+): repeated fitting of residuals

m

1: (X;,Y5)i, imHC“ ,\w = v 01 ~ resid U HK.I\MANL

m=2: (X;, Uy ~05(), fo=Ffi +vhy  ~ resid U; =Y; — fo(X;)

A

,\,»S&%A.v =3 MNMM@ 6. (+) (greedy fitting of residuals)

/ Tukey (1977): twicing for mgtop = 2and v =1 K
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mo:,_oo:m:g_mm linear least squares base procedure for linear model fitting

linear OLS regression against the one predictor variable which reduces residual
sum of squares most

b(@) = Bga'),

= SV S XD S = argmin 3% - 4, X))
1=1 1=1 1=1

LBoosting with componentwise linear LS yields linear model fit:

first round of estimation: selected predictor variable N‘Awb (e.g. = N‘@v

corresponding QWH

use shrunken fit \m@v = N\me&Ava (e.g.v = 0.1)

second round of estimation: selected predictor variable N‘Awwv (e.g.= NGCV

et

corresponding (3 3

use shrunken fit _\w@v = f1(x) + N\mww&ﬁw&

~

k
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; v = 1, this is known as /

Matching Pursuit (Mallat and Zhang, 1993)
Weak greedy algorithm (deVore & Temlyakov, 1997)
a version of Boosting (Schapire, 1992; Freund & Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gaussin 1803

“Princeps Mathematicorum”

R.V. Southwell in 1933

/ Professor in engineering, Oxford K
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hw Boosting with comp.wise linear LS is consistent for very high-dimensional,
sparse linear models (PB, 2004)

properties for variable selection are not rigorously known

using the analogy to the Lasso/relaxed Lasso: instead of boosting,

~~ boosting algorithm which is sparser than boosting

5.2. Sparse L yBoosting

(PB and Yu, 2005)

instead of minimizing RSS in every iteration,

minimize a final prediction error (FPE) criterion: we propose gMDL,

n
fm = arg min MUC\S — F1(X3))2+ gMDL-penalty
%A.v - o -~ _J/
=1 requires d.f. for boosting

d.f. for boosting via trace of hat-matrices

N

32



; orthonormal linear model:

Sparse LyBoosting with componentwise linear least squares yields

Breiman’s nonnegative garrote estimator (PB & Yu, 2005)

threshold functions

];maéam:oa_:m
—— nn-garrote

e SparseLBoost yields sparser solutions than LyBoosting
e SparseL,Boost still very generic (although less generic than LoBoosting)
e.g. nonparametric problems, non-quadratic loss functions

® no theory but lots of empirical evidence that

/m_omqmmhw Boosting is a reasonable variable selection method
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\moomz:@ with first-order interactions
base procedure: pairwise thin plate splines Q%w — R) which selects the pair of
predictors such that corresponding spline smooth reduces RSS most (fixed d.f.)

~~ nonparametric model fit with first-order interactions

interaction modelling: p = 20, effectivep =5

— L2Boosting Friedman #1 model:

--- SparselL2Boosting
-~ MARS

Y = 10sin(rX1Xo) 4+ 20(X3 — 0.5)2

10X4 4+ 5X5 + N(0,1)

MSE

X = A»vﬂu_.u ey, NNOV ~ C::.AﬁOg HQMQV

Sample size n = 50

Dimension p = 20, peff = 9

0 100 200 300 400 500

/ boosting iterations

IT

k
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6. Conclusions

e for variable selection and graphical modelling
want to be sparser than prediction-optimal NH-_om:m__NmQ solutions

(or sparser than ordinary boosting)

® relaxed Lasso has the property that prediction optimal solutions yield good

(i.e. consistent) variable selection
~~ can use cross-validation to determine a good model
better to do “quasi-convex” instead of convex optimization

(empirically similar for boosting: prediction optimal Sparse L 5Boosting

often yields good variable selection scheme)

N
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