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Received on July 9, 2006; revised on August 22, 2006; accepted on August 24, 2006

Advance Access publication August 29, 2006

Associate Editor: Keith A Crandall

ABSTRACT

Summary: The R add-on package mboost implements functional

gradient descent algorithms (boosting) for optimizing general loss

functions utilizing componentwise least squares, either of parametric

linear formorsmoothingsplines,or regression treesasbase learners for

fitting generalized linear, additive and interaction models to potentially

high-dimensional data.

Availability:Package mboost is available from the Comprehensive R

Archive Network (http://CRAN.R-project.org) under the terms of the

General Public Licence (GPL).

Contact: Torsten.Hothorn@R-project.org

Linking the clinical phenotype of a patient to his or her genotype,

i.e. to measurements of potentially thousands of expression values,

transcripts or proteins, is a challenging task for multivariate regres-

sion analysis. Roughly, two approaches can be distinguished. Either

a univariate pre-selection of variables is performed before fitting a

more classical regression or classification model or modern predic-

tion methods, such as random forest, support vector machines and

boosting, are used. The latter are more coherent, simultaneous

approaches and seem to be more promising.

Recent developments in multivariate regression analysis utilize

boosting methods as an optimization technique for the estimation

of potentially high-dimensional linear or additive models (see

Bühlmann and Yu, 2003; Bühlmann, 2006). The mboost add-

on package to the R system for statistical computing (R Develop-

ment Core Team, 2006 http://www.R-project.org) implements gen-

eralized linear and generalized additive models utilizing flexible

boosting algorithms for (constrained) minimization of the corre-

sponding empirical risk function. One single hyper parameter,

the number of iterations in the boosting algorithm, must be chosen

by the data analyst. Both classical and corrected Akaike information

criteria (AIC) and cross-validation techniques (k-fold, bootstrap,
etc.) are implemented for the selection of this hyper parameter.

As an illustration, we study a binary classification problem invol-

ving p¼ 7129 gene expression levels in n¼ 49 breast cancer tumor

samples (date taken from West et al., 2001). For each sample, a

binary response variable describing the lymph node status of the

patient is to be explained by the gene expression profiles.

The data are stored in the form of an exprSet object (see

Gentleman et al., 2004) and we first extract the matrix of expression

levels and the response variable, and center the expression levels for

each gene around zero:

> x <- exprs(westbc)

> x <- t(x - rowMeans(x))

> y <- pData(westbc)$nodal.y

We aim at fitting (including variable selection) a high-

dimensional logistic linear regression model with p ¼ 7129 covari-

ates; such models are very competitive for tumor classification

based on gene expression data (e.g. see Bühlmann, 2006). The

function glmboost() fits the binary response variable y to the

matrix of expression values x optimizing the negative binomial log-

likelihood, which is specified via the family ¼ Binomial()

argument (similar to the classical glm() function). Initially, we use

500 boosting iterations in the algorithm:

> westglm <- glmboost(x, y, family ¼ Binomial(),

control ¼ boost_control(mstop ¼ 500))

The goodness of the model fit for varying numbers of boosting

iterations can be studied using the AIC criterion (Fig. 1). Here,

the AIC criterion suggests to stop after 264 boosting iterations;

therefore, we use the final boosting fit by

> westglm <- westglm[mstop(westAIC)]

> plot(westAIC <- AIC(westglm, ’’classical’’))

Now, as for a classical linear model fit, we can extract the coef-

ficients of the linear predictor via

> coef(westglm)

Only 30 out of 7129 coefficients are non-zero, i.e. 30 out of 7129

covariates are selected. Since boosting is fairly insensitive to the

inclusion of additional noise covariates [i.e. covariates having no
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Fig. 1. Akaike information criterion based on the negative binomial

log-likelihood for early stopping of the boosting algorithm.�To whom correspondence should be addressed.
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effect on the response variable, see Bühlmann (2006)], we do not

advise to apply gene pre-selection using, for example, the two-

sample t or Wilcoxon test here. Both approaches, owing to their

univariate nature, could easily lead to many false selections and

non-selections while boosting (without employing pre-selection)

does multivariate selection of genes.

For the patients in the learning sample, the true and predicted

lymph node status can be compared via

>table(y,predict(westglm,type¼’’response’’))

y negative positive

negative 25 0

positive 0 24

This approach to fit a generalized linear model to high-

dimensional data, with implicit variable selection, is computation-

ally attractive. Fitting the model as shown above takes � 3 s on a

simple desktop computer. The AIC criterion can be computed in

roughly the same time.

The survival time of patients is an important endpoint, especially

in clinical trials in oncology, and thus recent research focuses on

regression models for high-dimensional survival problems (e.g.

Hothorn et al., 2006). Sültmann et al. (2005) report results of a

trial linking genomic measurements to the survival time of patients

suffering from kidney cancer. Using their data, after centering the

expression values and setting up an object describing the censored

response variable via

> x <- exprs(eset)

> x <- t(x - rowMeans(x))

> y <- Surv(eset$survival.time, eset$died)

we can utilize the glmboost() function to fit a Cox proportional

hazards model

> kidpackCox <- glmboost(x, y, family ¼ CoxPH())

with initial 100 boosting iterations. Only

> sum(abs(coef(kidpackCox)) > 0)

[1] 14

gene expressions covariates have corresponding non-zero regres-

sion coefficients (using here the ad hoc number of 100 boosting

iterations) and the linear predictor

> predict(kidpackCox, type ¼ ’’lp’’)

could be used as a compound covariate, e.g. for a survival tree, in

order to identify clinical risk groups.

Going beyond generalized linear models is possible using

the gamboost() function for fitting generalized additive models.

The general and flexible design of the R package mboost,

implementing a well-defined framework rather than special purpose

functionality, empowers the data analysts to set up their own

families (and thus boosting algorithms) rather quickly. For example,

the call

> gamboost(x, y, family ¼ CoxPH())

essentially implements boosting of additive proportional hazards

models as studied by Li and Luan (2005). Moreover, an

implementation of tree-based boosting is available in function

blackboost(). Cross-validation estimates of the empirical

risk, based on techniques, such as the bootstrap, stratified bootstrap

and k-fold cross-validation, can be computed by means of the

cvrisk() function.

The analyses presented here are reproducible by running the

commands in

> system.file(‘‘mboost_Bioinf.R’’, package ¼
‘‘mboost’’)
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