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ABSTRACT. We propose and study properties of maximum likelihood estimators in the class of
conditional transformation models. Based on a suitable explicit parameterization of the uncon-
ditional or conditional transformation function, we establish a cascade of increasingly complex
transformation models that can be estimated, compared and analysed in the maximum likelihood
framework. Models for the unconditional or conditional distribution function of any univariate
response variable can be set up and estimated in the same theoretical and computational frame-
work simply by choosing an appropriate transformation function and parameterization thereof.
The ability to evaluate the distribution function directly allows us to estimate models based on the
exact likelihood, especially in the presence of random censoring or truncation. For discrete and con-
tinuous responses, we establish the asymptotic normality of the proposed estimators. A reference
software implementation of maximum likelihood-based estimation for conditional transformation
models that allows the same flexibility as the theory developed here was employed to illustrate the
wide range of possible applications.

Key words: censoring, conditional distribution function, conditional quantile function, distri-
bution regression, transformation model, truncation

1. Introduction

In a broad sense, we can understand all statistical models as models of distributions or certain
characteristics thereof, especially the mean. All distributions PY for at least ordered responses
Y can be characterized by their distribution, quantile, density, odds, hazard or cumulative
hazard functions. In a fully parametric setting, all these functions have been specified up to
unknown parameters, and the ease of interpretation can guide us in looking at the appropri-
ate function. In the semi-parametric and non-parametric contexts, however, the question arises
how we can obtain an estimate of one of these functions without assuming much about their
shape. For the direct estimation of distribution functions, we deal with monotonic functions
in the unit interval, whereas for densities, we need to make sure that the estimator integrates
to one. The hazard function comes with a positivity constraint, and monotonicity is required
for the positive cumulative hazard function. These computationally inconvenient restrictions
disappear completely only when the log-hazard function is estimated, and this explains the
plethora of research papers following this path. However, the lack of any structure in the
log-hazard function comes at a price. A too-erratic behaviour of estimates of the log-hazard
function has to be prevented by some smoothness constraint; this makes classical likelihood
inference impossible. The novel characterization and subsequent estimation of distributions
via their transformation function in a broad class of transformation models that are devel-
oped in this paper can be interpreted as a compromise between structure (monotonicity) and
ease of parameterization, estimation and inference. This transformation approach to modelling
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and estimation allows standard likelihood inference in a large class of models that have so far
commonly been dealt with by other inference procedures.

Since the introduction of transformation models based on non-linear transformations of
some response variable by Box & Cox (1964), this attractive class of models has received
much interest. In regression problems, transformation models can be understood as mod-
els for the conditional distribution function and are sometimes referred to as ‘distribution
regression’, in contrast to their ‘quantile regression’ counterpart (Chernozhukov et al., 2013).
Traditionally, the models were actively studied and applied in the analysis of ordered cate-
gorical or censored responses. Recently, transformation models for the direct estimation of
conditional distribution functions for arbitrary responses received interest in the context of
counterfactual distributions (Chernozhukov et al., 2013), probabilistic forecasting (Gneiting
& Katzfuss, 2014), distribution and quantile regression (Leorato & Peracchi, 2015; Rothe &
Wied, 2013), probabilistic index models (Thas et al., 2012) and conditional transformation
models (Hothorn et al., 2014). The core idea of any transformation model is the applica-
tion of a strictly monotonic transformation function h for the reformulation of an unknown
distribution function P.Y � y/ as P.h.Y / � h.y//, where the unknown transformation func-
tion h is estimated from the data. Transformation models have received attention especially in
situations where the likelihood contains terms involving the conditional distribution function
P.Y � y j X D x/ D FZ.h.y j x// with inverse link function FZ , most importantly for cen-
sored, truncated and ordered categorical responses. For partially linear transformation models
with transformation function h.y j x/ D hY .y/ C hx.x/, much emphasis has been given to
estimation procedures treating the baseline transformation hY (e.g. the log-cumulative base-
line hazard function in the Cox model) as a high-dimensional nuisance parameter. Prominent
members of these estimation procedures are the partial likelihood estimator and approaches
influenced by the estimation equations introduced by Cheng et al. (1995). Once an estimate
for the shift hx is obtained, the baseline transformation hY is then typically estimated by the
non-parametric maximum likelihood estimator (see, e.g. Cheng et al., 1997). An overview of
the extensive literature on the simultaneous non-parametric maximum likelihood estimation of
hY and hx , that is, estimation procedures not requiring an explicit parameterization of hY , for
censored continuous responses is given in Zeng & Lin (2007).

An explicit parameterization of hY is common in models of ordinal responses (Tutz, 2012).
For survival times, Kooperberg et al. (1995) introduced a cubic spline parameterization of the
log-conditional hazard function with the possibility of response-varying effects and estimated
the corresponding models by maximum likelihood. Crowther & Lambert (2014) followed up
on this suggestion and used restricted cubic splines. Many authors studied penalized likeli-
hood approaches for spline approximations of the baseline hazard function in a Cox model,
for example, Ma et al. (2014). Less frequently, the transformation function hY was modelled
directly. Mallick & Walker (2003), Chang et al. (2005) and McLain & Ghosh (2013) used
Bernstein polynomials for hY , and Royston & Parmar (2002) proposed a maximum likelihood
approach using cubic splines for modelling hY and also time-varying effects. The connection
between these different transformation models is difficult to see because most authors present
their models in the relatively narrow contexts of survival or ordinal data. The lack of a general
understanding of transformation models made the development of novel approaches in this
model class burdensome. Hothorn et al. (2014) decoupled the parameterization of the condi-
tional transformation function h.y j x/ from the estimation procedure and showed that many
interesting and novel models can be understood as transformation models. The boosting-based
optimization of proper scoring rules, however, was only developed for uncensored and right-
censored observations in the absence of truncation and requires the numerical approximation of
the true target function. In a similar spirit, Chernozhukov et al. (2013) applied the connection
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P.Y � y j X D x/ D E.1.Y � y/ j X D x/ for estimation in the response-varying effects
transformation model P.Y � y j X D x/ D FZ.hY .y/ � x

>ˇ.y//; this approach can be
traced back to Foresi & Peracchi (1995).

A drawback of all but the simplest transformation models is the lack of a likelihood esti-
mation procedure. Furthermore, although important connections to other models have been
known for some time (Doksum & Gasko, 1990), it is often not easy to see how broad and
powerful the class of transformation models actually is. We address these issues and embed
the estimation of unconditional and conditional distribution functions of arbitrary univariate
random variables under all forms of random censoring and truncation into a common the-
oretical and computational likelihood-based framework. In a nutshell, we show in Section 2
that all distributions can be generated by a strictly monotonic transformation of some abso-
lute continuous random variable. The likelihood function of the transformed variable can then
be characterized by this transformation function. The parameters of appropriate parameteri-
zations of the transformation function, and thus the parameters of the conditional distribution
function in which we are interested, can then be estimated by maximum likelihood under sim-
ple linear constraints that allow classical asymptotic likelihood inference, as will be shown
in Section 3. Many classical and contemporary models are introduced as special cases of
this framework. In particular, all transformation models sketched in this introduction can be
understood and estimated in this novel likelihood-based framework. Extensions of classical
and contemporary transformation models as well as some novel models are derived from our
unified theoretical framework of transformation functions in Section 4, and their empirical
performance is illustrated and evaluated in Section 5.

2. The likelihood of transformations

Let .�;A;P/ denotes a probability space and .„;C/ a measurable space with at least ordered
sample space „. We are interested in inference about the distribution PY of a random variable
Y , that is, the probability space .„;C;PY / defined by the A � C measurable function Y W �!
„. For the sake of notational simplicity, we present our results for the unconditional case first;
regression models are discussed in Section 4.2. The distribution PY D fY ˇ� is dominated by
some measure � and characterized by its density function fY , distribution function FY .y/ D
PY .¹� 2 „ j � � yº/, quantile function F�1

Y
.p/ D inf¹y 2 „ j FY .y/ � pº, odds function

OY .y/ D FY .y/=.1 � FY .y//, hazard function �Y .y/ D fY .y/=.1 � FY .y// or cumulative
hazard function �Y .y/ D � log.1 � FY .y//. For notational convenience, we assume strict
monotonicity of FY , that is, FY .y1/ < FY .y2/8y1 < y2 2 „. Our aim is to obtain an

estimate OFY;N of the distribution function FY from a random sample Y1; : : : ; YN
iid
� PY . In the

following, we will show that one can always write this potentially complex distribution function
FY as the composition of a much simpler and a priori specified distribution function FZ and
a strictly monotonic transformation function h. The task of estimating FY is then reduced to
obtaining an estimate OhN . The latter exercise, as we will show in this paper, is technically and
conceptually attractive.

Let .R;B/ denotes the Euclidian space with Borel � -algebra and Z W �! R an A�B mea-
surable function such that the distribution PZ D fZˇ�L is absolutely continuous (�L denotes
the Lebesgue measure) in the probability space .R;B;PZ/. Let FZ and F�1

Z
denote the corre-

sponding distribution and quantile functions. We furthermore assume 0 < fZ.´/ <18´ 2 R,
FZ.�1/ D 0 and FZ.1/ D 1 for a log-concave density fZ as well as the existence of
the first two derivatives of the density fZ.´/ with respect to ´; both derivatives shall be
bounded. We do not allow any unknown parameters for this distribution. Possible choices
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include the standard normal, standard logistic (SL) and minimum extreme value (MEV) dis-
tribution with distribution functions FZ.´/ D ˆ.´/, FZ.´/ D FSL.´/ D .1C exp.�´//�1 and
FZ.´/ D FMEV.´/ D 1 � exp.� exp.´//, respectively. In the first step, we will show that there
always exists a unique and strictly monotonic transformation g such that the unknown and
potentially complex distribution PY that we are interested in can be generated from the simple
and known distribution PZ via PY D PgıZ . More formally, let g W R ! „ denotes a B � C

measurable function. The composition gıZ is a random variable on .„;C;PgıZ/. We can now
formulate the existence and uniqueness of g as a corollary to the probability integral transform.

Corollary 1. For all random variables Y and Z, there exists a unique strictly monotonically
increasing transformation g, such that PY D PgıZ .

Proof. Let g D F�1
Y
ı FZ and Z � PZ . Then U WD FZ.Z/ � UŒ0; 1� and Y D F�1

Y
.U / �

PY by the probability integral transform. Let h W „ ! R, such that FY .y/ D FZ.h.y//.
From FY .y/ D .FZ ı F

�1
Z
ı FY /.y/ () h D F�1

Z
ı FY , we get the uniqueness of h and

therefore g. The quantile function F�1
Z

and the distribution function FY exist by assumption
and are both strictly monotonic and right continuous. Therefore, h is strictly monotonic and
right continuous and so is g.

Corollary 2. For� D �L, we have g D h�1 and h0.y/ D @h.y/
@y
D fZ..F

�1
Z
ıFY /.y//

�1fY .y/.

This result for absolutely continuous random variables Y can be found in many textbooks
(Lindsey, 1996, e.g.); Corollary 1 also covers the discrete case.

Corollary 3. For the counting measure � D �C , h D F�1
Z
ı FY is a right-continuous step

function because FY is a right-continuous step function with steps at y 2 „.

We now characterize the distribution FY by the corresponding transformation function h,
set up the corresponding likelihood of such a transformation function and estimate the trans-
formation function based on this likelihood. Let H D ¹h W „ ! R j C � B measurable;
h.y1/ < h.y2/8y1 < y2 2 „º denote the space of all strictly monotonic transformation func-
tions. With the transformation function h, we can evaluate FY as FY .y j h/ D FZ.h.y//8y 2
„. Therefore, we only need to study the transformation function h; the inverse transforma-
tion g D h�1 (Bickel et al., 1993, used to define a ‘group model’ by) is not necessary in
what follows. The density for absolutely continuous variables Y (� D �L) is now given by
fY .y j h/ D fZ.h.y//h

0.y/. For discrete responses Y (� D �C ) with finite sample space
„ D ¹y1; : : : ; yKº, the density is

fY .yk j h/ D

8̂<
:̂
FZ.h.yk// k D 1

FZ.h.yk// � FZ.h.yk�1// k D 2; : : : ; K � 1

1 � FZ.h.yk�1// k D K;

and for countably infinite sample spaces „ D ¹y1; y2; y3; : : :º, we get the density

fY .yk j h/ D

´
FZ.h.yk// k D 1

FZ.h.yk// � FZ.h.yk�1// k > 1:

With the conventions FZ.h.y0// WD FZ.h.�1// WD 0 and FZ.h.yK// WD FZ.h.1// WD 1,
we use the more compact notation fY .yk j h/ D FZ.h.yk// � FZ.h.yk�1// in the sequel.

© 2017 The Authors Scandinavian Journal of Statistics published by JohnWiley & Sons Ltd on behalf of The Board of the
Foundation of the Scandinavian Journal of Statistics.



114 T. Hothorn et al. Scand J Statist 45

For a given transformation function h, the likelihood contribution of a datum C D .y; Ny� 2

C is defined in terms of the distribution function (Lindsey, 1996)

L.h j Y 2 C/ WD
Z
C

fY .y j h/d�.y/ D FZ.h. Ny// � FZ.h.y//:

This ‘exact’ definition of the likelihood applies to most practical situations of interest and,
in particular, allows discrete and (conceptually) continuous as well as censored or truncated
observations C . For a discrete response yk , we have Ny D yk and y D yk�1, such that L.h j
Y D yk/ D fY .yk j h/ D FZ.h. Ny// � FZ.h.y//. For absolutely continuous random variables
Y , we almost always observe an imprecise datum .y; Ny� � R and, for short intervals .y; Ny�,
approximate the exact likelihood L.h j Y 2 .y; Ny�/ by the term . Ny � y/fY .y j h/ or simply
fY .y j h/ with y D .y C Ny/=2 (Lindsey, 1999). This approximation only works for relatively
precise measurements, that is, short intervals. If longer intervals are observed, one speaks of
‘censoring’ and relies on the exact definition of the likelihood contribution instead of using
the aforementioned approximation (Klein & Moeschberger, 2003). In summary, the likelihood
contribution of a conceptually ‘exact continuous’ or left-censored, right-censored or interval-
censored continuous or discrete observation .y; Ny� is given by

L.h j Y 2 .y; Ny�/

8̂̂
<̂
ˆ̂̂:
� fZ.h.y//h

0.y/ y D .y C Ny/=2 2 „ ‘exact continuous’
D 1 � FZ.h.y// y 2 .y;1/ \„ ‘right censored’
D FZ.h. Ny// y 2 .�1; Ny� \„ ‘left censored’
D FZ.h. Ny// � FZ.h.y// y 2 .y; Ny� \„ ‘interval censored’,

under the assumption of random censoring. The likelihood is more complex under dependent
censoring (Klein & Moeschberger, 2003), but we will not elaborate on this issue. The likelihood
contribution L.h j Y 2 .yk ; yk�1�/ of an ordered factor in category yk is equivalent to the
term L.h j Y 2 .y; Ny�/ contributed by an interval-censored observation .y; Ny�, when category
yk is defined by the interval .y; Ny�. Thus, the expression FZ.h. Ny//�FZ.h.y// for the likelihood
contribution reflects the equivalence of interval censoring and categorization at corresponding
cut-off points.

For truncated observations in the interval .yl ; yr � � „, the aforementioned likelihood
contribution is defined in terms of the distribution function conditional on the truncation

FY .y jY 2.yl ; yr �/DFZ.h.y/ j Y 2 .yl ; yr �/ D
FZ.h.y//

FZ.h.yr // � FZ.h.yl //
8y 2 .yl ; yr �;

and thus, the likelihood contribution changes to (Klein & Moeschberger, 2003)

L.h j Y 2 .y; Ny�/
FZ.h.yr // � FZ.h.yl //

D
L.h j Y 2 .y; Ny�/
L.h j Y 2 .yl ; yr �/

when yl < y < Ny � yr :

It is important to note that the likelihood is always defined in terms of a distribution function
(Lindsey, 1999) and it therefore makes sense to directly model the distribution function of
interest. The ability to uniquely characterize this distribution function by the transformation
function h gives rise to the following definition of an estimator OhN .

Definition 1 (Most likely transformation). Let C1; : : : ; CN denotes an independent sample of
possibly randomly censored or truncated observations from PY . The estimator

OhN WD arg max
Qh2H

NX
iD1

log.L. Qh j Y 2 Ci //

is called the most likely transformation.
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Log-concavity of fZ ensures concavity of the log-likelihood (except when all observations
are right censored) and thus ensures the existence and uniqueness of OhN .

Many distributions are defined by a transformation function h, for example, the Box–Cox
power exponential family (Stasinopoulos & Rigby, 2007), the sinh-arcsinh distributions (Jones
& Pewsey, 2009) or the T-X family of distributions (Alzaatreh et al., 2013). In what follows,
we do not assume any specific form of the transformation function but parameterize h in terms
of basis functions. We now introduce such a parameterization, a corresponding family of dis-
tributions, a maximum likelihood estimator and a large class of models for unconditional and
conditional distributions.

3. Transformation analysis

We parameterize the transformation function h.y/ as a linear function of its basis-transformed
argument y using a basis function a W „! R

P , such that h.y/ D a.y/># ;# 2 R
P . The choice

of the basis function a is problem specific and will be discussed in Section 4. The likelihood L
only requires evaluation of h, and only an approximation thereof using the Lebesgue density of
‘exact continuous’ observations makes the evaluation of the first derivative of h.y/ with respect
to y necessary. In this case, the derivative with respect to y is given by h0.y/ D a0.y/># , and
we assume that a0 is available. In the following, we will write h D a># and h0 D a0

>
# for

the transformation function and its first derivative, omitting the argument y, and we assume
that both functions are bounded away from �1 and 1. For a specific choice of FZ and a,
the transformation family of distributions consists of all distributions PY whose distribution
function FY is given as the composition FZ ı a># ; this family can be formally defined as
follows.

Definition 2 (Transformation family). The distribution family PY;‚ D ¹FZ ı a
># j # 2 ‚º

with parameter space ‚ D ¹# 2 R
P j a># 2 Hº is called transformation family of distribu-

tions PY;# with transformation functions a># 2 H, �-densities fY .y j #/; y 2 „, and error
distribution function FZ .

The classical definition of a transformation family relies on the idea of invariant distribu-
tions, that is, only the parameters of a distribution are changed by a transformation function
but the distribution itself is not changed. The normal family characterized by affine transfor-
mations is the most well-known example (e.g. Fraser, 1968; Lindsey, 1996). Here, we explicitly
allow and encourage transformation functions that change the shape of the distribution. The
transformation function a># is, at least in principle, flexible enough to generate any distribu-
tion function FY D FZ ı a

># from the distribution function FZ . We borrow the term ‘error
distribution’ function for FZ from Fraser (1968), becauseZ can be understood as an error term
in some of the models discussed in Section 4. The problem of estimating the unknown transfor-
mation function h, and thus the unknown distribution function FY , reduces to the problem of
estimating the parameter vector # through maximization of the likelihood function. We assume
that the basis function a is such that the parameters # are identifiable.

Definition 3 (Maximum likelihood estimator). O#N WD arg max
#2‚

NP
iD1

log.L.a># j Y 2 Ci //

Based on the maximum likelihood estimator O#N , we define plug-in estimators of the most
likely transformation function and the corresponding estimator of our target distribution FY
as OhN WD a> O#N and OFY;N WD FZ ı OhN . Because the problem of estimating an unknown
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distribution function is now embedded in the maximum likelihood framework, the asymptotic
analysis benefits from standard results on the asymptotic behaviour of maximum likelihood
estimators. We begin with deriving the score function and Fisher information. The score con-
tribution of an ‘exact continuous’ observation y D .y C Ny/=2 from an absolutely continuous
distribution is approximated by the gradient of the log-density

s.# j Y 2 .y; Ny�/ � a.y/
f 0
Z
.a.y/>#/

fZ.a.y/>#/
C

a0.y/

a0.y/>#
: (1)

For an interval-censored or discrete observation y and Ny (the constant termsFZ.a.�1/>#/ D
FZ.�1/ D 0 and FZ.a.1/>#/ D FZ.1/ D 1 vanish), the score contribution is

s.# j Y 2 .y; Ny�/ D
fZ.a. Ny/

>#/a. Ny/ � fZ.a.y/
>#/a.y/

FZ.a. Ny/>#/ � FZ.a.y/>#/
: (2)

For a truncated observation, the score function is s.# j Y 2 .y; Ny�/ � s.# j Y 2 .yl ; yr �/.
The contribution of an ‘exact continuous’ observation y from an absolutely continuous

distribution to the Fisher information is approximately

F .# jY 2.y; Ny�/ ��

0
@a.y/a.y/>

8<
:f
00
Z
.a.y/>#/

fZ.a.y/>#/
�

"
f 0
Z
.a.y/>#/

fZ.a.y/>#/

#29=
; � a

0.y/a0.y/
>

.a0.y/>#/2

1
A :
(3)

For a censored or discrete observation, we have the following contribution to the Fisher
information

F .# j Y 2 .y; Ny�/ D �

´
f 0
Z
.a. Ny/>#/a. Ny/a. Ny/> � f 0

Z
.a.y/>#/a.y/a.y/>

FZ.a. Ny/>#/ � FZ.a.y/>#/

�
ŒfZ.a. Ny/

>#/a. Ny/ � fZ.a.y/
>#/a.y/�

ŒFZ.a. Ny/>#/ � FZ.a.y/># �2

�ŒfZ.a. Ny/
>#/a. Ny/> � fZ.a.y/

>#/a.y/>�
±
: (4)

For a truncated observation, the Fisher information is given by F .# j Y 2 .y; Ny�/ � F .# j
Y 2 .yl ; yr �/.

We will first discuss the asymptotic properties of the maximum likelihood estimator O#N
in the parametric setting with fixed parameters # in both the discrete and continuous case.
For continuous variables Y and a transformation function parameterized using a Bernstein
polynomial, results for sieve maximum likelihood estimation, where the number of parameters
increases with N , are then discussed in Section 3.2.

3.1. Parametric inference

Conditions on the densities of the error distribution fZ and the basis functions a ensuring con-
sistency and asymptotic normality of the sequence of maximum likelihood estimators O#N and
an estimator of their asymptotic covariance matrix are given in the following three theorems.
Because of the full parameterization of the model, the proofs are simple standard results for
likelihood asymptotics, and a more complex analysis (as required for estimation equations in
the presence of a nuisance parameter hY , e.g. in Cheng et al., 1995) is not necessary. We will
restrict ourselves to absolutely continuous or discrete random variables Y , where the likelihood
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is given in terms of the density fY .y j #/. Furthermore, we will only study the case of a cor-
rectly specified transformation h D a># and refer the reader to Hothorn et al. (2014), where
consistency results for arbitrary h are given.

Theorem 1. For Y1; : : : ; YN
iid
� PY;#0 and under the assumptions (A1), the parameter space ‚

is compact and (A2) E#0 Œsup#2‚ j log.fY .Y j #//j� <1 where #0 is well separated:

sup
#Ij#�#0j��

E#0 Œlog.fY .Y j #//� < E#0 Œlog.fY .Y j #0//�;

the sequence of estimators O#N converges to #0 in probability, O#N
P
! #0, as N !1.

Proof. The log-likelihood is continuous in # , and because of (A2), each log-likelihood con-
tribution is dominated by an integrable function. Thus, the result follows from van der Vaart
(1998) (Theorem 5.8 with example 19.7; see note at bottom of page 46).

Remark 1. Assumption (A1) is made for convenience, and relaxations of such a condition are
given in van de Geer (2000) or van der Vaart (1998). The assumptions in (A2) are rather weak:
the first one holds if the functions a are not arbitrarily ill posed, and the second one holds if
the function E#0 Œlog.fY .Y j #//� is strictly convex in # (if the assumption would not hold, we
would still have convergence to the set arg max# E#0 Œlog.fY .Y j #//�).

Theorem 2. Under the assumptions of Theorem 1 and in addition (A3)

E#0

 
sup
#

����@ log fY .Y j #/
@#

����
2
!
<1;

(A4) E#0.a.Y /a.Y /
>/ and (for the absolutely continuous case � D �L only)

E#0.a
0.Y /a0.Y />/ are non-singular, and (A5) 0 < fZ <1, sup jf 0

Z
j <1 and sup jf 00

Z
j <1,

the sequence
p
N. O#N � #0/ is asymptotically normal with mean zero and covariance matrix

˙#0 D

 
E#0

 
�
@2 logfY .Y j #/

@#@#>

!!�1
;

as N !1.

Proof. Because the map # 7!
p
fY .y j #/ is continuously differentiable in # for all y in both

the discrete and absolutely continuous case and the matrix

E#0

 �
@ logfY .Y j #/

@#

� �
@ log fY .Y j #/

@#

�>!

is continuous in # as given in (1) and (2), the transformation family PY;‚ is differentiable
in quadratic mean with Lemma 7.6 in van der Vaart (1998). Furthermore, assumptions (A4
and A5) ensure that the expected Fisher information matrix is non-singular at #0. With the
consistency and (A3), the result follows from Theorem 5.39 in van der Vaart (1998).

Remark 2. Assumption (A4) is valid for the densities fZ of the normal, logistic and MEV
distribution. The Fisher information (3) and (4) evaluated at the maximum likelihood estimator
O#N can be used to estimate the covariance matrix ˙#0 .
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Theorem 3. Under the assumptions of Theorem 2 and assuming E#0 jF .#0 j Y /j < 1, a
consistent estimator for ˙#0 is given by

Ȯ
#0;N D

 
N�1

NX
iD1

F . O#N j Yi /

!�1
:

Proof. With the law of large numbers, we have

N�1
NX
iD1

F .#0 jYi /DN
�1

NX
iD1

�
@2 logfY .Yi j#/

@#@#>
P
! E#0

 
�
@2 logfY .Y j #/

@#@#>

!
D ˙�1#0 :

Because the map # 7! F .# j y/ is continuous for all y (as can be seen from (3) and (4)), the
result follows with Theorem 1.

Based on Theorems 1–3, we can perform standard likelihood inference on the model param-
eters # . In particular, we can construct confidence intervals and confidence bands for the
conditional distribution function from confidence intervals and bands for the linear functions
a># . We complete this part by formally defining the class of transformation models.

Definition 4 (Transformation model). The triple .FZ ; a;#/ is called transformation model.

The transformation model .FZ ; a;#/ fully defines the distribution of Y via FY D FZ ıa>#
and thus the corresponding likelihood L.a># j Y 2 .y; Ny�/. Our definition of transformation
models as .FZ ; a;#/ is strongly tied to the idea of structural inference (Fraser, 1968) and
group models (Bickel et al., 1993). Fraser (1968) described a measurement model PY for Y by
an error distribution PZ and a structural equation Y D g ı Z, where g is a linear function,
thereby extending the location-scale family Y D ˛C�Z. Group models consist of distributions
generated by possibly non-linear g. The main difference to these classical approaches is that
we parameterize h instead of g D h�1. By extending the linear transformation functions g
dealt with by Fraser (1968) to non-linear transformations, we approximate the potentially non-
linear transformation functions h D g�1 D F�1

Z
ı FY by a># , with subsequent estimation of

the parameters # . For given parameters # , a sample from PY can be drawn by the probability

integral transform, that is, Z1; : : : ; ZN
iid
� PZ is drawn and then Yi D inf¹y 2 „ j a.y/>

# � Zi º.

3.2. Non-parametric inference

For continuous responses Y , any unknown transformation h can be approximated by
Bernstein polynomials of increasing order (Farouki, 2012). For uncensored and right-censored
responses and under the same conditions for FZ as stated in Section 3.1, McLain & Ghosh
(2013) showed that the non-parametric sieve maximum likelihood estimator is consistent with
rate of convergence N 2=5 for h with continuous bounded second derivatives in unconditional
and linear transformation models (Section 4.3). In the latter class, the linear shift parame-
ters ˇ are asymptotically normal and semi-parametrically efficient. Numerical approximations
to the observed Fisher information F . O#N j Y 2 .y; Ny�/ were shown to lead to appropriate

standard errors of ǑN by McLain & Ghosh (2013). Hothorn et al. (2014) established the con-
sistency of boosted non-parametric conditional transformation models (Section 4.2). For sieve
maximum likelihood estimation in the class of conditional transformation models, the tech-
niques employed by McLain & Ghosh (2013) require minor technical extensions, which are
omitted here.
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In summary, the same limiting distribution arises under both the parametric and the
non-parametric paradigm for transformation functions parameterized or approximated using
Bernstein polynomials, respectively. In the latter case, the target is then the best approximated
transformation function with Bernstein polynomials, say h?

N
(where the index N indicates that

we use a more complex approximation whenN increases). If the approximation error h?
N
�h is

of smaller order than the convergence rate of the estimator, the estimator’s target becomes the
true underlying transformation function h, and otherwise, a bias for estimating h remains.

4. Applications

The definition of transformation models tailored for specific situations ‘only’ requires the defi-
nition of a suitable basis function a and a choice of FZ . In this section, we will discuss specific
transformation models for unconditional and conditional distributions of ordered categorical,
discrete and continuous responses Y . Note that the likelihood function L allows all these mod-
els to be fitted to arbitrarily censored or truncated responses; for brevity, we will not elaborate
on the details.

4.1. Unconditional transformation models

Finite sample space For ordered categorical responses Y from a finite sample space „ D
¹y1; : : : ; yKº, we assign one parameter to each element of the sample space except yK . This
corresponds to the basis function a.yk/ D eK�1.k/, where eK�1.k/ is the unit vector of
length K � 1, with its kth element being one. The transformation function h is

h.yk/ D eK�1.k/
># D #k 2 R; 1 � k < K; st #1 < 	 	 	 < #K 1;

with h.yK/ D 1, and the unconditional distribution function of FY is FY .yk/ D FZ.#k/.
This parameterization underlies the common proportional odds and proportional hazards
model for ordered categorical data (Tutz, 2012). Note that monotonicity of h is guaranteed by
the K � 2 linear constraints #2 � #1 > 0; : : : ; #K�1 � #K�2 > 0 when constrained optimiza-
tion is performed. In the absence of censoring or truncation and with #0 D �1; #K D 1, we
obtain the maximum likelihood estimator for # as

O#N D arg max
#1<���<#K�1

NX
iD1

log.FZ.#k.i// � FZ.#k.i/�1//

D

 
F�1Z

 
N�1

NX
iD1

1.Yi � y1/

!
; : : : ; F�1Z

 
N�1

NX
iD1

1.Yi � yK�1/

!!>

because O�k D N�1
PN
iD1 1.Yi D yk/; 1 � k < K maximizes the equivalent multinomial

(or empirical) log-likelihood
PN
iD1 log.�k.i//, and we can rewrite this estimator as

O�k D N
�1

 
NX
iD1

1.Yi � yk/ � 1.k > 1/

NX
iD1

1.Yi � yk�1/

!
; 1 � k < K:

The estimated distribution function OFY;N D FZ ı OhN is invariant with respect to FZ .
Assumption (A4) is valid for these basis functions because we have

E#0.eK�1.Y /eK�1.Y /
>/ D diag.P.Y D yk//; 1 � k < K for Y � PY;#0 .

If we define the sample space „ as the set of unique observed values and the probability
measure as the empirical cumulative distribution function (ECDF), putting mass N�1 on each
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observation, we see that this particular parameterization is equivalent to an empirical like-
lihood approach, and we get OhN D F�1

Z
ı ECDF. Note that although the transformation

function depends on the choice of FZ , the estimated distribution function OFY;N D FZ ı OhN D
ECDF does not and is simply the non-parametric empirical maximum likelihood estimator. A
smoothed version of this estimator for continuous responses is discussed in the next paragraph.

Infinite sample space For continuous responses Y , the parameterization h.y/ D a.y/># , and
thus also OFY;N , should be smooth in y; therefore, any polynomial or spline basis is a suitable
choice for a. For the empirical experiments in Section 5, we applied Bernstein polynomials (for
an overview, see Farouki, 2012) of order M (P DM C 1) defined on the interval Œ{; N{� with

aBs;M .y/ D .M C 1/
�1.fBe.1;MC1/. Qy/; : : : ; fBe.m;M�mC1/. Qy/;

: : : ; fBe.MC1;1/. Qy//
> 2 R

MC1

h.y/ D aBs;M .y/
># D

MX
mD0

#mfBe.mC1;M�mC1/. Qy/=.M C 1/

h0.y/ D a0Bs;M .y/
># D

M�1X
mD0

.#mC1 � #m/fBe.mC1;M�m/. Qy/M=..M C 1/.N{ � {//;

where Qy D .y � {/=.N{ � {/ 2 Œ0; 1� and fBe.m;M/ is the density of the Beta distribution with
parameters m and M . This choice is computationally attractive because strict monotonic-
ity can be formulated as a set of M linear constraints on the parameters #m < #mC1 for
all m D 0; : : : ;M (Curtis & Ghosh, 2011). Therefore, application of constrained optimiza-
tion guarantees monotonic estimates OhN . The basis contains an intercept. We obtain smooth
plug-in estimators for the distribution, density, hazard and cumulative hazard functions as
OFY;N D FZ ı a

>
Bs;M

O#N , OfY;N D fZ ı a
>
Bs;M

O#N � a
0
Bs;M

> O#N , O�Y;N D OfY;N =.1 � OFY;N /

and OƒY;N D � log.1 � OFY;N /. The estimator OFY;N D FZ ı a
>
Bs;M

O#N must not be con-

fused with the estimator OFY;N D a>Bs;M Op for Y 2 Œ0; 1� obtained from the smoothed empirical

distribution function with coefficients OpmC1 D
PN
iD1 1.Yi � m=M/=N corresponding to

probabilities evaluated at the quantiles m=M for m D 0; : : : ;M (Babu et al., 2002).
The question arises how the degree of the polynomial affects the estimated distribution func-

tion. On the one hand, the model .ˆ; aBs;1;#/ only allows linear transformation functions of a
standard normal, and FY is restricted to the normal family. On the other hand, .ˆ; aBs;N�1;#/

has one parameter for each observation, and OFY;N is the non-parametric maximum likeli-
hood estimator ECDF, which, by the Glivenko–Cantelli lemma, converges to FY . In this sense,
we cannot choose a ‘too large’ value for M . This is a consequence of the monotonicity con-
straint on the estimator a> O#N , which, in this extreme case, just interpolates the step function
F�1
Z
ı ECDF. Empirical evidence for the insensitivity of results when M is large can be found

in Hothorn (2017b) and in the discussion.

4.2. Conditional transformation models

In the following, we will discuss a cascade of increasingly complex transformation models
where the transformation function h may depend on explanatory variables X 2 	. We are
interested in estimating the conditional distribution of Y given X D x. The corresponding
distribution function FY jXDx can be written as FY j XDx.y/ D FZ.h.y j x//. The transfor-
mation function h.	 j x/ W „ ! R is said to be conditional on x. Following the arguments
presented in the proof of Corollary 1, it is easy to see that for each x, there exists a strictly
monotonic transformation function h.	 j x/ D F�1

Z
ı FY j XDx such that FY j XDx.y/ D
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FZ.h.y j x//. Because this class of conditional transformation models and suitable parame-
terizations was introduced by Hothorn et al. (2014), we will only sketch the most important
aspects here.

Let b W 	 ! R
Q denotes a basis transformation of the explanatory variables. The joint

basis for both y and x is called c W „ � 	 ! R
d.P;Q/; its dimension d.P;Q/ depends on

the way the two basis functions a and b are combined (e.g. c D .a>;b>/> 2 R
PCQ or

c D .a> ˝ b>/> 2 R
PQ). The conditional transformation function is now parameterized

as h.y j x/ D c.y;x/># . One important special case is the simple transformation function
h.y j x/ D hY .y/ C hx.x/, where the explanatory variables only contribute a shift hx.x/ to
the conditional transformation function. Often this shift is assumed to be linear in x; there-
fore, we use the function m.x/ D b.x/>ˇ D Qx>ˇ to denote linear shifts. Here, b.x/ D Qx is
one row of the design matrix without intercept. These simple models correspond to the joint
basis c.y;x/># D a.y/>#1 C b.x/>#2, with hY .y/ D a.y/>#1 and hx.x/ D b.x/>#2 D
m.x/ D Qx>ˇ. The results presented in Section 3, including Theorems 1–3, carry over in the
fixed design case when a is replaced by c.

In the rest of this section, we will present classical models that can be embedded in the larger
class of conditional transformation models and some novel models that can be implemented in
this general framework.

4.3. Classical transformation models

Linear model The normal linear regression model Y � N.˛ C m.x/; �2/ with conditional
distribution function FY jXDx.y/ D ˆ.��1.y � .˛ C m.x//// can be understood as a
transformation model with transformation function h.y j x/ D y=� � ˛=� �m.x/=� param-
eterized via basis functions a.y/ D .y; 1/>;b.x/ D Qx and c D .a>;b>/> with parameters
# D .��1;���1˛;���1ˇ>/> under the constraint � > 0 or in more compact notation
.˚; .y; 1; Qx>/>;#/. The parameters of the model are the inverse standard deviation and the
inverse negative coefficient of variation instead of the mean and variance of the original nor-
mal distribution. For ‘exact continuous’ observations, the likelihood L is equivalent to least
squares, which can be maximized with respect to ˛ and ˇ without taking � into account. This
is not possible for censored or truncated observations, where we need to evaluate the condi-
tional distribution function that depends on all parameters; this model is called Type I Tobit
model (although only the likelihood changes under censoring and truncation, but the model
does not). Using an alternative basis function c would allow arbitrary non-normal condi-
tional distributions of Y , and the simple shift model c.y;x/># D a.y/>#1 C b.x/

>#2 is
then a generalization of additive models and leads to the interpretation EY jXDx.a.Y /

>#1/ D

�b.x/>#2. The choice a D .1; log/> implements the log-normal model for Y > 0. Imple-
mentation of a Bernstein basis a D aBs;M allows arbitrarily shaped distributions, that is, a
transition from the normal family to the transformation family, and thus likelihood inference
on #2 without strict assumptions on the distribution of Y . The transformation aBs;M .y/

>#1

must increase monotonically in y. Maximization of the log-likelihood under the linear inequal-
ity constraintDMC1#1 > 0, withDMC1 representing first-order differences, implements this
requirement.

Continuous ‘survival time’ models For a continuous response Y > 0, the model
FY jXDx.y/ D FZ.�

�1.log.y/ � .˛ C m.x//// with basis functions a.y/ D .1; log.y// and
b.x/ D Qx and parameters # D .�˛; ��1;�ˇ>/> under the constraint � > 0 is called the
accelerated failure time (AFT) model. The model .FMEV; .1; log; Qx>/>; .�#1; 1;�ˇ>/>/ with
� 
 1 (and thus fixed transformation function log) is the exponential AFT model because it
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implies an exponential distribution of Y . When the parameter � > 0 is estimated from the data,
the model .FMEV; .1; log; Qx>/>;#/ is called the Weibull model, .FSL; .1; log; Qx>/>;#/ is the
log-logistic AFT model and .ˆ; .1; log; Qx>/>;#/ is the log-normal AFT model. For a contin-
uous (not necessarily positive) response Y , the model FY j XDx.y/ D FMEV.hY .y/ � m.x//

is called the proportional hazards, relative risk or Cox model. The transformation function
hY equals the log-cumulative baseline hazard and is treated as a nuisance parameter in the
partial likelihood framework, where only the regression coefficients ˇ are estimated. Given Ǒ ,
non-parametric maximum likelihood estimators are typically applied to obtain OhY . Here, we
parameterize this function as hY .y/ D log.ƒY .y// D a.y/>#1 (e.g. using a D aBs;M ) and
fit all parameters in the model .FMEV; .a

>; Qx>/>; .#>1 ;�ˇ
>/>/ simultaneously. The model

is highly popular because m.x/ is the log-hazard ratio to m.0/. For the special case of right-
censored survival times, this parameterization of the Cox model was studied theoretically and
empirically by McLain & Ghosh (2013). Changing the distribution function in the Cox model
from FMEV to FSL results in the proportional odds model .FSL; .a

>; Qx>/>; .#>1 ;�ˇ
>/>/;

its name comes from the interpretation of m.x/ as the constant log-odds ratio of the odds
OY .y j X D x/ and OY .y j x D 0/. An additive hazards model with the condi-
tional hazard function �Y .y j X D x/ D �Y .y j X D 0/ � Qx>ˇ results from the
choice FZ.´/ D FExp.´/ D 1�exp.�´/ (Aranda-Ordaz, 1983) under the additional constraint
�Y .y j X D x/ > 0. In this case, the function a.y/>#1 > 0 is the positive baseline cumulative
hazard function ƒY .y j X D 0/.

Discrete models For ordered categorical responses y1 < 	 	 	 < yK , the conditional dis-
tribution FY jXDx.yk/ D FZ.hY .yk/ � m.x// is a transformation model with a.yk/ D
eK�1.k/. The model .FSL; .a

>; Qx>/>; .#>1 ;�ˇ
>/>/ is called the discrete proportional odds

model, and .FMEV; .a
>; Qx>/>; .#>1 ;�ˇ

>/>/ is the discrete proportional hazards model.
Here, m.x/ is the log-odds ratio or log-hazard ratio to m.0/ independent of k; details are
given in Tutz (2012). For the special case of a binary response (K D 2), the transforma-
tion model .FSL; .1.k D 1/; Qx>/>; .#1;�ˇ

>/>/ is the logistic regression model, .ˆ; .1.k D
1/; Qx>/>; .#1;�ˇ

>/>/ is the probit model and .FMEV; .1.k D 1/; Qx>/>; .#1;�ˇ
>/>/ is

called the complementary log–log model. Note that the transformation function hY is given
by the basis function a D 1.k D 1/, that is, #1 is just the intercept. The connection between
standard binary regression models and transformation models is explained in more detail by
Doksum & Gasko (1990).

Linear transformation model The transformation model .FZ ; .a>; Qx>/>; .#>1 ;�ˇ
>/>/ for

any a and FZ is called the linear transformation model and contains all models discussed in
this section. Note that the transformation of the response hY .y/ D a.y/>#1 is non-linear in
all models of interest (AFT, Cox etc.) and the term ‘linear’ only refers to a linear shift m.x/ of
the explanatory variables. Partially linear or additive transformation models allow non-linear
shifts as part of a partially smooth basis b, that is, in the form of an additive model. The number
of constraints only depends on the basis a but not on the explanatory variables.

4.4. Extension of classical transformation models

A common property of all classical transformation models is the additivity of the response
transformation and the shift, that is, the decomposition h.y j x/ D hY .y/ C hx.x/ of the
conditional transformation function. This assumption is relaxed by the following extensions of
the classical models. Allowing for deviations from this simple model is also the key aspect for
the development of novel transformation models in the rest of this section.
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Discrete non-proportional odds and hazards models For ordered categorical responses, the
model FY j XDx.yk/ D FZ.hY .yk/�mk.x// allows a category-specific shiftmk.x/ D Qx

>ˇk ;
with FSL, this cumulative model is called the non-proportional odds model, and with FMEV, it
is the non-proportional hazards model. Both models can be cast into the transformation model
framework by defining the joint basis c.yk ;x/ D .a.yk/

>; a.yk/
> ˝ b.x/>/> as the Kro-

necker product of the two simple basis functions a.yk/ D eK�1.k/ and b.x/ D Qx (assuming
that b does not contain an intercept term). Note that the conditional transformation function
h.y j x/ includes an interaction term between y and x.

Time-varying effects One often studied extension of the Cox model is FY j XDx.y/ D
FZ.hY .y/ � Qx

>ˇ.y//, where the regression coefficients ˇ.y/ may change with time y. The
Cox model is included with ˇ.y/ 
 ˇ, and the model is often applied to check the pro-
portional hazards assumption. With a smooth parameterization of time y, for example, via
a D aBs;M , and linear basis b.x/ D Qx, the transformation model .FMEV; .a

>; a> ˝ b>/>;#/

implements this Cox model with time-varying (linear) effects. This model (with arbitrary FZ)
has also been presented in Foresi & Peracchi (1995) and is called distribution regression in
Chernozhukov et al. (2013).

4.5. Novel transformation models

Because of the broadness of the transformation family, it is straightforward to set up new mod-
els for interesting situations by allowing more complex transformation functions h.y j x/. We
will illustrate this possibility for two simple cases the independent two-sample situation and
regression models for count data. The generic and most complex transformation model is called
the conditional transformation model and is explained at the end of this section.

Beyond shift effects Assume we observe samples from two groupsA andB and want to model
the conditional distribution functions FY j XDA.y/ and FY j XDB.y/ of the response Y in the
two groups. Based on this model, it is often interesting to infer whether the two distributions
are equivalent and, if this is not the case, to characterize how they differ. Using an appropriate
basis function a and the basis b.x/ D .1;1.B//>, the model .FZ ; .a> ˝ b>/>;#/ param-
eterizes the conditional transformation function as h.y j A/ D a.y/>#1 and h.y j B/ D
h.y j A/C hB�A.y/ D a.y/

>#1 C 1.B/a.y/>#2. Clearly, the second term is constant zero
(hB�A.y/ 
 0) iff the two distributions are equivalent (FY jXDA.y/ D FY jXDB.y/ for all y).
For the deviation function hB�A.y/ D a>#2, we can apply standard likelihood inference pro-
cedures for O#2 to construct a confidence band or use a test statistic like max. O#2=se. O#2// to
assess deviations from zero. If there is evidence for a group effect, we can use the model to check
whether the deviation function is constant, that is, hB�A.y/ 
 c ¤ 0. In this case, the simpler
model .FZ ; .a>;1.B//>; .#>1 ;�ˇ/

>/ with shift ˇ D �#2 might be easier to interpret. This
model actually corresponds to a normal analysis of variance model with FZ D ˆ and a.y/> D
.1; y/> or the Cox proportional hazards model with .FMEV; .a

>
Bs;M ;1.B//

>; .#>1 ;�ˇ/
>/.

Count regression ‘without tears’ Simple models for count data „ D ¹0; 1; 2; : : :º

almost always suffer from over-dispersion or excess zeros. The linear transformation model
FY jXDx.y/ D FZ.hY .y/ � m.x// can be implemented using the basis function a.y/ D
aBs;M .byc/, and then the parameters of the transformation model .FZ ; .a>; Qx>/>;#/ are
not affected by over-dispersion or under-dispersion because higher moments are handled by
hY independently of the effects of the explanatory variables m.x/. If there are excess zeros,
we can set up a joint transformation model FY j XDx.y/ D FZ.hY .y/ � m.x/ C 1.y D
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0/.˛0 � m0.x/// such that we have a two-components mixture model consisting of the count
distribution FY j XDx.y/ D FZ.hY .y/�m.x// for y 2 „ and the probability of an excess zero

fY j XDx.0/ D FZ.hY .0/ �m.x/C .˛0 �m0.x/// D FZ.hY .0/C ˛0 � Qx
>.ˇ C ˇ0//

when m0.x/ D Qx>ˇ0. Hence, the transformation analogue to a hurdle model with
hurdle at zero is the transformation model .FZ ; .a>; Qx>;1.y D 0/;1.y D 0/ Qx>/>;

.#>1 ;ˇ
>; ˛0;ˇ

>
0 /
>/.

Conditional transformation models When the conditional transformation function is param-
eterized by multiple basis functions aj .y/;bj .x/; j D 1; : : : J via the joint basis

c D .a>1 ˝ b
>
1 ; : : : ; a

>
J ˝ b

>
J /
>;

models of the class .	; c;#/ are called conditional transformation models with J partial trans-
formation functions parameterized as a>

j
˝ b>j and include all special cases discussed in this

section. It is convenient to assume monotonicity for each of the partial transformation func-
tions; thus, the linear constraints for aj are repeated for each basis function in bj (detailed
descriptions of linear constraints for different models in this class are available in Hothorn,
2017b). Hothorn et al. (2014) introduced this general model class and proposed a boosting
algorithm for the estimation of transformation functions h for ‘exact continuous’ responses Y .
In the likelihood framework presented here, conditional transformation models can be fitted
under arbitrary schemes of censoring and truncation, and classical likelihood inference for the
model parameters # becomes feasible. Of course, unlike in the boosting context, the number of
model terms J and their complexity are limited in the likelihood world because the likelihood
does not contain any penalty terms that induce smoothness in the x-direction.

A systematic overview of linear transformation models with potentially response-varying
effects is given in Table 1. Model nomenclature and interpretation of the corresponding model
parameters is mapped to specific transformation functions h and distribution functions FZ . To
the best of our knowledge, models without names have not yet been discussed in the literature,
and their specific properties await closer investigation.

5. Empirical evaluation

We will illustrate the range of possible applications of likelihood-based conditional transfor-
mation models. In Section 5.2, we will present a small simulation experiment highlighting
the possible advantage of indirectly modelling conditional distributions with transformation
functions.

5.1. Illustrations

Density estimation: Old Faithful geyser The duration of eruptions and the waiting time
between eruptions of the Old Faithful geyser in the Yellowstone National Park became
a standard benchmark for non-parametric density estimation. The nine parameters of the
transformation model .˚; aBs;8.waiting/;#/ were fitted by maximization of the approximate
log-likelihood (treating the waiting times as ‘exact’ observations) under the eight linear con-
straintsD9# > 0. The model depicted in Fig. 1A reproduces the classic bimodal unconditional
density of waiting time along with a kernel density estimate. It is important to note that the
transformation model was fitted likelihood based, whereas the kernel density estimate relied
on a cross-validated bandwidth. An unconditional density estimate for the duration of the
eruptions needs to deal with censoring because exact duration times are only available for the
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Fig. 1. Old Faithful geyser. Estimated density for waiting times (A) between and duration (B) of eruptions
by the most likely transformation model (MLT) and kernel smoothing. Note that the kernel estimator was
based on the imputed duration times 2; 3 and 4 for short, medium and long eruptions at night (as are the
rugs in B).

daytime measurements. At night, the observations were left censored (‘short’ eruption), inter-
val censored (‘medium’ eruption) or right censored (‘long’ eruption). This censoring was widely
ignored in analyses of the Old Faithful data because most non-parametric kernel techniques
cannot deal with censoring. We applied the transformation model .ˆ; aBs;8.duration/;#/ based
on the exact log-likelihood function under eight linear constraints and obtained the uncon-
ditional density depicted in Fig. 1B. In Hothorn (2017b), results for M D 40 are computed,
which led to almost identical estimates of the distribution function.

Quantile regression: head circumference The Fourth Dutch Growth Study is a cross-
sectional study on growth and development of the Dutch population younger than 22 years.
Stasinopoulos & Rigby (2007) fitted a growth curve to head circumferences (HCs) of 7040
boys using a generalized additive models for location, scale and shape (GAMLSS) model with
a Box–Cox t distribution describing the first four moments of HC conditionally on age. The
model showed evidence of kurtosis, especially for older boys. We fitted the same growth curves
by the conditional transformation model .ˆ; .aBs;3.HC/> ˝ bBs;3.age1=3/>/>;#/ by maxi-
mization of the approximate log-likelihood under 3 � 4 linear constraints .D4 ˝ I4/# > 0.
Figure 2 shows the data overlaid with quantile curves obtained via inversion of the estimated
conditional distributions. The figure very closely reproduces the growth curves presented in
Fig. 16 of Stasinopoulos & Rigby (2007) and also indicates a certain asymmetry towards older
boys.

Survival analysis: German Breast Cancer Study Group-2 trial This prospective, controlled
clinical trial on the treatment of node-positive breast cancer patients was conducted by the
German Breast Cancer Study Group. Out of 686 women, 246 received hormonal therapy,
whereas the control group of 440 women did not. Additional variables include age, menopausal
status, tumour size, tumour grade, number of positive lymph nodes, progesterone receptor and
oestrogen receptor. The right-censored recurrence-free survival time is the response variable of
interest.

The Cox model .FMEV; .a
>
Bs;10;1.hormonal therapy//>;#/ implements the transformation

function h.y j treatment/ D aBs;10.y/
>#1 C 1.hormonal therapy/ˇ, where a>Bs;10#1 is the
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Fig. 2. Head circumference growth. Observed head circumference and age of 7040 boys with estimated
quantile curves for p D 0:04; 0:02; 0:1; 0:25; 0:5; 0:75; 0:9; 0:98; 0:996.

log-cumulative baseline hazard function parameterized by a Bernstein polynomial and ˇ 2 R

is the log-hazard ratio of hormonal therapy. This is the classical Cox model with one treatment
parameter ˇ but with fully parameterized baseline transformation function, which was fitted by
the exact log-likelihood under ten linear constraints. The model assumes proportional hazards,
an assumption whose appropriateness we wanted to assess using the non-proportional hazards
model .FMEV; .a

>
Bs;10 ˝ .1;1.hormonal therapy///>;#/ with the transformation function

h.y j treatment/ D aBs;10.y/
>#1 C 1.hormonal therapy/aBs;10.y/

>#2:

The function aBs;10.y/
>#2 is the time-varying difference of the log-hazard functions of

women without and with hormonal therapy and can be interpreted as the deviation from a
constant log-hazard ratio treatment effect of hormonal therapy. Under the null hypothesis of
no treatment effect, we would expect #2 
 0. This monotonic deviation function adds ten
linear constraints D11#1 C D11#2 > 0, which also ensure monotonicity of the transforma-
tion function for treated patients. We first compared the fitted survivor functions obtained
from the model including a time-varying treatment effect with the Kaplan–Meier estimators in
both treatment groups. Figure 3A shows a nicely smoothed version of the survivor functions
obtained from this transformation model. Figure 3B shows the time-varying treatment effect
aBs;10.y/

> O#2, together with a 95% confidence band computed from the joint normal distribu-
tion of O#2 for a grid over time; the method is much simpler than other methods for inference on
time-varying effects (e.g. Sun et al., 2009). The 95% confidence interval around the log-hazard
ratio Ǒ is also plotted, and as the latter is fully covered by the confidence band for the time-
varying treatment effect, there is no reason to question the treatment effect computed under
the proportional hazards assumption.

In the second step, we allowed an age-varying treatment effect to be included in the model
.FMEV; .aBs;10.y/

> ˝ .1.hormonal therapy/; 1 � 1.hormonal therapy//˝ bBs;3.age/>/>;#/.
For both treatment groups, we estimated a conditional transformation function of survival time
y given age parameterized as the tensor basis of two Bernstein bases. Each of the two basis
functions comes with 10 � 3 linear constraints; therefore, the model was fitted under 60 linear
constraints. Figure 4 allows an assessment of the prognostic and predictive properties of age.
As the survivor functions were clearly larger for all patients treated with hormones, the positive
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Fig. 3. German Breast Cancer Study Group-2. Estimated survivor functions by the most likely transforma-
tion model (MLT) and the Kaplan–Meier (KM) estimator in the two treatment groups (A). Verification of
proportional hazards (B): the log-hazard ratio Ǒ (dashed line) with 95% confidence interval (dark grey) is
fully covered by a 95% confidence band for the time-varying treatment effect (the time-varying log-hazard
ratio is in light grey; the estimate is the solid line) computed from a non-proportional hazards model.

Fig. 4. German Breast Cancer Study Group-2. Prognostic and predictive effect of age. The contours depict
the conditional survivor functions given treatment and age of the patient.

treatment effect applied to all patients. However, the size of the treatment effect varied greatly.
The effect was most pronounced for women younger than 30 years and levelled off a little for
older patients. In general, the survival times were longest for women between 40 and 60 years
old. Younger women suffered the highest risk; for women older than 60 years, the risk started
to increase again. This effect was shifted towards younger women when hormonal treatment
was applied.

© 2017 The Authors Scandinavian Journal of Statistics published by JohnWiley & Sons Ltd on behalf of The Board of the
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5.2. Simulation experiment

The transformation family includes linear as well as very flexible models, and we therefore
illustrate the potential gain of modelling a transformation function h by comparing a very sim-
ple transformation model with a fully parametric approach and to a non-parametric approach
using a data-generating process introduced by Hothorn et al. (2014).

In the transformation model .ˆ; ..1; y/ ˝ .1;x>//>;#/, two explanatory variables x D
.x1; x2/

> influence both the conditional mean and the conditional variance of a normal
response Y . Although the transformation function is linear in y with three linear constraints,
the mean and variance of Y given x depend on x in a non-linear way. The choices x1 �
UŒ0; 1�; x2 � UŒ�2; 2�with # D .0; 0;�1; :5; 1; 0/ lead to the heteroscedastic varying coefficient
model

Y D
1

x1 C 0:5
x2 C

1

x1 C 0:5
"; " � N.0; 1/; (5)

where the variance of Y ranges between 0.44 and 4 depending on x1. This model can be fitted
in the GAMLSS framework under the assumptions that the mean of the normal response
depends on a smoothly varying regression coefficient .x1C 0:5/�1 for x2 and that the variance
is a smooth function of x1. This model is therefore fully parametric. As a non-parametric
counterpart, we used a kernel estimator for estimating the conditional distribution function of
Y as a function of the two explanatory variables.

From the transformation model, the GAMLSS and kernel estimators, we obtained estimates
of FY j XDx.y/ over a grid on y; x1; x2 and computed the mean absolute deviation (MAD) of
the true and estimated probabilities

MAD.x1; x2/ D
1

n

X
y

jFY j XDx.y/ � OFY j XDx;N .y/j

for each pair of x1 and x2. Then, the minimum, the median and the maximum of the MAD
values for all x1 and x2 were computed as summary statistics. The most likely transforma-
tion approach and its two competitors were estimated and evaluated for 100 random samples
of size N D 200 drawn from model (5). Cross-validation was used to determine the band-
widths for the kernel-based estimators (function npcdist() in package np; for details, see
Hayfield & Racine, 2008). We fitted the GAMLSS models by boosting; the number of boosting
iterations was determined via sample splitting (Mayr et al., 2012). To investigate the stabil-
ity of the three procedures under non-informative explanatory variables, we added to the data
p D 1; : : : ; 5 uniformly distributed variables without association to the response and included
them as potential explanatory variables in the three models. The case p D 0 corresponds to
model (5).

Figure 5 shows the empirical distributions of the minimum, median and maximum MAD
for the three competitors. Except for the minimum MAD in the absence of any irrelevant
explanatory variables (p D 0), the conditional distributions fitted by the transformation mod-
els were closer to the true conditional distribution function by means of the MAD. This
result was obtained because the transformation model only had to estimate a simple trans-
formation function, whereas the other two procedures had a difficult time approximating this
simple transformation model on another scale. However, the comparison illustrates the poten-
tial improvement one can achieve when fitting simple models for the transformation function
instead of more complex models for the mean (GAMLSS) or distribution function (Kernel).
The kernel estimator led to the largest median MAD values but seemed more robust than
GAMLSS with respect to the maximum MAD. These results were remarkably robust in the
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Fig. 5. Empirical evaluation. Minimum, median and maximum of the mean absolute deviation (MAD)
between true and estimated probabilities for most likely transformation (MLT) models, non-parametric
kernel distribution function estimation (Kernel) and generalized additive models for location, scale and
shape (GAMLSS) for 100 random samples. Values on the ordinate can be interpreted as absolute
differences of probabilities. The grey horizontal lines correspond to the median of MLT.

presence of up to five non-informative explanatory variables, although of course the MAD
increased with the number of non-informative variables p.

6. Discussion

The contribution of a likelihood approach for the general class of conditional transforma-
tion models is interesting both from a theoretical and a practical perspective. With the range
of simple to very complex transformation functions introduced in Section 4 and illustrated
in Section 5, it becomes possible to understand classical parametric, semi-parametric and
non-parametric models as special cases of the same model class. Thus, analytic comparisons
between models of different complexity become possible. The transformation family PY;‚, the
corresponding likelihood function and the most likely transformation estimator are easy to
understand. This makes the approach appealing also from a teaching perspective. Connections
between standard parametric models (e.g. the normal linear model) and potentially complex
models for survival or ordinal data can be outlined in very simple notation, placing emphasis
on the modelling of (conditional) distributions instead of just modelling (conditional) means.
Computationally, the log-likelihood log ıL is linear in the number of observations N and, for
contributions of ‘exact continuous’ responses, only requires the evaluation of the derivative h0

of the transformation function h instead of integrals thereof.
Based on the general understanding of transformation models outlined in this paper, it will

be interesting to study these models outside the strict likelihood world. A mixed transformation
model for cluster data (Cai et al., 2002; Zeng et al., 2005; Choi & Huang, 2012) is often based
on the transformation function h.y j x; i/ D hY .y/ C ıi C hx.x/ with random intercept (or
‘frailty’ term) ıi for the i th observational unit. Conceptually, a more complex deviation from
the global model could be formulated as h.y j x; i/ D hY .y/C hY .y; i/C hx.x/, that is, each
observational unit is assigned its own ‘baseline’ transformation hY .y/ C hY .y; i/, where the
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second term is an integral zero deviation from hY . For longitudinal data with possibly time-
varying explanatory variables, the model h.y j x.t/; t/ D hY .y; t/Cx.t/ˇ.t/ (Ding et al., 2012;
Wu & Tian, 2013) can also be understood as a mixed version of a conditional transformation
model. The penalized log-likelihood log.L.h j y//�pen.ˇ/ for the linear transformation model
h.y j x/ D hY .y/� Qx

>ˇ leads to Ridge-type or Lasso-type regularized models, depending on
the form of the penalty term. Priors for all model parameters # allow a fully Bayesian treatment
of transformation models.

It is possible to relax the assumption that FZ is known. The simultaneous estimation of
FZ in the model P.Y � y j X D x/ D FZ.hY .y/ � Qx

>ˇ/ was studied by Horowitz (1996)
and later extended by Linton et al. (2008) to non-linear functions hx with parametric baseline
transformation hY and kernel estimates for FZ and hx . For AFT models, Zhang & Davidian
(2008) applied smooth approximations for the density fZ in an exact censored likelihood esti-
mation procedure. In a similar set-up, Huang (2014) proposed a method to jointly estimate the
mean function and the error distribution in a generalized linear model. The estimation of FZ is
noteworthy in additive models of the form hY C hx because these models assume additivity of
the contributions of y and x on the scale of F�1

Z
.P.Y � y j X D x//. If this model assump-

tion seems questionable, one can either allow unknown FZ or move to a transformation model
featuring a more complex transformation function.

From this point of view, the distribution function FZ in flexible transformation models is
only a computational device mapping the unbounded transformation function h into the unit
interval strictly monotonically, making the evaluation of the likelihood easy. Then, FZ has
no further meaning or interpretation as error distribution. A compromise could be the fam-
ily of distributions FZ.´ j 
/ D 1 � .1 C 
 exp.´//�1=� for 
 > 0 (suggested by McLain
& Ghosh, 2013) with simultaneous maximum likelihood estimation of # and 
 for additive
transformation functions h D hY C hx , as these models are flexible and still relatively easy to
interpret.

In light of the empirical results discussed in this paper and the theoretical work of McLain
& Ghosh (2013) on a Cox model with log-cumulative baseline hazard function parameterized
in terms of a Bernstein polynomial with increasing order M , one might ask where the bound-
aries among parametric, semi-parametric and non-parametric statistics lie. The question how
the order M affects results practically has been repeatedly raised; therefore, we will close our
discussion by looking at a Cox model with increasing M for the German Breast Cancer Study
Group-2 data. All eight baseline variables were included in the linear predictor, and we fitted
the model with orders M D 1; : : : ; 30; 35; 40; 45; 50 of the Bernstein polynomial parameteriz-
ing the log-cumulative baseline hazard function. In Fig. 6A, the log-cumulative baseline hazard
functions start with a linear function (M D 1) and quickly approach a function that is essen-
tially a smoothed version of the Nelson-Aalen-Breslow estimator plotted in red. In Fig. 6B, the
trajectories of the estimated regression coefficients become very similar to the partial likelihood
estimates as M increased. For M � 10, for instance, the results of the ‘semi-parametric’ and
the ‘fully parametric’ Cox models are practically equivalent. An extensive collection of such
head-to-head comparisons of most likely transformations with their classical counterparts can
be found in Hothorn (2017b). Our work for this paper and practical experience with its refer-
ence software implementation convinced us that rethinking classical models in terms of fully
parametric transformations is intellectually and practically a fruitful exercise.

6.1. Computational details

A reference implementation of most likely transformation models is available in the mlt
package (Hothorn, 2017a). All data analyses can be reproduced in the dynamic document
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Fig. 6. German Breast Cancer Study Group-2. Comparison of exact and partial likelihood for orderM D
1; : : : ; 30; 35; 40; 45; 50 of the Bernstein polynomial approximating the log-cumulative baseline hazard
function hY . The estimated log-cumulative baseline hazard functions for varying M are shown in grey,
and the Nelson-Aalen-Breslow estimator is shown in red (A). The right panel (B) shows the trajectories of
the regression coefficients Ǒ obtained for varying M , which are represented as dots. The horizontal lines
represent the partial likelihood estimates.

Hothorn (2017b). Augmented Lagrangian Minimization implemented in the auglag() func-
tion of package alabama (Varadhan, 2015) was used for optimizing the log-likelihood. Package
gamboostLSS (version 1.2-2, Hofner et al., 2016) was used to fit GAMLSS models and kernel
density, and distribution estimation was performed using package np (version 0.60-2, Racine &
Hayfield, 2014). All computations were performed using R version 3.4.0 (R Core Team, 2017).
Additional applications are described in an extended version of this paper (Hothorn et al.,
2017).
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