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Seminar für Statistik, ETH Zürich, Leonhardstrasse 27,
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SUMMARY

We propose probabilistic lower bounds for the number of false null hy-
potheses when testing multiple hypotheses of association simultaneously.
The bounds are valid under general and unknown dependence structures
between the test statistics. The power of the proposed estimator to detect
the full proportion of false null hypotheses is discussed and compared to
other estimators. The proposed estimator is shown to deliver a tight prob-
abilistic lower bound for the number of false null hypotheses in a multiple
testing situation even under strong dependence between test statistics.

Some key words: Family-wise error rate; Multiple testing; Number of false
null hypotheses.
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1 INTRODUCTION

When testing multiple hypotheses simultaneously, it is often of interest
to select a subset of hypotheses which show a significant deviation from
the null hypothesis. Adjusting for the multiplicity of the testing problem
is commonly achieved by calculating a suitable error rate like the family-
wise error rate, see for example Westfall & Young (1993) and Holm (1979),
or the false discovery rate, as introduced by Benjamini & Hochberg (1995).
Instead of selecting a subset of significant hypotheses, however, one might
sometimes rather be interested in just testing a global null hypothesis; see
Donoho & Jin (2004) for a recent development in this field and possible
areas of application.
Here we consider an intermediate approach. The goal is to estimate the
total number m1 of false null hypotheses among all m tested hypotheses.
For a chosen level α, we propose probabilistic lower bounds m̂1, for the to-
tal number m1 of false null hypotheses, for which it holds under arbitrary
and unknown dependence between the test statistics, that

pr(m̂1 ≤ m1) ≥ 1− α. (1.1)

The estimator m̂1 can be used as a global test of significance, as the global
null hypothesis m1 = 0 can be rejected at level α if m̂1 > 0. On the other
hand, estimates of m1 are useful for tighter estimation of error rates. Storey
(2002) showed for example that less conservative estimates of the false
discovery rate are possible if an estimate of m1 is available. Likewise, with
an estimate of m1 to hand, more powerful procedures are possible if the
multiplicity adjustment is carried out using the per-comparison or the per-
family error rate; see for example Shaffer (1995) and Dudoit et al. (2003) for
an overview of the most common multiple hypotheses testing procedures.
In the context of gene expression microarray experiments, it is often of
interest to test for differential expression; that is, to test the null hypothesis
for each gene that its expression level follows the same distribution under
various clinical classes (Golub et al., 1999; Alon et al., 1999). As well as
being of interest in its own right, a lower bound on the number m1 of
differentially expressed genes is helpful for tighter estimation of common
error rates.
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A second application is provided by the Taiwanese-American occultation
survey, one goal of which is to estimate the number of objects in the Kuiper
Belt (Liang et al., 2002). This number is inferred from the rate of oc-
cultations of stars by Kuiper belt objects, which results in a very high-
dimensional multiple testing problem. In this case, one is exclusively in-
terested in estimating the number m1 of false null hypotheses and not in
identifying precisely which hypotheses show a significant deviation from
the null hypothesis. As a third example, consider the detection and quan-
tification of climate change. Frei & Schär (2001) examined the existence
of a trend in the occurrence of extreme precipitation events in the alpine
region. Precipitation events are recorded at a large number of stations. No
recording station might show a significant effect when taking the multi-
plicity of the testing problem into account. With the proposed estimators
it is nevertheless possible to give a probabilistic lower bound for the num-
ber of stations where an increase in extreme precipitation events is indeed
occurring.
Allowing arbitrary dependence requires a special structure of the data.
However, for multiple testing of associations the requirements are in gen-
eral fulfilled. The gene-expression example and the detection of trends
in extreme precipitation events are amenable to the analysis presented
in this paper. In contrast, the astronomical example does not allow for
permutation-based testing, which is central to our approach. Incidentally,
the gene-expression and extreme-precipitation examples are also those ap-
plications in which the issue of dependence among test statistics is particu-
larly pressing. Expression levels are sometimes heavily correlated among
genes, and the occurrence of extreme precipitation events is likewise very
much correlated among recording stations, especially if they are located in
the same geographical region.
Starting with Schweder & Spjøtvoll (1982), estimators have been devel-
oped for m1 that are conservative in the sense that

E(m̂1) ≤ m1. (1.2)

The number of true null hypotheses is estimated in Schweder & Spjøtvoll
(1982) by a linear fit of the empirical distribution of p-values; see also the
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recent application to neuroimaging data in Turkheimer et al. (2001). An-
other idea in the paper of Schweder & Spjøtvoll (1982) that also appears in
Storey (2002) is to estimate the number of true null hypotheses by the num-
ber of p-values greater than some threshold λ and then divide by 1− λ.
Suggestions for an adaptive choice of λ are proposed in Storey (2002). For
independent test statistics, an estimator with property (1.1) was proposed
in Genovese & Wasserman (2004). The estimator proposed in this paper is
to our knowledge the first to provide a lower bound for m1 under general
dependence structures between the test statistics.

2 METHODS

2.1 Setting and notation
Let y ∈ Y be a class variable with Y = {1, . . . , h} for some h ∈ N or,
more generally, a variable with Y = R. Let (Xy)y∈Y be a family of m-
dimensional random variables with components Xy = {Xy,1, . . . , Xy,m}.
In multiple testing of associations, one is interested in whether or not the
distribution of the components of Xy are independent of y ∈ Y .
Assume that there is some set S ⊆ {1, . . . , m} such that the joint distribu-
tion of {Xy,k, k ∈ S} is identical for all values of the variable y ∈ Y :

{Xy,k; k ∈ S} = {Xy′,k; k ∈ S} for all y, y′ ∈ Y . (2.3)

Let N be a subset of {1, . . . , m} such that (2.3) is fulfilled and such that
there is no subset that fulfils (2.3) and has larger cardinality. The cardi-
nality of N is denoted by m0. The quantity m0 can be interpreted as the
number of true null hypotheses in the sense that it describes the number of
components of Xy whose distribution is not dependent on the class vari-
able y ∈ Y . Note that the definition of the set N of true null hypotheses
depends on the joint distribution of all components in this set. In partic-
ular, consider the case in which the marginal distributions of two compo-
nents Xy,l and Xy,k are both independent of y, but their joint distribution
is not. Then k and l are not both members of any set S that fulfils (2.3) and
hence do not both count towards the number of true null hypotheses. The
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number of false null hypotheses is defined as m1 = m−m0. Note that the
setting is also applicable to cases where y is random.

2.2 A simple example
We begin with a simple example to clarify ideas and notation. The setting
is similar to that of linear discriminant analysis. Let the class variable be
binary with Y = {0, 1}. Let Xy=0 and Xy=1 both follow Gaussian distribu-
tions with common but unknown covariance matrix Σ:

Xy=0 ∼ Nm(0, Σ)

Xy=1 ∼ Nm(θ, Σ).

The vector θ of means has components θ = (θ1, . . . , θm). The null hypoth-
esis for each component k = 1, . . . , m is that the distribution is identical
under either y = 0 or y = 1, which is equivalent to θk = 0. The set N of
true null hypotheses is thus given by N = {k : θk = 0}. In the context
of gene expression microarray data, the class variable y might distinguish
between cancerous and non-cancerous tissue, and the question arises of
whether or not the expression levels for genes show a systematic upward
or downward shift between these conditions.

2.3 Confidence Interval
It is assumed that an n-dimensional vector (y1, . . . , yn) ∈ Yn of class vari-
ables is available, along with corresponding observations of Xy1 , . . . , Xyn ,
which are assumed to be independent. We suppose that a suitable test
is provided for independence of the marginal distributions of Xy,k, k =
1, . . . , m, from the class variable y. The outcome of such a test, applied
to every component k = 1, . . . , m, is a set of p-values P1, . . . , Pm, where
Pk ∼ Un[0, 1] if k ∈ N . For example, for a two-sample problem with
y ∈ {0, 1}, as in §2.2, a t-test or a Wilcoxon test is appropriate for testing
for a shift in location between the two groups. In general, the test will be
adapted to the problem at hand. The number of hypotheses with p-values
in a given rejection region [0, γ] is denoted by R(γ):

R(γ) = ∑
k∈{1,...,m}

1{Pk ≤ γ}.
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The number of false rejections, denoted by V(γ), is the number of p-values
Pk below γ, where k is a member of the set N :

V(γ) = ∑
k∈N

1{Pk ≤ γ}.

We first introduce the key concept of a bounding function. Unless stated
otherwise let Γ be the interval [0, 1]. A bounding function at level α is
a random function Gα(γ) which is monotonically increasing with γ for
every realisation such that

pr[sup
γ∈Γ

{V(γ)− Gα(γ)} > 0] < α. (2.4)

We will show explicitly in §2.5 how a bounding function can be constructed.
The proposed estimator of m1 is given as the maximal difference between
the realised number of rejections R(γ) and a bounding function Gα(γ) at
level α:

m̂1 = sup
γ∈Γ

{R(γ)− Gα(γ)}. (2.5)

The estimator of m0 is simply m̂0 = m − m̂1. As mentioned above, Γ =
[0, 1] unless stated explicitly. Note that both R(γ) and Gα(γ) are monoton-
ically increasing with γ. Furthermore, the number R(γ) of p-values less
than or equal to γ is constant except for a set of at most m points of dis-
continuity, at which the supremum in (2.5) is attained. The supremum can
hence be efficiently evaluated by maximising over the finite random set of
realised p-values. We show that the estimator of m0 indeed provides an
probabilistic upper bound for the number of true null hypotheses.

Theorem 1. A one-sided (1-α) confidence interval for m0 is given by [0, m̂0]. A
one-sided (1-α) confidence interval for m1 is given by [m̂1, m]. In particular,

pr(m̂1 ≤ m1) ≥ 1− α.

A proof is given in the Appendix. Note that Theorem 1 allows for arbitrary
dependence among the components of the m-dimensional Xy; we only
require independence of the n observations Xy1 , . . . , Xyn , i.e. for the data
sample.
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The properties of the estimator are solely determined by the choice of the
bounding function. In particular, the power to detect true non-null hy-
potheses is markedly different for different choices of the bounding func-
tions. We are going to discuss in the sequel a general method for obtaining
tight bounding functions.

2.4 Sufficient criterion for a bounding function
It is not possible to verify criterion (2.4). Criterion (2.4) requires knowledge
of the distribution of V and hence of m0, which is the very quantity one is
trying to estimate. We shall show that the distribution of V can in some
sense be bounded from above by the computable distribution of a random
variable Vπ, obtained by permutations of the class variables (y1, . . . , yn).
Let Z be the sample with ordered values (y(1), . . . , y(n)) of the class vari-
ables (y1, . . . , yn):

Z = {(y(i), Xyi)}i=1,...,n.

Let π be a random permutation of {1, . . . , n} and define the action of a
π on Z by the permutation of the class labels according to π, π(Z) =
{(yπ(i), Xyi)}i=1,...,n. Define the random variable Pπ

k , k = 1, . . . , m, as the p-
value of the kth hypothesis under randomly permuted class labels, where
each of the n! permutations of the set {1, . . . , n} has equal probability:

Pπ
k (Z) = Pk{π(Z)}.

The random variable Vπ(γ) is now defined as the number of components,
k, for which Pπ

k is smaller than γ:

Vπ(γ) = ∑
k∈{1,...,m}

1{Pπ
k ≤ γ}.

The distribution of Vπ is determined by the unknown distribution of the
test statistics. However, the distribution of Vπ conditional on Z is com-
putable if we use all n! permutations of the class variables (y1, . . . , yn).
The distribution of Vπ thus yields, in a sense made precise below, a useful
upper bound for the distribution of V.
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Theorem 2. A random, σ(Z)-measurable and monotonically increasing function
Gα(γ) is a bounding function according to (2.4) if, for any Z = z,

pr[sup
γ∈Γ

{Vπ(γ)− Gα(γ)} > 0|Z = z] < α. (2.6)

Proof. Given the definition (2.4) of a bounding function, it is sufficient for
a proof of Theorem 2 to show that a σ(Z)-measurable function Gα which
fulfils (2.6) also satisfies, for any Z = z,

pr[sup
γ∈Γ

{V(γ)− Gα(γ)} > 0|Z = z] < α.

The random variable V(γ) is given by V(γ) = ∑k∈N 1{Pk ≤ γ}. By
definition (2.3) of the set of null hypotheses N , the joint distribution of
{Pk, k ∈ N}, conditional on Z = z, is identical to the distribution of
{Pπ

k , k ∈ N}, conditional on Z = z. Thus

pr[sup
γ∈Γ

{V(γ)− Gα(γ)} > 0|Z = z] =

pr[sup
γ∈Γ

{ ∑
k∈N

1{Pπ
k ≤ γ} − Gα(γ)} > 0|Z = z].

The theorem follows since ∑k∈N 1{Pπ
k ≤ γ} ≤ ∑k∈{1,...,m} 1{Pπ

k ≤ γ} =
Vπ(γ), and if we integrate out over Z.

2.5 Quantile bounding functions and computation
We propose to use the quantile function of Vπ(γ) as a bounding function.
Let Qβ

z (γ) be the β-quantile of Vπ(γ), conditional on Z = z. This function
can be computed by random permutations of the class variables. Let β(α)
be the minimal value of β ∈ [0, 1] such that (2.6) is fulfilled for Qβ

z (γ). The
quantile function Qβ(α)

z (γ) is then a valid bounding function. Note that
any function Gα which fulfils (2.6) is bounded from below by the (1− α)-
quantile of Vπ(γ); that is Gα(γ) ≥ Q1−α

z (γ) for any bounding function Gα.
It follows that 1− α ≤ β(α) ≤ 1.
Let Π be a set of random permutations of the class variable. For the finite
set Π, the computation of the quantile functions can be limited to the set
of quantiles β ∈ {1, 1− 1/|Π|, 1− 2/|Π|, . . . , 1/|Π|}. For β = 1, criterion
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(2.6) is surely fulfilled. The value β(α) is found by checking iteratively,
starting with β = 1 and then for successively lower values of β, whether
or not criterion (2.6) is fulfilled for the quantile function Qβ

z (γ). Note that,
if the criterion is not fulfilled for some β, then it cannot be fulfilled for any
value lower than β. The value β(α) is the lowest value for which criterion
(2.6) is fulfilled.
To check whether or not criterion (2.6) is fulfilled for the quantile func-
tion Qβ

z (γ), calculate for every π ∈ Π the p-values Pπ
k , k = 1, . . . , m,

of all hypotheses. Check, for every permutation π ∈ Π, whether or not
Vπ(γ) ≤ Qβ

z (γ) for all γ ∈ {Pπ
1 , . . . , Pπ

m}. If this condition is fulfilled, set
c(π) = 0. Otherwise, set c(π) = 1. Criterion (2.6) is fulfilled if and only if
∑π c(π) < α|Π|.
By (2.5), the estimator of m1 is then given by

m̂1 = sup
γ∈Γ

{R(γ)−Qβ(α)
z (γ)}.

As a result of the monotonicity of Qβ(α)
z (γ), the supremum is attained by

some value of γ in the finite, random set of realised p-values {P1, . . . , Pm}.
Evaluation of the supremum is hence achieved by maximising over a finite
set of points. It holds by positivity of the bounding function that 0 ≤ m̂1 ≤
m.
It might seem that the computational burden of this procedure is pro-
hibitive if a permutation-based test is used for computation of the p-values,
as the algorithm as laid out here involves in these cases a double permuta-
tion. It is therefore of interest to note that the algorithm also works when
we use, instead of p-values, raw test statistics.

2.6 Connection to the family-wise error rate
Another possible choice of a bounding function is given by

Gα(γ) =

{
0 γ ≤ g(α)
∞ γ > g(α)

,

where g(α) is the largest value in [0, 1] such that (2.6) is fulfilled. By Bon-
ferroni’s inequality, g(α) ≥ 1/m. The estimate (2.5) for this bounding
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function is given by
m̂fw

1 = R{g(α)},

and is equal to the number of rejections when controlling the family-wise
error rate at level α.

2.7 Asymptotic power
Here we compare the asymptotic powers of m̂fw

1 and m̂1 to detect the cor-
rect proportion of false null hypotheses. The ability of the estimators to
identify a large proportion of all false null hypotheses depends of course
on the power of the individual tests. We settle here for the simple setting
of a two-sample problem, where a one- or two-sided Wilcoxon test is used
to test whether or not the distribution of a random variable Xy=0 is shifted
compared to the distribution of another random variable Xy=1. The total
number n of observations is given by n = n0 + n1, where n0 is the number
of independent observations of Xy=0 and n1 is the number of independent
observations of Xy=1.
We are particularly interested in how well the estimators can cope with
a large number m of tests. Thus for the following analysis m is increas-
ing with n, so that m = m(n) → ∞ for n → ∞. Both Xy=0 and Xy=1

are assumed to be infinite-dimensional. For n observations, the first m(n)
components are tested for association with the class variable. We need
three reasonable assumptions.

Assumption 1. There exists some c > 0 such that, for all false null hypothe-
ses k ∈ N c,

|pr(Xy=0,k < Xy=1,k)− 1/2| > c.

Assumption 2. The dependence between test statistics is such that, for some
τ ∈ (0, 1),

sup
γ∈Γ

m

∑
k,l=1

∣∣cov
(
1{Pk ≤ γ}, 1{Pl ≤ γ}

)∣∣ = o(m1+τ) for m = m(n) → ∞.

Assumption 3. The proportion of false null hypotheses converges to κ ∈
(0, 1), while the proportion of observations from class y = 1 converges to
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some ν ∈ (0, 1):

m1(n)/m(n) → κ for n → ∞

n1/n → ν for n → ∞.

Assumption 1 could be relaxed by replacing c with a sequence cn such
that cn → 0 sufficiently slowly as n → ∞. However, it suffices in its
current form to illustrate the difference in power between the estimators.
Assumption 2 is a weak condition regarding the strength of correlation
between test statistics. For example it is fulfilled if test statistics are block-
dependent and the size of the largest block is increasing at most as o(mτ).
For independent test statistics, the assumption is fulfilled for any τ > 0.
The second part of Assumption 3 seems reasonable. An interesting field
for further research would be to study the behaviour of the estimators
for κ = 0, where the proportion of false null hypotheses is vanishing for
n → ∞; see Meinshausen & Rice (2005) for the case of independent test
statistics.

Theorem 3. Let Assumptions 1-3 be fulfilled and let n−1 log m(n) → ∞ for n →
∞. Then, for n → ∞, in probability,

m̂fw
1 /m1 → 0

m̂1/m1 → 1.

From an asymptotic point of view, estimation of m1 with m̂1 is thus more
powerful than estimation with m̂fw

1 . Note that the number of hypotheses
increases very quickly in the result above as a function of the number of
observations.
In general, the power of m̂fw

1 to detect the presence of false null hypotheses
deteriorates with the number of tested hypotheses. The estimator m̂fw

1 is
equal to the number of rejections that can be made under control of the
family-wise error rate, as already mentioned above, and it is well known
that the family-wise error rate is very conservative if the number of tested
hypotheses is large. The result in Theorem 3 is thus perhaps not very sur-
prising. However, Theorem 3 shows that, for the purpose of estimating
m1, more powerful estimators are available which do not suffer from van-
ishing power for an increasing number of tested hypotheses.
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2.8 Composite null hypotheses
The method was primarily developed to test for identical distribution of
the components of Xy for all y ∈ Y . In practice, one might like to allow
for more general composite null hypotheses, and here we show how the
proposed method can be generalised. Suppose that the family Xy, y ∈ Y ,
of random variables is parameterised by a vector θ = (θ1, . . . , θm) ∈ Θm.
Consider first the case of point null hypotheses θk = 0. The set of true null
hypotheses therefore corresponds to the set N = {k : θk = 0} and the
number of true null hypotheses is given by m0 = ∑m

k=1 1{θk = 0}.
Now suppose that the null hypothesis is given rather by θk ∈ Θ0 for every
component k = 1, . . . , m, and some Θ0 ⊂ Θ. In this case the number of
true null hypotheses is given by m0 = ∑m

k=1 1{θk ∈ Θ0}. The proposed
method can be applied without further modifications to this problem un-
der the perhaps crucial assumption that one can couple together the val-
ues θk ∈ Θ0 and θk = 0 in the following sense. Let Pk(θk) be the p-value
of the kth hypothesis under parameter value θk. Suppose now that the
parametrisation is so chosen that almost surely the p-values under any
θk ∈ Θ0 are at least as large as under θk = 0:

θk ∈ Θ0 ⇒ Pk(θk) ≥ Pk(0) (2.7)

almost surely. Then the proposed estimators m̂1 have the desired property
that pr(m̂1 ≤ m1) ≥ 1− α, where m1 is now defined as m1 = ∑m

k=1 1{θk ∈
Θ0}. This follows by an inspection of the proof of Theorem 2. Such a
coupling can be achieved for a large number of potentially interesting
composite null hypotheses. As an example, consider again the setting
of §2.2. Let the null hypotheses be given not by θk = 0 but instead by
θk ∈ Θ0 = (−∞, 0], so that m1 measures only the number of hypotheses in
which the shift in mean for class y = 1 compared to class y = 0 is positive.
If we use a sensible test like the t-test or the Wilcoxon test, it is obvious
that (2.7) is fulfilled in this case.

2.9 Estimation of error rates
There is by now a multitude of error rates for multiple hypothesis test-
ing; see Shaffer (1995) or Dudoit et al. (2003) for an overview. The most
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important ones are the family-wise error rate, the per-comparison error
rate, which is defined as E(V)/m, the expected number of Type I errors
V divided by the total number m of hypotheses. Furthermore there is the
per-family error rate, E(V). Finally there is the false discovery rate, which
is defined as E(Q), where Q is the proportion of falsely rejected hypothe-
ses, that is Q = V/R if R > 0 and Q = 0 if R = 0. Storey (2002) was the
first to make use of an estimator of m0 to give a less conservative estimator
of the false discovery rate. Our proposed estimators of m0 can also be used
to give less conservative estimators of the per-comparison and per-family
error rates. The value of the per-comparison and per-family error rate are
given for a fixed rejection region [0, γ] by

PCER = m0γ/m,

PFER = m0γ.

The value of m0 is unknown but bounded by m. The error rates can thus
be trivially bounded from above by PCER ≤ γ and PFER ≤ mγ. These
bounds are rather conservative if there are many false null hypotheses. If
we use for example the proposed estimator m̂0 of m0, less conservative
estimators are obtained. For the per-comparison error rate, the proposed
estimator of the per-comparison error rate is

ˆPCER = m̂0γ/m.

This estimator is always smaller than the conservative upper bound: ˆPCER ≤
γ. We are still on the safe side, however, as the estimator is, by Theorem 1,
larger than the true value of the per-comparison error rate with high prob-
ability:

pr( ˆPCER ≥ PCER) ≥ 1−α.

A similar result holds for the per-family error rate. In Storey (2002), it was
shown that a useful estimator for the false discovery rate, when rejecting
all hypotheses with p-value less than γ, is given by m0γ/R(γ). Let m̂0 be
some estimator of m0. A plug-in estimator for the false discovery rate is
then ˆFDR = m̂0γ/R. In particular, the estimator of m0 in Storey (2002) is

m̂st
0 =

m− R(λ)
1− λ

. (2.8)
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This estimator has the property that E(m̂λ
0 ) ≥ m0 and E( ˆFDR) ≥ FDR.

Instead of using m̂st
0 as an estimator of m0, it is possible to use different

estimators, such as our m̂0. We compare both estimators in the sequel.

3 NUMERICAL EXAMPLES

3.1 Simulated data
The set-up for the numerical comparison is the same as in the example of
§2.2. The set N of true null hypotheses is generated by randomly drawing
m0 elements from the set {1, . . . , m}. For k ∈ N , θk = 0, whereas for
false null hypotheses with k ∈ N c, θk = 1. The Wilcoxon test is used to
test for a shift in mean between the distributions of Xy=0 and Xy=1 for all
m components. The total number n of observations is assumed to be even
and there are n/2 independent observations of Xy=0 and n/2 observations
of Xy=1. The covariance matrix Σ is defined by Σ = aK−1, where a is a
scale factor, chosen so that the diagonal of Σ has unit entries and K is an
m×m matrix with unit entries in the diagonal and Kij = ζ/2 if |i− j| = 1
or {i, j} = {1, m}, and Kij = 0 otherwise. Independent test statistics are
obtained if ζ = 0. If ζ = 0.995, this gives a covariance matrix with non-
diagonal entries in the range of 0 to 0.9. About 90% of all correlations are
below 0.01.
For n = 60 observations, the empirical distribution of m̂1/m1, at level
α = 0 · 05, is shown in Fig. 1 for 100 simulations and independent test
statistics under an increasing number m of hypotheses. The number of
false null hypotheses m1 is kept at a constant proportion 0·1 of all hypothe-
ses. It can be observed in Fig. 1(b) that the power of a method that controls
the family-wise error rate, corresponding to m̂fw

1 , vanishes for large m as
expected from Theorem 3. The proposed estimator m̂1 shows qualitatively
different behaviour. The power actually increases for increasing m, con-
verging to a positive value close to 1. In Fig. 1(c), the smoother estimator
of m1, proposed in Storey & Tibshirani (2003) and denoted by m̂st,sm

1 , is
shown for comparison. The bias of this estimator is smaller, but the vari-
ance is substantially larger than for any of the proposed estimators.
Next, a more thorough simulation study is done for m = 1000 hypothe-
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Figure 1: Box-plots for the ratio m̂1/m1 as a function of the number m
of tested hypotheses for independent test statistics, for (a) the proposed
estimate m̂1, (b) the number of rejections m̂fw

1 when controlling the family-
wise error rate, and (c) the smoother estimate m̂st,sm

1 .

ses. The number of false null hypotheses is varied with m1 ∈ {0, 100, 500}.
The estimators m̂1 and m̂fw

1 are compared in Table 1. Additionally, the es-
timator m̂st

1 is shown, as proposed in Storey (2002); see equation (2.8). The
parameter λ has to be chosen heuristically and the commonly-made choice
λ = 0 ·5 is used. A bootstrap method for obtaining an optimal choice of
λ was proposed in Storey (2002). The resulting estimator is denoted by
m̂st,b

1 . Finally, the smoother estimator m̂st,sm
1 proposed in Storey & Tibshi-

rani (2003) is shown. If there is no single false null hypothesis, m1 = 0,
the estimators m̂fw

1 and m̂1 estimate m1 correctly by 0 in at least 100(1− α)
percent of the simulations, as expected from property (1.1). In contrast,
in this case the estimators m̂st

1 , m̂st,sm
1 and m̂st,b

1 produce large estimators
of m1, especially for dependent test statistics. Note that these last three
estimators are thresholded at 0 and m respectively, and the conservative
property that E(m̂1) < m1 is thereby lost. Hence the average value of m̂st

1
is often larger than m1 in the simulations shown here.
The power of m̂fw

1 to detect a sizeable proportion of all false null hypothe-
ses are in general poor, as already expected from theoretical considera-
tions above. Furthermore, the estimator m̂st,b

1 , with a bootstrap choice of
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Table 1: Simulation study. The average value (mean), standard deviation (sd),
root mean square error (rsme) and the probability pr(m̂1 > m1) of overestimation
(pr) for different estimators of m1, the number of false null hypotheses. Except for
pr, values are rounded to the nearest integer.

ζ = 0 ζ = 0.995
m1 = 0

mean sd rmse pr mean sd rmse pr
m̂1 0 0 0 0·02 0 0 0 0·03
m̂fw

1 0 0 0 0·00 0 0 0 0·00
m̂st

1 10 17 20 0·37 96 136 166 0·48
m̂st,sm

1 19 29 35 0·45 211 259 333 0·55
m̂st,b

1 61 72 94 0·88 278 300 408 0·64

m1 = 100
m̂1 86 4 14 0·00 72 10 30 0·00
m̂fw

1 45 5 55 0·00 46 13 56 0·00
m̂st

1 99 31 30 0·48 152 169 176 0·48
m̂st,sm

1 91 60 60 0·42 250 291 326 0·52
m̂st,b

1 163 75 98 0·89 357 292 388 0·67

m1 = 500
m̂1 435 14 66 0·00 428 22 75 0·00
m̂fw

1 224 11 276 0·00 229 51 276 0·00
m̂st

1 495 22 23 0·44 510 109 109 0·54
m̂st,sm

1 486 48 50 0·38 529 232 233 0·59
m̂st,b

1 543 55 70 0·86 651 154 215 0·73
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λ, seems unsuitable for dependent test statistics. The smoother estimator
m̂st,sm

1 likewise has a large bias and variance for dependent test statistics.
The original estimator m̂st

1 with fixed λ seems to be the most useful among
m̂st

1 , m̂st,b
1 and m̂st,sm

1 , at least for the data examined here.
This leaves m̂st

1 , with a appropriate predetermined choice of λ, and m̂1

as sensible estimators of m1. In terms of root mean squared error, m̂st
1 is

best for independent test statistics and larger proportions m1/m of false
null hypotheses. For dependent test statistics, either m̂st

1 or m̂1 has the
lowest root mean squared error. The probability of overestimating m1 is
conservatively controlled with m̂1 at level α, as expected from Theorem 1.
With m̂st

1 , the probability of overestimating m1 is usually around 0·5. The
high variance of m̂st

1 under dependent test statistics suggests that there is
a rather high probability of overestimating m1 by a large amount.

3.2 Microarray data
With microarray studies it is possible to monitor the expression values of
several thousand genes simultaneously. A common aim with microarray
studies is to find differentially expressed genes, that is genes whose ex-
pression values show systematic variation among different groups. Given
a class variable y like tumour type or clinical outcome, it can be tested for
each gene k if the expression values Xy,k are associated with y. We look
at three microarray studies, in all of which the response variable is binary
y ∈ Y = {0, 1}. In the study on breast cancer from van’t Veer et al. (2002), y
corresponds to the clinical outcome; in the leukaemia study in Golub et al.
(1999), the class variable y distinguishes between two different subtypes of
leukaemia; and finally, in a colon cancer study in Alon et al. (1999), y indi-
cates absence or presence of colon cancer. The number of genes involved
is m = 5408 for the breast cancer study, m = 3571 for the leukaemia study
and m = 2000 for the colon cancer study.
In Table 2, estimators of m1 with the property that pr(m̂1 > m1) < α are
compared. For the estimator m̂1, the approach laid out in §2.5 is used.
The estimator m̂fw

1 is equivalent to the number of rejections when control-
ling the family-wise error rate. We use the step-down method of Westfall
& Young (1993) to control the family-wise error rate. Also shown is the

17



Table 2: Estimators m̂1 of the number m1 of differentially expressed genes, with
pr(m̂ > m1) < α, for three gene expression microarray datasets.

α = 0·05 α = 0·01
colon leukaemia breast colon leukaemia breast

m̂fw
1 , Bonferroni 55 266 2 32 191 0

m̂fw
1 , Step-down 64 281 3 36 202 0

m̂1 286 957 355 245 811 126

number of rejections for control of the family-wise error rate, based on the
Bonferroni correction.
With the estimator m̂1, a consistently higher proportion of false null hy-
potheses are detected than with control of the family-wise error rate. The
gain of using the proposed estimator compared to control of the family-
wise error rate depends on the number of tested hypotheses. Indeed, the
least dramatic gain, which still represents roughly a factor of four, is for
the colon cancer and leukaemia data with the lowest number of tested hy-
potheses. The gain is most pronounced for the breast-cancer data, where
not a single rejection can be made when controlling the family-wise error
rate at level α = 0 ·01, while the estimator m̂1 at the same level indicates
that there are more than 100 true null hypotheses.
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APPENDIX

Proofs

Proof of Theorem 1. It suffices to show that pr(m̂1 > m1) < α, where m̂1 =
supγ∈Γ{R(γ)− Gα(γ)}. The number of rejections can be split into R(γ) =
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S(γ) + V(γ), where S(γ) is the number of correct rejections. Let N c be the
complement of N in {1, . . . , m}. Then S(γ) = ∑k∈N c 1{Pk ≤ γ}. Note that
supγ∈Γ{S(γ)} = S(1) = m1. Thus

pr(m̂1 > m1) = pr[sup
γ∈Γ

{R(γ)− Gα(γ)} > m1]

= pr[sup
γ∈Γ

{V(γ) + S(γ)− Gα(γ)} > m1]

≤ pr[sup
γ∈Γ

{V(γ)− Gα(γ)}+ S(1) > m1]

≤ pr[sup
γ∈Γ

{V(γ)− Gα(γ)} > 0].

The function Gα(γ) is a bounding function at level α. The quantity

pr[sup
γ∈Γ

{V(γ)− Gα(γ)} > 0]

is thus strictly smaller than α by definition of Gα, and the claim follows.

Lemma A1. Let Qβ
z (γ) be the β-quantile of Vπ(γ), conditional on Z = z, under

a rank-based test. Let Γ be the corresponding discrete set of p-values. It holds for
any ν > 0 and z ∈ Z under Assumption 2 that there exists a sequence δm ∼
m− 1

2 + τ
2 such that infβ≥ν Qβ

z (γ)/m0 ≥ γ − δm. Furthermore, Q1−β
z (γ)/m ≤

γ/β for all γ ∈ (0, 1).

Proof. For the first claim, it is sufficient to show that pr{γ− Vπ(γ)/m0 >

δm|Z = z} → 0 for m → ∞ and all γ ∈ Γ. Replace Vπ(γ) = ∑m
k=1 1{Pπ

k ≤
γ} by the smaller random variable ∑k∈N 1{Pπ

k ≤ γ}, where the sum
stretches only over components k in the set N of true null hypotheses.
As a rank-based test is used, it holds that the distribution of {Pπ

k ; k ∈ N},
conditional on Z, is identical to the distribution of {Pk; k ∈ N}. Hence it is
sufficient to show that pr(γ− 1

m0
∑k∈N 1{Pk ≤ γ} > δm) → 0 for m → ∞.

Note that E( 1
m0

∑k∈N 1{Pk ≤ γ}) = γ. It follows by Assumption 2 and
κ < 1 that var( 1

m0
∑k∈N 1{Pk ≤ γ}) = o(m−1+τ). The first part of the

claim follows thus by Chebychev’s inequality.
For the second part it is sufficient to show that, for every γ ∈ Γ, pr{Vπ(γ)/m >

γ/β|Z = z} < β, where Vπ(γ) = ∑m
k=1 1{Pπ

k ≤ γ}. Let Π be the set of
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all possible permutations of {1, . . . , n}. Then the above is equivalent to
showing that

1
n! ∑

π∈Π
1{

m

∑
k=1

1{Pπ
k ≤ γ} > mγ/β} < β. (3.9)

Assume to the contrary that (3.9) is not fulfilled. This implies that, for
at least βn! of all permutations, ∑m

k=1 1{Pπ
k ≤ γ} > mγ/β and hence

1
n! ∑π∈Π ∑m

k=1 1{Pπ
k ≤ γ} > mγ. However, as a rank-based test is used,

it has to hold that pr{Pπ
k ≤ γ|Z = z} = 1

n! ∑π∈Π 1{Pπ
k ≤ γ} ≤ γ, which

leads to a contradiction. Hence (3.9) is fulfilled and the claim follows.

Proof of Theorem 3. The estimator is given by m̂fw
1 = R{g(α)}. According

to (2.6), the value of g(α) is the minimal value of g such that, for a given
Z = z, pr{Vπ(1− g) > 0|Z = z} < α, which is equivalent to Q1−α

z (1−
g)} < 0. By Lemma A1, there exists some sequence δm ∼ m− 1

2 + τ
2 so that

Q1−α
z (γ)/m0 ≥ γ− δm. It follows that m0{1− g(α)− δm} = 0. Let γmin be

the minimal p-value under a Wilcoxon test, γmin = n0!n1!/n!. If γmin >

1 − g(α), it follows that R{1 − g(α)} = 0 and hence m̂fw
1 = 0. Hence it

suffices to show that m0(γmin − δm) → ∞ for n → ∞ as then γmin > 1−
g(α) eventually, implying that R{1− g(α)} → 0 for n → ∞. By Stirling’s
formula, it holds that − log γmin = cn{1 + o(1)} for some c > 0 and n →
∞. On the other hand, for some d > 0, − log δm = d log m{1 + o(1)}.
As log m(n)/n → ∞ for n → ∞, it follows that δm/γmin → 0 for n →
∞. It thus suffices to show that m0γmin → ∞, which is, since κ < 1,
equivalent to showing that mγmin → ∞ for n → ∞. This follows again by
− log γmin = O(n) and log m(n)/n → ∞ for n → ∞.
For the proposed estimator m̂1 = maxγ∈Γ{R(γ)−Qβ(α)

z (γ)}, it is first
shown that pr(m̂1/m1 > 1 + ε) → 0 for any ε > 0. It clearly holds that
β(α) ≥ 1 − α. By Assumption 2 and Lemma A1, there exists some se-
quence δm ∼ m− 1

2 + τ
2 such that, for all γ ∈ Γ, Qβ(α)

z (γ)/m0 ≥ γ− δm. Since
R(γ) ≤ m1 + ∑k∈N 1{Pk ≤ γ}, it holds that

pr(m̂1/m1 > 1 + ε) ≤ pr{sup
γ∈Γ

( ∑
k∈N

1{Pk ≤ γ} −m0(γ− δm) > εm1}.

As m0δm = o(m1), the term m0δm can without loss of generality be ne-
glected. Note that |Γ| ≤ n2 for the Wilcoxon test. By Bonferroni’s in-
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equality, it thus remains to be shown that pr(∑k∈N 1{Pk ≤ γ} − m0γ >

εm1) = o(n−2) for all γ ∈ Γ and n → ∞. It holds that E(∑k∈N 1{Pk ≤
γ}) = m0γ. Furthermore, by Assumption 2, var(∑k∈N 1{Pk ≤ γ}) =
o(m1+τ). By Chebychev’s inequality and since κ ∈ (0, 1), it follows that
pr(∑k∈N 1{Pk ≤ γ} − m0γ > εm1) = O(mτ−1). As log m(n)/n → ∞ for
n → ∞, it follows that pr(∑k∈N 1{Pk ≤ γ}−m0γ > εm1) = o(n−2), which
proves the claim.
It remains to be shown that pr(m̂1/m1 < 1− ε) → 0 for any ε > 0 and
n → ∞. By Lemma A1, Q1−β

z (γ)/m ≤ γ/β for all γ ∈ (0, 1). As β(α) ≤
α/|Γ| and |Γ| ≤ n2, it follows that Qβ(α)

z (γ) ≤ mγn2/α for all γ ∈ (0, 1).
Let

γn = max{γ ∈ Γ : γ ≤ n−2/ log n}.

Then, from the above results and since κ > 0, Qβ(α)
z (γn)/m1 = o(1) for

n → ∞. Since

m̂1 = sup
γ∈Γ

{R(γ)−Qβ(α)
z (γ)} ≥ R(γn)−Qβ(α)

z (γn)

and Qβ(α)
z (γn)/m1 = o(1) for n → ∞, it remains to be shown that, for

any ε > 0, pr{R(γn)/m1 < 1 − ε} → 0 for n → ∞. By Assumption 2,
var{R(γ)/m1} = o(1). By Chebychev’s inequality it hence suffices to
show that, for any ε > 0, E{R(γn)/m1} > 1 − ε for m = m(n) large
enough. The number of rejections R(γn) = ∑m

k=1 1{Pk ≤ γn} is bounded
from below by ∑k∈N c 1{Pk ≤ γn} and it thus suffices to show under As-
sumption 1 that, for any false null hypothesis k ∈ N c, pr(Pk ≤ n−2/ log n) →
1 for n → ∞. This follows from Lemma A2 below, which completes the
proof.

Lemma A2. Let Xy=0 and Xy=1 be two independent random variables fulfilling
Assumption 1. The number of independent observations of each variable is given
by n0 and n1 respectively, and n = n0 + n1. Let P be the p-value of a false
null hypothesis under a one- or two-sided Wilcoxon test. Under Assumption 3, it
holds for any δ > 0 that pr(P < n−δ) → 1 for n → ∞.

Proof. It suffices to show the result for a one-sided Wilcoxon test, where
the null hypothesis is H0 : pr(Xy=0 < Xy=1) = 1/2 and the alternative
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is given by HA : pr(Xy=0 < Xy=1) > 1/2. By Assumption 1, all false
null hypotheses satisfy pr(Xy=0 < Xy=1) > 1/2 + c for some c > 0. Let
R1, . . . , Rn be the ranks of the combined observations of Xy=0 and Xy=1.
The test statistic is given by W = ∑n1

i=1 Ri, where the sum is understood
to stretch only over observations where y = 1. Under the null hypothesis,
E(W) = n1(n + 1)/2. Let wc = (1 + c)n1(n + 1)/2. Under Assumption 3,
n1/n → ν ∈ (0, 1) for n → ∞. Hence it follows by Theorem 2.1 in Stone
(1967) that, under the null hypothesis H0, pr(W > wc) = O{exp(−cn)}
for some constant c > 0. Thus, for any value of δ > 0, pr(W > wc) =
o(n−δ) for n → ∞. It thus remains to be shown that, under the alternative,
pr(W ≤ wc) → 0 for n → ∞. Under the alternative hypothesis, E(W) ≥
(1 + 2c)n1(n + 1)/2 and var(W) = O(n3). From Chebychev’s inequality,
it indeed follows that, under the alternative, pr(W ≤ wc) → 0 for n → ∞,
which completes the proof.
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