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High-dimensional data
Riboflavin production with Bacillus Subtilis

(in collaboration with DSM (Switzerland))
goal: improve riboflavin production rate of Bacillus Subtilis

using clever genetic engineering

response variables Y ∈ R: riboflavin (log-) production rate
covariates X ∈ Rp: expressions from p = 4088 genes
sample size n = 115, p � n

gene expression data

Y versus 9 “reasonable” genes
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general framework:

Z1, . . . ,Zn i.i.d. or stationary
dim(Zi)� n

for example:
Zi = (Xi ,Yi), Xi ∈ Rp,Yi ∈ R: regression with p � n
Zi = (Xi ,Yi), Xi ∈ Rp,Yi ∈ {0,1}: classification with p � n

numerous applications:
biology, imaging, economy, environmental sciences, ...



High-dimensional linear models

Yi = β0 +

p∑
j=1

βjX
(j)
i + εi , i = 1, . . . ,n

p � n
in short: Y = Xβ + ε

goals:
I prediction, e.g. w.r.t. squared prediction error
I variable selection

i.e. estimating the effective variables
(having corresponding coefficient 6= 0)
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Motif regression and variable selection

for finding HIF1α transcription factor binding sites in DNA seq.
Müller, Meier, PB & Ricci

Yi ∈ R: univariate response measuring binding intensity of
HIF1α on coarse DNA segment i (from CHIP-chip experiments)
Xi = (X (1)

i , . . . ,X (p)
i ) ∈ Rp:

X (j)
i = abundance score of candidate motif j in DNA segment i

(using sequence data and computational biology algorithms,
e.g. MDSCAN)



question: relation between the binding intensity Y and the
abundance of short candidate motifs?

; linear model is often reasonable
“motif regression” (Conlon, X.S. Liu, Lieb & J.S. Liu, 2003)

Yi = β0 +

p∑
j=1

βjX
(j)
i + εi

i = 1, . . . ,n = 287, p = 195

goal: variable selection
; find the relevant motifs among the p = 195 candidates



High-dimensional linear model

Y = Xβ + ε, p large; or p � n

we need to regularize...
and there are many proposals

I Bayesian methods for regularization
I greedy algorithms: aka forward selection or boosting
I preliminary dimension reduction
I ...

e.g. 2’650’000 entries on Google Scholar for
“high dimensional linear model” ...
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Penalty-based methods

if true βtrue is sparse w.r.t.

I ‖βtrue‖0 = number of non-zero coefficients
; penalize with the ‖ · ‖0-norm:

argminβ(n−1‖Y − Xβ‖2 + λ‖β‖0), e.g. AIC, BIC
; computationally infeasible if p is large (2p sub-models)

I ‖βtrue‖1 =
∑p

j=1 |βtrue,j |
; penalize with the ‖ · ‖1-norm, i.e. Lasso:

argminβ(n−1‖Y − Xβ‖2 + λ‖β‖1)
; convex optimization:

computationally feasible and very fast for large p



The Lasso (Tibshirani, 1996)

Lasso for linear models (and analogously for GLM’s)

β̂(λ) = argminβ(n−1‖Y − Xβ‖2 + λ︸︷︷︸
≥0

‖β‖1︸ ︷︷ ︸Pp
j=1 |βj |

)

; convex optimization problem

I Lasso does variable selection
some of the β̂j(λ) = 0
(because of “`1-geometry”)

I β̂(λ) is a shrunken LS-estimate



Lasso for prediction: β̂(λ)T xnew

Lasso for variable selection:

Ŝ(λ) = {j ; β̂j(λ) 6= 0}
for S = {j ;βj 6= 0}

no significance testing involved
it’s convex optimization only!
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Motif regression
for finding HIF1α transcription factor binding sites in DNA seq.

Yi ∈ R: univariate response measuring binding intensity on
coarse DNA segment i (from CHIP-chip experiments)
X (j)

i = abundance score of candidate motif j in DNA segment i

variable selection in linear model Yi = β0 +

p∑
j=1

βjX
(j)
i + εi ,

i = 1, . . . ,n = 287, p = 195

; Lasso selects 26 covariates and R2 ≈ 50%
i.e. 26 interesting candidate motifs

and hence report these findings to the biologists...

really?
do we trust our selection algorithm?

how stable are the findings?
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estimated coefficients β̂(λ̂CV)
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stability check: subsampling with subsample size bn/2c
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; only 2 “stable” findings
( 6= 26)
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one variable (◦):
corresponds to true, known motif

other variable (◦): good additional support for relevance
(nearness to transcriptional start-site of important genes, ...)
ongoing biological validation with Ricci lab (ETH Zurich)



Further outline of the talk

1. some methodology and theory (mainly) for Lasso
; understand whether the motif regression example is
special? Or whether we expect such a behavior?

2. subsampling and stability
3. P-values, FWER and FDR control
4. and more...



High-dimensional linear models and the Lasso

Yi = (β0+)

p∑
j=1

βjX
(j)
i + εi , i = 1, . . . ,n

p � n
in short: Y = Xβ + ε

goals:
I prediction, e.g. w.r.t. squared prediction error
I variable selection

i.e. estimating the effective variables
(having corresponding coefficient 6= 0)
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Why the Lasso/`1-penalization hype?

among other things (which will be discussed later)
`1-penalty approach approximates `0-penalty problem︸ ︷︷ ︸

what we usually want

consider underdetermined system of linear equations:

Ap×pβp×1 = bp×1, rank(A) = m < p

`0-penalty-problem: solve for β which is sparsest w.r.t. ‖β‖0
i.e. “Occam’s razor”

Donoho & Elad (2002), ...: if A is not too ill-conditioned (in the
sense of linear dependence of sub-matrices)

sparsest solution β w.r.t. ‖ · ‖0-norm
= sparsest solution β w.r.t. ‖ · ‖1-norm︸ ︷︷ ︸

amounts to a convex optimization
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Prediction (with the Lasso)

from a practical perspective:
if you trust in cross-validation: can validate how good we are
i.e. prediction may be a black box, but we can evaluate it!

binary lymph node classification using gene expressions:
a high noise problem

n = 49 samples, p = 7130 gene expressions

cross-validated misclassification error (2/3 training; 1/3 test)

Lasso L2Boosting FPLR Pelora 1-NN DLDA SVM
21.1% 17.7% 35.25% 27.8% 43.25% 36.12% 36.88%

with variable selection best 200 genes (Wilcoxon test)
no additional variable selection

theory: consistency (Greenshtein & Ritov, 2004) and optimality
Bunea, Tsybakov & Wegkamp (2006, 2007); van de Geer (2008);
Bickel, Ritov & Tsybakov (2009);...



Prediction (with the Lasso)

from a practical perspective:
if you trust in cross-validation: can validate how good we are
i.e. prediction may be a black box, but we can evaluate it!

binary lymph node classification using gene expressions:
a high noise problem

n = 49 samples, p = 7130 gene expressions

cross-validated misclassification error (2/3 training; 1/3 test)

Lasso L2Boosting FPLR Pelora 1-NN DLDA SVM
21.1% 17.7% 35.25% 27.8% 43.25% 36.12% 36.88%

with variable selection best 200 genes (Wilcoxon test)
no additional variable selection

theory: consistency (Greenshtein & Ritov, 2004) and optimality
Bunea, Tsybakov & Wegkamp (2006, 2007); van de Geer (2008);
Bickel, Ritov & Tsybakov (2009);...



Variable selection (with the Lasso)

we aim for increased understanding
but we cannot easily evaluate the selection method

; it is highly desirable to
assess uncertainty, assign relevance or significance

motif regression
n = 287 samples, p = 195 variables (candidate motifs)

use Lasso as variable selection method:

Ŝ(λ) = {j ; β̂j(λ) 6= 0}

Lasso selects 26 variables (motifs)
when choosing λ = λ̂CV via cross-validation

and we have seen problems when trusting it blindly!
(also with other methods than Lasso)
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theory for variable selection with Lasso: is it misleading?

Theorem (Meinshausen & PB, 2004 (publ: 2006))

I sufficient and necessary neighborhood stability condition
on the design X ; see also Zhao & Yu (2006)

I p = pn is growing with n
I pn = O(nα) for some 0 < α <∞ (high-dimensionality)
I |Strue,n| = O(nκ) for some 0 < κ < 1 (sparsity)
I the non-zero βj ’s are outside the n−1/2-range
I Y , X (j)’s Gaussian (not crucial)

Then: if λ = λn ∼ const .n−1/2−δ/2 (0 < δ < 1/2),

P[Ŝ(λ) = Strue] = 1−O(exp(−Cn1−δ)) (n→∞)

≈ 1 even for relatively small n



Problem 1:

Neighborhood stability condition is restrictive
sufficient and necessary for consistent model selection with Lasso

it fails to hold if design matrix exhibits
“strong linear dependence” (in terms of sub-matrices)

if it fails and because of necessity of the condition
⇒ Lasso is not consistent for selecting the relevant variables



neighborhood stability condition⇔ irrepresentable condition
(Zhao & Yu, 2006)

n−1X T X → Σ

active set S = {j ; βj 6= 0} = {1, . . . ,peff} consists of the first peff
variables; partition

Σ =

(
ΣS,S ΣS,Sc

ΣSc ,S ΣSc ,Sc

)

irrep. condition : |ΣSc ,SΣ−1
S,Ssign(β1, . . . , βpeff )| < 1

a nice formulation, but:
no way to check this assumption in practice
(and the condition is restrictive)



Problem 2: Choice of λ

for prediction oracle solution

λopt = argminλE[(Y −
p∑

j=1

β̂j(λ)X (j))2]

P[Ŝ(λopt) = Strue] < 1 (n→∞) (or = 0 if pn →∞ (n→∞))

asymptotically: prediction optimality yields too large models
(Meinshausen & PB, 2004; related example by Leng et al., 2006)



“Problem 3”: small non-zero regression coefficients
(i.e. high noise level)

we cannot reliably detect variables with small non-zero
coefficients

but (under some conditions)
we can still detect the variables with large regression effects



If neighborhood stability condition fails to hold (problem 1)

under sparse eigenvalue assumptions for n−1X T X
“typically” much weaker assumptions than neighborhood
stability

van de Geer (2008); Zhang & Huang (2008); Meinshausen & Yu
(2000); Bickel, Ritov & Tsybakov (2009); van de Geer & PB (20??):
for suitable λ = λn and with large probability

‖β̂ − β‖1 =

p∑
j=1

|β̂j − βj |≤ C︸︷︷︸
depending on X ,σ2

√
log(p)peff/n

hence: max
j
|β̂j − βj | ≤ ‖β̂ − β‖1 ≤ C

√
log(p)peff/n

and if min
j
{|βj |; βj 6= 0} > C

√
log(p)peff/n

then β̂j 6= 0 for all j ∈ S, i.e. Ŝ ⊇ S



with large probability

Ŝ ⊇ S

|Ŝ| ≤ O(min(n,p)) =︸︷︷︸
if p�n

O(n)

i.e. a huge dimensionality reduction in the original covariates!

furthermore: “typically”, for prediction-optimal λopt

Ŝ(λopt) ⊇ S

; Lasso as an
excellent screening procedure

i.e. true active set is contained in estimated active set from
Lasso
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Lasso screening is easy to use,︸ ︷︷ ︸
prediction optimal tuning

computationally efficient,︸ ︷︷ ︸
O(np min(n,p))

and statistically accurate



peff = 3, p = 1′000, n = 50; 2 independent realizations
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Motif regression (p = 195, n = 287)

26 selected covariates when using λ̂CV
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presumably: the truly relevant variables are among the 26
selected covariates



First conclusion

Lasso is a good screening method: with high probability

Ŝ ⊇ S

and two or multi-stage methods can be used
; re-estimation on much smaller model with variables from Ŝ

I OLS on Ŝ with e.g. BIC variable selection
I thresholding coefficients and maybe OLS re-estimation
I adaptive Lasso (Zou, 2006)

but still: often unstable selections
and no measure of significance
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similar “picture” for other screening procedures

I (gradient-type) boosting (Friedman, 2001; PB & Yu, 2003)
I Sure Independence Screening (SIS) (Fan & Lv, 2008)
I forward selection (orthogonal matching pursuit)

(Tropp, 2004)

under suitable conditions on the design X : ; Ŝ ⊇ S
(and Ŝ = S is much harder in high-dimensional case)

; re-estimation on much smaller model with variables from Ŝ

but still: often unstable selections
and no measure of significance



Stability Selection (Meinshausen & PB, 2008)

using subsampling (or bootstrapping)

another motif regression example
Yi ∈ R: univariate response measuring expression of gene i
Xi = (X (1)

i , . . . ,X (p)
i ) ∈ Rp:

X (j)
i = abundance score of candidate motif j in DNA segment

around gene i (using sequence data and computational biology
algorithms, e.g. MDSCAN)

linear regression model with n = 1′200, p = 660

Y = Xβ + ε

and the goal is selection of the relevant variables
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Using the Lasso...

the 9 most promising motifs, in descending order of |β̂j(λ̂CV )|

motif j 41 29 635 19 34 603 618 596 30
|β̂j | 1.42 1.27 0.81 0.61 0.57 0.49 0.33 0.3 0.3

in total, 20 motifs have a non-zero regression coefficient

report motifs in this order?
how many? all 20?
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“It could have been different” (Tukey)

; subsampling with sample size n = bn/2c
“selection probability” for each motif: Πj = P∗(β̂∗j 6= 0)

motif j 41 29 635 19 34 603 618 596 30
|β̂j | 1.42 1.27 0.81 0.61 0.57 0.49 0.33 0.3 0.3
Π̂j 100% 100% 100% 74% 98% 32% 81% 80% 97%



rather report motif 603 or 30 ?

motif j 41 29 635 19 34 603 618 596 30
|β̂j | 1.42 1.27 0.81 0.61 0.57 0.49 0.33 0.3 0.3
Πj 100% 100% 100% 74% 98% 32% 81% 80% 97%

(and not very different results when using a two-stage procedure,
as e.g. the Adaptive Lasso)



“Semi-”Synthetic data
select 5 motifs m1, . . . ,m5 at random among all p = 660 motifs
and set

Y =
5∑

j=1

X (mj )︸ ︷︷ ︸
real

βmj︸︷︷︸
synthetic

+ε, ε ∼ N (0, σ2) (n = 1′200, p = 660)

σ2, β chosen to achieve very low SNR=0.1
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now we know the “ground-truth”
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Stability selection

consider (first) linear model setting

Yi = (β0) +

p∑
j=1

βjX
(j)
i + εi , i = 1, . . . ,n (� p)

set of active variables: S = {j ; βj 6= 0}

variable selection procedure:

Ŝλ ⊆ {1, . . . ,p},
λ a tuning parameter

prime example: Lasso (Tibshirani, 1996)



subsampling:
I draw sub-sample of size bn/2c without replacement,

denoted by I∗ ⊆ {1, . . . ,n}, |I∗| = bn/2c
I run the selection algorithm Ŝλ(I∗) on I∗

I do these steps many times and compute the
relative selection frequencies

Π̂λ
j = P∗(j ∈ Ŝλ(I∗)), j = 1, . . . ,p

P∗ is w.r.t. sub-sampling (and maybe other sources of
randomness if a randomized selection algorithm is invoked)

could also use bootstrap sampling with replacement...
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I run the selection algorithm Ŝλ(I∗) on I∗

I do these steps many times and compute the
relative selection frequencies

Π̂λ
j = P∗(j ∈ Ŝλ(I∗)), j = 1, . . . ,p

P∗ is w.r.t. sub-sampling (and maybe other sources of
randomness if a randomized selection algorithm is invoked)

could also use bootstrap sampling with replacement...



Stability selection

Ŝstable = {j ; Π̂λ
j ≥ πthr}

depends on λ via Π̂λ
j = P∗(j ∈ Ŝλ(I∗))

choice of πthr ; see later

note: some vague relations to
the “problem of regions” (Efron & Tibshirani, 1998)



if we consider many regularization parameters:

{Ŝλ; λ ∈ Λ}

Λ can be discrete, a singleton or continuous

Ŝstable = {j ; maxλ∈ΛΠ̂λ
j ≥ πthr}

see also Bach (2009) for a related proposal



The Lasso and its corresponding stability path

Y = riboflavin production rate in Bacillus Subtilis (log-scale)
X : p = 4088 gene expressions (log-scale),
sparsity peff “=” 6 (6 “relevant” genes;

all other variables permuted)
sample size n = 115

Lasso Stability selection

with stability selection: the 4-6 “true” variables are sticking out
much more clearly from noise covariates



stability selection cannot be reproduced by simply selecting the
right penalty with Lasso

stability selection provides a fundamentally new solution



Choice of threshold πthr ∈ (0,1)?



How to choose the threshold πthr?

consider a selection procedure which selects q variables
(e.g. top 50 variables when running Lasso over many λ’s)

denote by V =|SC ∩ Ŝstable| = number of false positives

Theorem (Meinshausen & PB, 2008)
main assumption: exchangeability condition
in addition: Ŝ has to be better than “random guessing”
Then:

E(V ) ≤ 1
2πthr − 1

q2

p

i.e. finite sample control, even if p � n
; choose threshold πthr to control e.g. E [V ] ≤ 1 or
P[V > 0] ≤ E [V ] ≤ α



note the generality of the Theorem...

I it works for any method which is better than “random
guessing”

I it works not only for regression but also for “any” discrete
structure estimation problem (whenever there is a
include/exclude decision)
; variable selection, graphical modeling, clustering, ...

and hence there must be a fairly strong condition...
Exchangeability condition:
the distribution of {I{j∈Ŝλ}; j ∈ SC} is exchangeable
note: only some requirement for noise variables

for specific problems, we can prove error control under weaker
assumptions...
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Some numerical experiments
Variable selection in linear models using Lasso
a range of scenarios:
p = 660 with design from a real data set about motif regression
n ∈ {450,750}, sparsity peff ∈ {4,8, . . . ,40} (using artificial β)
signal to noise ratio ∈ {0.25,1,4}

control for E [V ] ≤ 2.5

number of wrongly selected variables
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control for E [V ] ≤ 2.5

number of wrongly selected variables
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stability selection yields:
I accurate control (as proved in theory)
I drastic reduction of false positives in comparison to

CV-tuned solution
I not much loss in terms of power (true positives)



Motif regression

stability selection with E[V ] ≤ 1
; two stably selected variables/motifs

one of them is a known binding site



Graphical modeling using GLasso
(Rothman, Bickel, Levina & Zhu, 2008; Friedman, Hastie & Tibshirani, 2008)

infer conditional independence graph using `1-penalization
i.e. infer zeroes of Σ−1 from X1, . . . ,Xn i.i.d. ∼ Np(0,Σ)

Σ−1
jk 6= 0 ⇔ X (j) 6⊥ X (k)|X ({1,...,p}\{j,k}) ⇔ edge j − k

gene expr. data
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sub-problem of riboflavin production with bacillus subtilis
p = 160, n = 115
stability selection with E [V ] ≤ 5

varying the regularization parameter λ in `1-penalization
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with stability selection: choice of initial λ-tuning parameter does
not matter much (as proved by our theory)
just need to fix the finite-sample control



permutation of variables
varying the regularization parameter for the null-case
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with stability selection: the number of false positives is indeed
controlled (as proved by our theory)



probabilities: selected variables include
no noise variable and at least 10% or 40% of the correct var.
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stability selection is
Bagging the selection outcomes (instead of prediction)

Leo Breiman

and we provide some error control
in terms of E [V ] (; conservative FWER control)



P-values (Meinshausen, Meier & PB, 2008)

for more specific problems assuming weaker assumptions
(no exchangeability condition)

for simplicity: focus on P-values for regression coefficients
H(j)

0 : βj = 0

Yi = (β0+)

p∑
j=1

βjX
(j)
i + εi (i = 1, . . . ,n), p � n



A first idea: sample splitting with sub-samples of sizes bn/2c

related to subsampling with sub-sample size bn/2c

I select variables on first half of the sample ; Ŝ
I compute OLS for variables in Ŝ on second half of the

sample
; P-values P(j) based on Gaussian linear model

if j ∈ Ŝ : P(j) from t-statistics
if j /∈ Ŝ : P(j) = 1 (i.e. if β̂(j) = 0)

Bonferroni-corrected P-values:

P(j)
corr = min(P(j) · |Ŝ|,1)

; (conserv.) familywise error control with
P(j)

corr (j = 1, . . . ,p)

(Wasserman & Roeder, 2008)



this is a “P-value lottery”
motif regression example: p = 195, n = 287

adjusted P-values for same important variable
over different random sample-splits
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in addition: bad “efficiency”
; improve by aggregating over many sample-splits
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Multi sample-split P-values and aggregation

run the sample-splitting procedure B times:

P-values: P(j)
corr,1, . . . ,P

(j)
corr,B

(assuming a Gaussian linear model with fixed design)

goal:
aggregation of P(j)

corr,1, . . . ,P
(j)
corr,B to a single P-value P(j)

final

problem: dependence among P(j)
corr,1, . . . ,P

(j)
corr,B



define

Q(j)(γ) = qγ︸︷︷︸
emp. γ-quantile fct.

(P(j)
corr,b/γ; b = 1, . . .B)

e.g: γ = 1/2, aggregation with the median
; (conserv.) familywise error control for any fixed value of γ

what is the best γ? it really matters
; can “search” for it an correct with an additional factor



“adaptively” aggregated P-value:

P(j)
final = (1− log(γmin)) · inf

γ∈(γmin,1)
Q(j)(γ)

Q(j)(γ) = qγ(P(j)
corr,b/γ; b = 1, . . .B)

; reject H(j)
0 : βj = 0 ⇐⇒ P(j)

final ≤ α

P(j)
final equals roughly a raw P-value based on sample size bn/2c,

multiplied by

a factor ≈ (5− 10) · |Ŝ|
(which is to be compared with p)



for familywise error rate (FWER) =
P[at least one false positive selection]

Theorem (Meinshausen, Meier & PB, 2008)
assumptions: Gaussian linear model (with fixed design) and

I limn→∞ P[Ŝ ⊇ S] = 1 screening property
I |Ŝ| < bn/2c sparsity property

Then:

P(j)
final’s yield asymptotic FWER control

lim sup
n→∞

P(min
j∈Sc

P(j)
final ≤ α) ≤ α

i.e. (conservative) familywise error control



False discovery rate (FDR) (Benjamini & Hochberg, 1995)

based on ordered P(j)
final’s from before

; control of FDR for multiple testing of regression coefficients
with p � n

(Meinshausen, Meier & PB, 2008)



assumptions for selector Ŝ:
are satisfied for

I Lasso
• assuming restricted eigenvalue conditions on the design

(Bickel, Ritov & Tsybakov, 2009)
or even weaker conditions (van de Geer & PB, 20??)
• assuming sparsity of true regression coefficients

I L2Boosting, Sure Independence Screening, PC-algorithm,...
• assuming reasonable conditions on the design
• assuming sparsity of true regression coefficients

no exchangeability condition is required here



Simulations for FWER: p = 1000, n = 100
design matrix from multivariate Gaussian with Σj,k = 0.5|j−k |

signal to noise ratio ∈ {0.25,1,4,16}

Lasso with CV
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multi sample-split method (M) has
I much better error control than single sample-split method
I (slightly) more power than single split method



Simulations for FDR

for a whole variety of settings
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multi sample-split FDR control holds up well (conservative)

if p < n: even a bit better than standard FDR if
I p close to n
I strong dependence between the tests



Motif regression

p = 195, n = 287
for α = 0.05, only one variable/motif j̃ remains

P (̃j)
final = 0.0059 (= 0.59%)

and also with FDR control: only this one variable

in this application:
we are rather concerned about false positive findings
; (conservative) P-values are very useful
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Where are we?

I sub-sampling for stability selection
I sample-splitting for P-values

are very easy to implement and rather generic
and computationally feasible since convex optimization is fast

(Bayesian approaches offer a “natural alternative” to address
the issue of stability and significance)



Convex optimization for sparse problems is fast

can easily deal with p ≈ 106 (“p in the Mega’s”)

using block gradient descent methods
based on developments and theory of Tseng et al., 2000–2008

logistic regression case and “Group Lasso”
p = 106, peff = 40 non-zero parameters, n = 100
for 10 different λ-values
CPU using grplasso in R: 203.16 seconds ≈ 3.5 minutes
Meier, van de Geer & PB (2008)

even faster with glmnet in R for a plain Lasso problem
Friedman, Hastie & Tibshirani (2008)



I haven’t talked about...

I Generalized linear models (
√

)
very similar methodology and theory as for linear models

I Group structure and Group Lasso (Yuan & Lin, 2006) (
√

)
for achieving sparsity in pre-defined groups

I Additive modeling (
√

) (but no simple P-values)
we should penalize for sparsity and smoothness
(Ravikumar, Liu, Lafferty & Wasserman, 2007;
Meier, van de Geer & PB, 2008)

motif additive regression (p = 195, n = 287)
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as before: two stable motifs



Intervention effects and Causality

back to first example:

Riboflavin production with Bacillus Subtilis

what is the effect of knocking-down a single gene on the
riboflavin production rate?
; this is a question of intervention type (6= association)

i.e. of causal type
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program to be carried out (Maathuis, Kalisch & PB, 2008)
1. infer graph from data

(can only infer equivalence class of graphs)
pcAlgo(dm = d, alpha = 0.05)

1

2

3

45

6

7

8 9

10

2. run fairly low-dimensional regressions using the structure
of the equivalence class of graphs

3. ; estimates of bounds of causal effects

stability selection is tremendously useful here as well!



single strain interventions in yeast
n = 63, p = 5361 observational (non-interventional) data

231 intervention experiments for validation
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better prediction of intervention/causal effects than
Lasso regression for association effects (wrong concept)



Conclusions

in particular for structure estimation:
high-dimensional inference is often unreliable

subsampling, bootstrapping and sample-splitting can be used
for stable selection and for assigning error rates



Thank you!

Hans R. Künsch

Peter Bickel

Bin Yu
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