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1. Historically: Boosting is about multiple predictions

Data: (X1,Y1),...,(Xn,Y,) (iid. or stationary),
predictor variables X; € RP
response variables Y; € RorY; € {0,1,...,J — 1}

Aim: estimation of function f(-) : RP — R, e.g.
f(x) =ElY|X =z]or f(x) =IP[Y =1|X =x]withY € {0,1}

or distribution of survival time Y given X depends on some function MCQ only

“historical” view (for classification):

Boosting is a multiple predictions (estimation) & combination method
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\mmmm procedure:

algorithm A A
data il %Av (a function estimate)

e.g.: simple linear regression, tree, MARS, “classical” smoothing, neural nets, ...

Generating multiple predictions:

algorithm A ~
weighted data 1 bt 01(+)

algorithm A -
weighted data 2 b 02(+)

algorithm A -
weighted data M bt Onr ()

Aggregation: ,\W_C — Mwwnp @3%3A.v

/ data weights? averaging weights a,,,?

~

\




-

microarray data:

classification of 2 lymph nodal status in breast cancer using gene expressions from

n = 33, p = 7129 (for CART: gene-preselection, reducing to p = 50)

method test set error | gain over CART
CART 22.5% —
LogitBoost with trees 16.3% 28%
LogitBoost with bagged trees 12.2% 46%

this kind of boosting: mainly prediction, not much interpretation

~




2. Boosting algorithms

AdaBoost proposed for classification by Freund & Schapire (1996)

data weights (rough original idea): large weights to previously heavily misclassified
instances (sequential algorithm)

averaging weights a,,,: large if in-sample performance in mth round was good

Why should this be good?

o \
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Why should this be good?

some common answers 5 years ago ...

because
e it works so well for prediction (which is quite true)
® it concentrates on the “hard cases” (so what?)

e AdaBoost almost never overfits the data no matter how many iterations it is run

(not true)

o
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A better explanation

Breiman (1998/99): AdaBoost is functional gradient descent (FGD) procedure

aim: find f*(-) = argmin ¢ E[p(Y, f(X))]
e.g. for p(y, f) = ly — fI? ~ f*(z) =E[Y|X = 2]

FGD solution: consider empirical risk n =" >~ . p(Y;, f(X;)) and

do iterative steepest descent in function space

-




\ 2.1. Generic FGD algorithm /

Step 1. \»o = 0;setm = 0.

Step 2. Increase m by 1. Compute negative gradient — %bﬁ\u f)
and evaluate at f = f_1(X;)=U; (i=1,...,n)
Step 3. Fit negative gradient vector U1, . . ., U,, by base procedure

n  algorithm A A
(Xi, Ui)izy — — Om ()

A

e.g. 0,,, fitted by (weighted) least squares

A

.e. QSC IS an approximation of the negative gradient vector

A

Step 4. Up-date \os@ — F\»jslHA.v T VSm - %SAV
$m = argmingn~ 1Y " p(Y;, ,\OSLAN&V +s5- mSANsvv and) < v <1

l.e. proceed along an estimate of the negative gradient vector

/ch 5. Iterate Steps 2-4 until m = M., for some stopping iteration 1M s¢0p \
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Alternative formulation in function space:

Why “functional gradient?

empirical risk functional: C(f) =n=t>"" | p(V;, f(X)))
inner product: (f,9)=n"13"  f(X)g(Xy)

negative Gateaux derivative:

A

(@) = o-Cf + aL)amoy = —dC(f 1) (X0) = U

if Uy, ..., U, are fitted by least squares:
equivalent to maximize (—dC'( f,,,), 0) w.rt. 6(-) (if||@|| = 1)
(over all possible 6 Cm from the base procedure)

A

i.e: 0,,,(+) is the best approximation (most parallel)

to the negative gradient —dC( f,,)




4 N

By definition: FGD yields additive combination of base procedure fits

A

VY om 2t smbm ()
Breiman (1998):
FGD with p(y, f) = exp((2y — 1) - f) for binary classification yields the
AdaBoost algorithm

(great result!)

Remark: FGD can not be represented as some explicit estimation function(al):

A

,\JSA.vwmmaB_:\mﬂﬁlH MU p(Y;, f(X;)) for some function class F
i=1

~~ FGD is mathematically more difficult to analyze but

generically applicable (as an algorithm!) in very complex models

o \
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2.2. L,Boosting

(see also Friedman, 2001)

loss function p(y, f) = |y — f|?
population minimizer: f*(x) = E[Y|X = z]

FGD with base procedure mc repeated fitting of residuals

A A

3
|

A

3
|

A

\»5&% () =v Y P 0,.(-) (stagewise greedy fitting of residuals)

m=1

Tukey (1977): twicing for mgtop, = 2and v =1

-

1: ANQ;M\MVM@HH ~ %HA.Y \M = T%H ~~ resid. q@ = M\w — \,HANSV
w”ANsSVwHHiQMA.Y>MHMH+tm>Miqmm_a.gﬂﬂlbﬂkb

\
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\ Any gain over classical methods? (for additive modeling) /

Ozone data: n=300, p=8
- n=2300,p=28
el - magenta: LoBoosting with stumps
Y
e \éﬂ ““““““““““““““““““““““““““““““““““““““““““““ (horiz. line = cross-validated stopping)
- black: LoBoosting with componentwise
s | smoothing spline
2 (horiz. line = cross-validated stopping)
2 l.e: smoothing spline fi tting against the
selected predictor which reduces RSS most
7 ,<>
| , , , , — -red: additive model using backfi tting
0 20 40 60 80 100
boosting iterations
LBoosting with stumps or comp. smoothing splines also yields additive model:

/ MUS §£ Guasvv = QEV 4+ .@@@@J \
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MSE
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Simulated data: non-additive regression function, n = 200, p = 100

Regression: n=200, p=100

- magenta: LoBoosting with stumps

- black: LoBoosting with componentwise

- red: additive model using backfi tting and

fwd. var. selection

I I I I I I
50 100 150 200 250 300

boosting iterations
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similar for classifi cation
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3. Structured models and choosing the base procedure

have just seen the

Componentwise smoothing spline base procedure

smoothes the reponse against the one predictor variable which reduces RSS most

we keep the degrees of freedom fixed for all candidate predictors, e.g. d.f. =2.5

~+ LoBoosting yields an additive model fit, including variable selection

\_

\
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simple linear OLS against the one predictor variable which reduces RSS most

6(2) = g 8, =3 xS (xN2, 8 = aramin Y (v; - 8, x9))2

T =1

Componentwise linear least squares

first round of estimation: selected predictor variable Naz (e.g. = N@v

corresponding Q@ ~ fitted function \HA )

second round of estimation: selected predictor variable wamv (e.g.= N@Cv
corresponding mww ~ fitted function \w@v
etc.

L2Boosting: fon () = fm_1(z) + v - 0(z)
~~ LoBoosting yields linear model fit, including variable selection,

/ I.e. structured model fit
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hq v = 1, this is known as /

Matching Pursuit (Mallat and Zhang, 1993)
Weak greedy algorithm (deVore & Temlyakov, 1997)
a version of Boosting (Schapire, 1992; Freund & Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gaussin 1803

“Princeps Mathematicorum”

R.V. Southwell in 1933

/ Professor in engineering, Oxford \
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binary lymph node classification in breast cancer using gene expressions:
a high noise problem

n = 49 samples, p = 7129 gene expressions

7 L2Boosting 7 FPLR 7 Pelora

~

7 1-NN 7 DLDA 7 SVM
7 43.25%

CV-misclassif.err. 7 17.7% 7 35.25% 7 27.8% 36.12% 7 36.88%

LoBoosting selected 42 out of p = 7129 genes

for this data-set: not good prediction, with any of the methods

but LoBoosting may be a reasonable(?) multivariate gene selection method

\_

multivariate gene selection best 200 genes from Wilcox.

\
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Pairwise smoothing splines

smoothes response against the pair of predictor variables which reduces RSS most

we keep the degrees of freedom fixed for all candidate pairs, e.g. d.f. =2.5

~~ [oBoosting yields a nonparametric interaction model, including variable

selection

o \
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\mxmB_u_m” degree 2 nonparametric interaction modelling /
Friedman #1 model:

Y = 10sin(w X1 Xg) + 20(X3 — 0.5)2 4+ 10X, + 5X5 + N(0,1), X = (X1,...,Xo0) ~ unit([0,1]29)

p=20, p-eff=10, n=50

MARS L Boosting with pairwise splines

sample size n = 50

p = 20, effective perr = O

MSE

AIC_c stopped
o

L2Boost

I T T T T I
0 100 200 300 400 500

/ boosting iterations \

20




Regression trees

stumps (2 terminal nodes): LBoosting fits an additive model

trees with d terminal nodes: LoBoosting fits an interaction model of degree d — 2

o \
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The low variance high bias “principle”

once we have decided about some structural properties

choose base procedure with low variance but potentially large estimation bias

bias can be reduced by further boosting iterations (which will increase variance)

example: low degrees of freedom in componentwise smoothing splines for additive

modeling

a justification will be given later

o \
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4. More on L,Boosting

L>Boosting for linear models

use componentwise linear least squares base procedure

LoBoosting converges to a least squares solution as boosting iterations m — o0

(the unique LS solution if design has full rank p < n)

when stopping early:
® it does variable selection

e coefficient estimates are typically shrunken version of LS

~~ “similar to” the Lasso

\_
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Connections to Lasso (for linear models):

Efron, Hastie, Johnstone, Tibshirani (2004): for special design matrices,

iterations of LoBoosting with “infinitesimally” small v

yield all Lasso solutions when varying A

~~ computationally interesting to produce all Lasso solutions in

one sweep of boosting

Least Angle Regression LARS (Efron et al., 2004) is computationally even more

clever and efficient than LoBoosting

Zhao and Yu (2005): in “general”’, when adding some backward step

the solutions from Lasso and Boosting “coincide”

greedy (plus backward steps) and convex optimization are surprisingly similar

\_ \
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MSE

MSE

BHHO.@&%HM.SHNO

uncorrelated design

—— L2Boost
——- Lasso
--- fwd.var.sel.

AIC-stopped

0 100 200 300 400 500

boosting iterations

correlated design

—— L2Boost
——- Lasso
--- fwd.var.sel.

AIC-stopped

I I I I I I
0 100 200 300 400 500

boosting iterations
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binary lymph node classification using gene expressions

n = 49 samples, p = 7129 gene expressions

~

o

multivariate gene selection

Lasso selected 15 genes

LoBoosting selected 42 out of p = 7129 genes

L2Boosting FPLR Pelora 1-NN DLDA SVM
CV-misclassif.err. 17.7% 35.25% | 27.8% 43.25% | 36.12% | 36.88%
Lasso
CV-misclassif.err. 21.2%

best 200 genes from Wilcox.

\

26




\ how well can we do?

statistically consistent for very high-dimensional, sparse linear models
~ o ()
Yi=Bo+» BX ) +e(i=1,...,n), p>n
j=1

Theorem (PB, 2004)
LBoosting with comp. linear LS is consistent (for suitable number of boosting
iterations) if:
e p, = O(exp(Cn'=%)) (0 < £ < 1) (high-dimensional)
essentially exponentially many variables relative to n

e sup,, wMH |B;.n| < 0o £'-sparseness of true function

l.e. for suitable, slowly growing m = m,,:

Ex|frmnn(X) = f2(X)[? = 0p(1) (n — 0)

/ “no” assumptions about the predictor variables/design matrix

27
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analogous results also for

e multivariate regression

® vector autoregressive time series

(Lutz & PB, 2005)

o
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4.1. Degrees of freedom for boosting
(PB, 2004)

the only tuning parameter: number of boosting iterations
could use cross-validation ~~ works reasonably well

alternatively: use AIC, BIC or gMDL as model selection criteria which involve

degrees of freedom of boosting

\_
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\:ﬁ-am:_x of comp.wise linear LS base procedure: /

A

HY) (Yy,...,Y,) — Cvf ..., Y,,) when using the jth predictor variable only:

HO) = X (XUNT /1X(9)]2

L5 Boosting hat-matrix:

Bn = B +v - HE(I =B, 1)

= I-(I—-v- H(Em) VI — v H S (T —p - HED)

selected in mth iter.

degrees of freedom of boosting in iteration m:
d.f.(B,,) = trace(B,,)

d. f. ignores the selection effect, i.e. “slightly” too small
/ (“negligible” since we can allow for o(exp(n)) candidate basis functions) \

30
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d. f. is very different from the number of variables in the model

example: 3 (or more) correlated variables, v = 1
sequence of selected variables: 3,2,1,3,2,1 ~ d.f.(Bg) = 1.79 < 3
sequence of selected variables: 1,2,3,2,3,1 ~ d.f.(Bg) = 1.54 < 3

31
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Stopping the boosting iterations

we often use the corrected AIC,. criterion:

1 + trace(B,,)/n
1 — (trace(B,,) +2)/n

AIC.(B,,) = log(RSS,,/n) +

estimate stopping iteration by

Mstop = argmin,,, AIC.(B,,)

o
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MSE

MSE

BHHO.@&%HM.SHNO

uncorrelated design

—— L2Boost
——- Lasso
--- fwd.var.sel.

AIC-stopped

0 100 200 300 400 500

boosting iterations

correlated design

—— L2Boost
——- Lasso
--- fwd.var.sel.

AIC-stopped

I I I I I I
0 100 200 300 400 500

boosting iterations
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\ Analogously for nonparametric base procedures

hat-matrix (S) with a selected subset S of predictor variables
Bon=1—T—v - HENI—p - HE=D).. (] —p. HE)

e.g. LoBoosting with pairwise splines for nonparametric interaction modeling

p=20, p—eff=10, n=50

MARS

MSE

AIC_c stopped
(o]

L2Boost

T T T T T T
0 100 200 300 400 500

/ boosting iterations

34



\ More on degrees of freedom /

example: LsBoosting with componentwise smoothing splines for additive modeling

boosting hat-matrix B,,,
since f(X;) = MUwHH £;(X;) ~» decompose

= W AY)
j=1

.
hat-matrix for f;(-)

easy to compute recursively:
AD = AV 46, s v HE (L~ Byy)

thus
p
MU Cv
/ :momA n) 0T :momicvv \
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2.

0
j=19j

(XU 4e, X ~ unif[0, 1]199; n

df=3.5

0.0 0.4 0.8

predictor

df=4.9

predictor

df=6.3

0.0 0.4 0.8

predictor

-2

-4

-4

-2

-4

df=2.7

0.0 0.4 0.8

predictor

df=5.3

0.0 0.4 0.8

predictor

df=6.4

predictor

-2

-4

-4

-2

-4

df=0

200, p = 100, perr = 10

df=2.6

. o~
I
- S 4
I
T T T T 7T T T 1 T 1
0.0 0.4 0.8 0.0 0.4 0.8
predictor predictor
df=6.9 df=8.2
- < -
. ~
. o
. [N
1
- <
I
T T T T 7T T T 1T 1 1
0.0 0.4 0.8 0.0 0.4 0.8
predictor predictor
df=0.9 df=2.1
- < -
. ~
o
. o~
1
- <
I
T T T T 7T T T 1 T 1
0.0 0.4 0.8 0.0 0.4 0.8
predictor predictor

/ L+oBoosting does a “very reasonable” assignment of degrees of freedom
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a very interesting way to search and estimate in high dimensions!

with classical methods (backfitting) for large p:
“infeasible” to do variable selection and variable amount of d.f.

LoBoosting runs with one (!) tuning parameter

o
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for standard errors in additive modelling

A

s.e.(f3(Xi)) = | o(

in our experience: seems quite OK

for comparing “nested”

before variable selection

o

AY)
~—

/ hat matrix for 7th comp.

(AT

maybe slightly too small becuase we ignore the selection effect

models: use AIC, BIC, gMDL, etc.

38
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toy example: LoBoosting with smoothing spline for p = 1-dimensional predictor

4.2. The MSE curve and asymptotic optimality

boosting varying df

0.8
0.8

0.6
0.6

0.4

generalization squared error
0.4

generalization squared error

0.2
0.2

L

0 50 100 150 200 0 10 20 30 40
m degrees of freedom

sub-linear increase of MSE in Boosting

LoBoosting quite resistant against overfitting; “easy to tune”

o
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consider (any) base procedure as operator:

A

base procedure -~ A
e Y =M,..., V)

H:Y = AM\HT.JM\SV\
LoBoosting operator in iteration m:

B =1— (I —H)™

if H is strictly shrinking, i.e. ||[I — S| < 1
~~ [oBoosting converges to identity / (fully saturated model)

~~ need for early stopping

o
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in case where H is a smoothing spline:

LoBoosting does shrinkage in the same eigenspace as the smoothing spline H

eigenvalues of smoothing spline:
AM=X=1 0< X\ <1(i=3,...,n)
eigenvalues of LyBoosting:
ev; = levo =1, 0<ev; =1—(1—=XN)" (i =3,...,n)

change these eigenvalues (spectrum) by varying the iteration number m

~~ tuning via m leads to sublinear increase of MSE w.r.t. m

\_
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Theorem (PB & Yu, 2003)

Lo Boosting with smoothing splines having any fixed deg. of freedom (“low
variance”)

e when stopping iterations suitably, it achieves asymptotically the
optimal minimax MSE rate (over Sobolev space)

e it adapts to unknown greater smoothness of underlying function
(adaptation to optimal MSE rate)
e.g. LoBoost with cubic smoothing splines automatically achieves

faster rate than O (n~%/?) if underlying function is smooth

o
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Summary about (L4-)Boosting

e need for early stopping

“obvious” but has been still debated in 2000

e choose the base procedure to obtain the qualitative model fit of your own “choice”

having decided on structure: use low variance and high estimation bias “principle”

e reasonable degrees of freedom and hat-matrices can be easily derived

for L9Boosting with base proc. involving linear fitting after selection of variables

non-linear boosting algo.

all this applies also to boosting with other loss functions

o \
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\ 5. Boosting for binary classification

binary lymph node classification using gene expressions: data
AN&“M\&Y »vms S %ﬂww©“ M\s < A_N|Hu HW

Various loss functions

p(y, f) = logy(1 4 exp(—yf)): negative binomial log-likelihood
* _ p(x)
/ A&v = womflﬁavv
p(y, f)=ly— fI? =1—2yf + (yf)?: squared error
f*(x) = E[Y[|X = 2| = 2p(z) — 1
p(y, f) = exp(—yf): exponential loss in AdaBoost
* 1 p(x)
fr(z) = Homf Eavv
p(y, f) =1y, s <o) misclassification loss
) =Tp@)>1/2

44



all these loss functions: p(y, f) = p(yf): /

function of the margin value yf
monotone non—monotone
N~ : __ N~ /
' / ——- exp \ -—- L2
© o -~ log-lik. © \ --- L
R --- SVM \ — 01
n — ,./ — 0-1 n — \
,/ /
< - s \ < / !
2 \ 2 \ /
ke % S \ /
o - \ o — N / \
i / \
N /// N / \
o \ o / \\
o ) /«Ir/v/llll o /,//// \\\
I I I I I I I I I I I I I I
-3 -2 -1 O 1 2 3 -3 -2 -1 O 1 2 3
yf yf
minimization of the non-convex misclassification loss: computationally infeasible

é:mﬂ loss functions: convex surrogate loss functions, dominating misclass. error \
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Buja, Stuetzle and Shen (2005): all these surrogate loss functions are “proper”

almost no difference from asymptotic point of view

my favourite: log-likelihood
® monotone

e approximately linear for large negative values y f

o
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\ 5.1. LogitBoost

(Friedman, Hastie & Tibshirani, 2000)

algorithm: FGD with negative log-likelihood and Hessian instaed of line-search
~~ iterative weighted LS fitting: in iteration m,

_ K |@§IHAN&V
1 w; — 0 ;N‘s °
sM N~~~ ABS HAN XH |@5 HAN vv A vv
Prm—1(Xs)(1=Pm—-1(X3))

since f*(x) = log( H@WNWV ~ fm(+) is an estimate of the log-odds ratio

examples:

e componentwise weighted linear LS: ~~ logistic linear model fit

e weighted componentwise smoothing splines: ~~ logistic additive model fit
e weighted stumps: ~- logistic additive model fit

works quite nicely for high-dimensional logistic linear or additive or low-order

Gﬂmqmﬂ_o: models
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6. Boosting in survival analysis

acute myeloid leukemia (AML) study from Bullinger et al., 2004
survival times of n = 116 patient; 68 died during the study period

p = 155 predictors: 8 clinical variables, 147 gene expression levels

full data:
survival time T; € R, predictor X; € R? ~~ we use here Y; = log(T;)
full data loss function: p(y, f) = (y — f)?

observed data:

censoring indicator A; =17, <,

assume: censoring time C'; conditionally independent of T; given X

/i coarsening at random assumption holds

48



héam probability censoring weights and observed data loss:

define observed data loss
pobs (0 f) = (§ — f)*A -
inverse probability: G(c|z)=P[C>c|X=x]
then (van der Laan & Robins, 2003):

Evx((Y — £(X))?] = Eolposs(O, f)]

strategy: estimate QA. _&v e.g. by Kaplan-Meier and do boosting on weighted

squared error loss:

1 -

> Y; — f(X))?

M ) F(X0)
HOWAEWBAQ&“MJ&VV

Ve

Em_@:ﬁ w;

o
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\ we did componentwise weighted linear least squares

~~ linear fit of the regression function \C

|
¥4

4
|
b

il
I

Emar

M: location model; RF: random forest for survival data; L2B: L oBoosting;

/ cRF: RF with 8 clinincal variables only; cL2B: L2B with 8 clinical variables only
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not possible to do the Henderson et al. (2001) loss:
p(T, f) =1—Trjocr<or) < Py, [) =Tjjy—fi>108(2)]

which is non-convex...!

o
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in many real applications:

main interest is finding the relevant variables

(and prediction is of “minor” importance)

e tumor classification based on gene expression: which genes are important?
e Bullinger et al. survival study: which genes and variables are important?

e riboflavin concentration (vitamin B2) produced by Bacillus subtilis

which genes are important? (in collaboration with DSM)

o \
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7. Variable selection and additional sparsity

IS boosting a good variable selection method?

The analogy with the Lasso for linear models

consider again linear model (or highly overcomplete dictionary)
NU .
Y=FfX)+e flx)= MU@.&CVV p>n
j=1

Lasso or mH-_om:m__Nmo_ regression (Tibshirani, 1996):

n p p
Qh@mmo — mqagmjmﬁlH MAM\S — M Qu..vm‘scvvw + A M imu
i=1 j=1

\_

>0; penalty par. /=1

\
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Lasso:
e does variable selection: some (many) @. 's exactly equal to O
e does shrinkage

® involves a convex optimization only

(instead of exhaustively checking 2P sub-models)

o
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Some theory for high dimensions

Theorem (Meinshausen & PB, 2004)
For \,, ~ Cn~1/2+9/2

IP[estimated sub-model(\,,) = true model] = 1 — O(exp(—Cn°)) (n — o)
(0<s5<1)

if

e Gaussian data

ep =p, =0(n")forany r > 0 (high-dimensional)

e number of effective variables p. s = O(n”*) (0 < k < 1) (sparseness)

® plus some other technical conditions

justification for relaxation with a computationally simple convex problem!

\_ \
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Theorem doesn’t say much about choosing ...

Choice of \

first (not so good) idea: choose A to optimize prediction

e.g. via some cross-validation scheme

but: for prediction oracle solution

@
\/*Hmwmﬁﬂbm:v\l M QMCYXGJ&
A j=1

IP [estimated sub-model(A\*) = true model] — 0 (p,, — oo, n — 00)

asymptotically: the prediction optimal graph is too large
(Meinshausen & PB, 2004, related example by Meng et al., 2004)

-
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reason: need large A for variable selection ~» strong bias/strong shrinkage

for orthogonal design: strong bias in soft-thresholding

threshold functions

--- hard-thresholding
— nn-garrote
- - - soft-thresholding

Better:
- SCAD (Fan and Li, 2001)
- Nonnegative Garrote (Breiman, 1995)
- Bridge estimation
(Frank and Friedman, 1993)

they all work for general X

T T T T T T T

z

for non-orthogonal X:

® non-convex optimization for SCAD or Bridge estimation

/ozz-mm:oﬁm onlyforp < n

~
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The good message

Lasso produces a set of sub-models

iHm...m... i@ﬁ.@&l@@ﬁ m...miz

\ .

~~

optimal for prediction with Lasso
with N = O(min(n, p))

and M, is with probability 1 — O(exp(—Cn®)) among these models
but iﬁazm wm iﬁ%m&loﬁw

Solutions using this “good message”:
e relaxed Lasso (Meinshausen, 2005)
a second round of Lasso on selected sub-models

but surprisingly: computationally no need to do a second round of Lasso fitting

/ow_o-moo::@ for selected submodels (?)

\
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8. SparseLsBoosting

(PB and Yu, 2005)

instead of minimizing RSS in every iteration,

minimize a final prediction error (FPE) criterion: we propose gMDL,

f,, = arg min MG\S — fm—1(X;) — 0(X;))?+ gMDL-penalty
0() =1 > g

or AIC, BIC,...

another use of degrees of freedom
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\;moqm:ﬂ (PB & Yu, 2005)

for orthonormal linear model:
Sparse L Boosting with componentwise linear least squares yields

Breiman’s nonnegative garrote estimator

threshold functions

-+~ hard-thresholding
— nn-garrote
--- soft-thresholding

e Sparse LyBoosting yields sparser solutions than LoBoosting

e Sparse LyBoosting still very generic (although less generic than L 5Boosting)

/m.@. nonparametric problems, non-quadratic loss functions

\
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-

sample size n = 50, dimension p = 50

model

Linear modeling: LoBoosting with componentwise linear LS

Sparse LoBoosting 7 LoBoosting

~

Y =14+5X1 42X 4 x6) 4 A(0,1)

X = (XM, X149) ~ N9 (0, 1)

o

MSE 0.16 (0.0018) | 0.46 (0.0041)
E[no. of seleccted variables] 5 13.68

Y =322, 8, X9 + N(0,1)

B1,...,0850 ~ Double-Exponential; X as above

MSE 3.64 (0.188) 2.19 (0.083)

\
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\ Nonparametric first-order interaction modeling /

interaction modelling: p = 20, effectivep =5
— L2Boosting
--- SparselL2Boosting .
- ~- MARS Friedman #1 model:
Y = 10sin(wX1Xo) + 20(X3 — 0.5)% +
uo° 10X4 + 5X5 + N(0, 1)
n
=
X =(Xq1,...,X90) ~ unit([0,1]29)
| /, ~| sample size n = 50
Dimension p = 20, perf = 5
T T T T T I
0 100 200 300 400 500

/ boosting iterations \
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\ Riboflavin concentration in bacillus subtilis /

log-concentration
6
o
log-concentration
6
1
o
oo
o

Y; € R: log-concentration of ribolflavin
LN. m U_”%Qmww. -2 -1 0 1 2 3 45 50 55 60 65 70 75
@ .

log-expression log-expression
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p = 6939 gene expressions
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Lo Boosting with componentwise linear least squares: selected 41 genes
Sparse LsBoosting with comonentwise linear least squares: selected 21 genes
15 genes are in common

note the identifiability problem due to high correlations among genes!

/ quite a few other measurements are available for this dataset... \
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9. Conclusions

statistical view of boosting:
a regularization method for estimation and variable selection

mainly useful for high-dimensional data problems

e boosting is very generic
e boosting is computationally attractive: complexity O @v forp >n

e simple statistical inference is possible, but more needs to be done

\_
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