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Abstract

The pattern of zero entries in the covariance matrix of a multivariate normal dis-

tribution corresponds to conditional independence restrictions between variables. The

structure is most conveniently summarized in a graphical model (Lauritzen 1996).

Covariance selection (Dempster 1972) aims at estimating those structural zeros

from data. The complexity of standard covariance selection methods is, however, very

high, making inference of all but low-dimensional graphs infeasible. Moreover, exis-

tence of the MLE estimate cannot be guaranteed and the performance of the method

is poor if the number of observations is small compared to the number of variables.

We propose neighbourhood selection with the Lasso as a computationally attrac-

tive alternative to standard covariance selection for sparse high-dimensional graphs.

Neighbourhood selection estimates the conditional independence restrictions sepa-

rately for each node in the graph.

We show that the proposed neighbourhood selection scheme is consistent for

sparse high-dimensional graphs. The consistency hinges on the choice of the penalty

parameter. Maybe surprisingly, the oracle value for optimal prediction does not lead

to a consistent neighbourhood estimate. It is proposed instead to control the prob-

ability of falsely joining some distinct connectivity components of the graph. This

leads to consistent estimation for sparse graphs (with exponential rates), even when

the number of variables grows like any power of the number of observations.
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1 Introduction

Consider the p-dimensional multivariate normal distributed random variable X = (X1, . . . , Xp) ∼
N(0,Σ). The conditional independence structure of the distribution can be conveniently
represented by a graphical model (Γ, E), where Γ = {1, . . . , p} is the set of nodes and E

the set of edges in Γ × Γ. A pair (a, b) is contained in the edge set E if and only if Xa is
conditionally dependent of Xb, given all remaining variables XΓ\{a,b} = {Xm,m ∈ Γ\{a, b}}.
Every pair of variables not contained in the edge set is conditionally independent, given
all remaining variables and corresponds to a zero entry in the inverse covariance matrix
(Lauritzen 1996).
Covariance selection was introduced by Dempster (1972) and aims at discovering the
conditional independence restrictions (the graph) from a set of i.i.d. observations.
Covariance selection traditionally relies on the discrete optimization of an objective func-
tion (see e.g. Lauritzen 1996; Edwards 2000; or in the regression context e.g. Akaike
1970; Schwarz 1978; Shibata 1981; Rissanen 1986; Lienhart and Zuchini 1986; George
2000). Exhaustive search is computationally infeasible for all but very low-dimensional
models. Usually, greedy forward or backward search is employed. In forward search, the
initial estimate of the edge set is the empty set and edges are then added iteratively until
a suitable stopping criterion is fulfilled. The selection (deletion) of a single edge in this
search strategy requires an MLE fit (Speed and Kiiveri 1986) for O(p2) different models.
The procedure is not well suited for high-dimensional graphs. The existence of the MLE
is not guaranteed in general if the number of observations is smaller than the number
of nodes (Buhl 1993). More disturbingly, the complexity of the procedure renders even
greedy search strategies impractical for modestly sized graphs.
In contrast, neighbourhood selection with the Lasso, proposed in the following, relies on
optimization of a convex function, applied consecutively to each node in the graph. The
method is computationally very efficient and is consistent even for the high-dimensional
setting, as will be shown.
Neighbourhood selection is a subproblem of covariance selection. The neighbourhood
nea of a node a ∈ Γ is the smallest subset of Γ\{a} so that Xa is conditionally independent
of XΓ\(nea∪{a}), given Xnea ,

Xa y XΓ\(nea∪{a})|Xnea .

Hence, the neighbourhood of a node a ∈ Γ consists of all nodes b ∈ Γ\{a} so that
(a, b) ∈ E. Given n i.i.d. observations of X, neighbourhood selection aims at estimat-
ing (individually) the neighbourhood of any given variable (or node). The neighbourhood
selection can be cast into a standard regression problem and can be solved efficiently with
the Lasso (Tibshirani 1996), as will be shown in this paper.
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The consistency of the proposed neighbourhood selection will be shown for sparse high-
dimensional graphs, where the number of variables is potentially growing like any power
of the number of observations (high-dimensionality) whereas the number of neighbours of
any variable is growing at most slightly slower than the number of observations (sparsity).
One area of application is the analysis of genetic regulatory (sub-) networks where graph-
ical models are used to describe the interaction between dozens or hundreds of variables
(genes) and sample size is in the dozens (see e.g. Toh and Horimoto 2002).
A number of studies (e.g. Huber 1973; Breiman and Freedman 1983; Portnoy 1984;
Goldenshluger and Tsybakov 2001) have examined the case of regression with a growing
number of parameters as sample size increases. The closest to our setting is the recent
work of Greenshtein and Ritov (2003), who study consistent prediction in a triangular
setup very similar to ours (see also Judistky and Nemirovski 2000). However, the problem
of consistent estimation of the model structure, which is the relevant concept for graphical
models, is very different and not treated in these studies.
We study in section 2 under which conditions, and at which rate, the neighbourhood es-
timate with the Lasso converges to the true neighbourhood. The choice of the penalty is
crucial in the high-dimensional setting. Maybe surprisingly, the oracle penalty for opti-
mal prediction turns out to be inconsistent for estimation of the true model. This solution
might include an unbounded number of noise variables into the model. We motivate a
different choice of the penalty such that the probability of falsely connecting two or more
distinct connectivity components of the graph is controlled at very low levels. Asymptot-
ically, the probability of estimating the correct neighbourhood converges exponentially to
1, even when the number of nodes in the graph is growing rapidly like any power of the
number of observations. As a consequence, consistent estimation of the full edge set in a
sparse high-dimensional graph is possible (section 3).
Encouraging numerical results are provided in section 4. The proposed estimate is shown
to be both more accurate than the traditional forward selection MLE strategy and com-
putationally much more efficient. The accuracy of the forward selection MLE fit is in
particular poor if the number of nodes in the graph is comparable to the number of ob-
servations. In contrast, neighbourhood selection with the Lasso is shown to be able rea-
sonably accurate for estimating graphs with several thousand nodes, using only a few
hundred observations.
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2 Neighbourhood Selection

Instead of assuming a fixed true underlying model, we adopt a more flexible approach
similar to the triangular setup in Greenshtein and Ritov (2003). Both the number of nodes
in the graphs (number of variables) and the distribution (the covariance matrix) depend
in general on the number of observations, Γ = Γ(n) and Σ = Σ(n). The number of nodes
in the graph is denoted by pn = |Γ(n)|. The neighbourhood nea of a node a ∈ Γ(n) is the
smallest subset of Γ(n)\{a} so that Xa is conditionally independent of XΓ(n)\(nea∪{a}), given
Xnea ,

Xa y XΓ(n)\(nea∪{a})|Xnea ,

see for example Lauritzen (1996). The neighbourhood depends in general on n as well.
However, this dependence is often notationally suppressed in the following.
It is instructive to give a slightly different definition of a neighbourhood. For each node
a ∈ Γ(n) and an arbitrary subset Ψ ⊆ Γ(n)\{a}, let θa,Ψ ∈ Rpn be the vector of coefficients
for optimal prediction of the variable Xa, given XΨ = {Xk; k ∈ Ψ},

θa,Ψ = arg min
θ:θk=0, ∀k<Ψ

E(Xa −
∑

k∈Γ(n)

θkXk)2. (1)

For prediction of Xa, given all remaining variables {Xk, k ∈ Γ(n)\{a}}, we use the shorthand
notation θa = θa,Γ(n)\{a}. The elements of θa are determined by the inverse covariance ma-
trix (Lauritzen 1996). For b ∈ Γ\{a} and K(n) = Σ(n)−1, it holds that θab = −Kab(n)/Kaa(n).
The set of non-zero coefficients of θa is identical to the set {b ∈ Γ\{a} : Kab(n) , 0} of non-
zero entries in the corresponding row vector of the inverse covariance matrix and defines
precisely the set of neighbours of node a in the graph Γ(n). The best predictor for Xa is
thus a linear function of variables in the set of neighbours of the node a only. The set of
neighbours of a node a ∈ Γ(n) can hence be written as

nea = {b ∈ Γ(n) : θab , 0}.

Given n independent observations, X(1), X(2), . . . , X(n) i.i.d. ∼ N(0,Σ(n)), neighbourhood
selection tries to estimate the set of neighbours of a node a ∈ Γ(n). As the optimal linear
prediction of Xa has non-zero coefficients precisely for variables in the set of neighbours
of the node a, it seems reasonable to try to exploit this relation.

Neighbourhood selection with the Lasso It is well known that the Lasso, introduced
by Tibshirani (1996), and known as Basis Pursuit in the context of wavelet regression
(Chen et al. 2001), has a parsimonious property (Knight and Fu 2000). When predicting a
variable Xa with all remaining variables {Xk, k ∈ Γ(n)\{a}}, the vanishing Lasso coefficient
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estimates identify asymptotically the neighbourhood of node a in the graph, as shown in
the following.
The Lasso estimate θ̂a,λ of θa is given by

θ̂a,λ = arg min
θ:θa=0

(1
n

n∑
i=1

(X(i)
a −

∑
k∈Γ(n)

θkX(i)
k )2 + λ‖θ‖1,

)
(2)

where ‖θ‖1 =
∑

b∈Γ(n) |θb| is the l1-norm of the coefficient vector. It follows from the proofs
of the Theorems 1 and 2 that the solution of (2) is unique for most cases of interest.
However, we do not necessarily require uniqueness for the following. If the solution of
(2) is not unique, a convex set of solutions is obtained and the following results hold for
any member of this convex set.
Normalization of all variables to common empirical variance is recommended for the
estimator in (2). For notational simplicity, we present our theory with common population
variance equal to one.
The neighbourhood estimate (parameterized by λ) is defined by the non-zero coefficient
estimates of the l1-penalized regression,

n̂eλa = {b ∈ Γ(n) : θ̂a,λb , 0}.

Each choice of a penalty parameter λ specifies thus an estimate of the neighbourhood nea

of node a ∈ Γ(n) and one is left with the choice of a suitable penalty parameter. Larger
values of the penalty tend to shrink the size of the estimated set, while more variables are
in general included into n̂eλa if the value of λ is diminished.
A first guess for a suitable penalty is to use the prediction-optimal penalty parameter.
However, the prediction-oracle (and cross-validation) choice of the penalty parameter do
not lead to consistent neighbourhood estimates, as will be shown in the following.

The prediction-oracle solution A seemingly useful choice of the penalty parameter is
the (unavailable) prediction-oracle value,

λoracle = arg min
λ

E(Xa −
∑

k∈Γ(n)\{a}

θ̂a,λk Xk)2.

The expectation is understood to be with respect to a new X, which is independent of the
sample on which θ̂a,λ is estimated. The prediction-oracle penalty minimizes the predictive
risk among all Lasso estimates. An estimate of λoracle is obtained by the cross-validated
choice λcv.
For l0-penalized regression it was shown by Shao (1993) that the cross-validated choice
of the penalty parameter is consistent for model selection under certain conditions on the

5



size of the validation set. However, with the Lasso not even the prediction-oracle solution
leads to consistent model selection, as shown in the following for a very simple example.

Example 1 The number of variables is growing to infinity, that is pn → ∞ for n →

∞. The covariance matrix is identical to the identity matrix except except for some pair

(a, b) ∈ Γ(n) × Γ(n), for which Σab(n) = Σba(n) = s, for all n ∈ N and some 0 < s < 1.

Let n̂eoracle
a = {b ∈ Γ(n) : θ̂a,λoracle

b , 0} be the neighbourhood chosen by the oracle solution.

Proposition 1 The probability of selecting the wrong neighbourhood with the prediction-

oracle penalty converges to 1 for Example 1,

P(n̂eoracle
a , nea)→ 1 for n→ ∞.

A proof is given in the appendix.
One might suspect that the reason for this result is that not all relevant predictor vari-
ables are included into the neighbourhood estimate, thereby reducing the variance of the
prediction while accepting a slight increase in the bias. However, it follows from the
proof of Proposition 1 that the opposite is true. Many noise variables are included into
the neighbourhood estimate with the prediction-oracle solution. In fact, the probability of
including noise variables with the prediction-oracle solution does not even vanish asymp-
totically for a fixed number of variables. This may be a disturbing result as it seems to
suggest that consistent neighbourhood selection with the Lasso is hardly possible if not
even the prediction-oracle solution is consistent.
However, consistent neighbourhood selection is possible with the Lasso for a different
choice of the penalty parameter, as demonstrated in the following.

Consistent solutions The asymptotic properties of Lasso-type estimates in regression
have been studied in detail by Knight and Fu (2000) for the more conventional setup
with a fixed number of variables and increasing number of observations. Their results
say that the penalty parameter should decay for an increasing number of observations at
least as fast as n−

1
2 to obtain an optimal asymptotic distribution. It turns out that a more

conservative approach is needed for consistent model selection, as motivated already by
the previous example 1. A rate λ ∼ n−

1
2+ε with any ε > 0 is, however, sufficient for

consistent neighbourhood selection, even when the number of variables is growing rapidly
with the number of observations.
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Assumptions We make a few assumptions to prove consistency of the neighbourhood
selection with the Lasso. The main assumption is the sparsity of the graph. This entails
that the size of the neighbourhood of any node in the graph is not growing faster than the
number of observations.

A1 There exists some κ < 1 so that

max
a∈Γ(n)

|nea| = O(nκ) for n→ ∞.

A bounded variance of all variables would suffice for the proofs. However, in practice we
recommend to scale the variables to common empirical variance. We mimic this scaling
of all variables to common population variance.

A2 For all a ∈ Γ(n) and n ∈ N, Σaa(n) = 1.

Furthermore, we need positive definiteness of the covariance matrix to avoid collinearity.
Let K(n) = Σ(n)−1 be the inverse covariance matrix. Note that Kaa(n) is the inverse of
Var(Xa|XΓ(n)\{a}), the variance of Xa conditional on all other variables (Lauritzen 1996).

A3 There exists ω2 < ∞ so that for all a ∈ Γ(n) and n ∈ N, |Kaa(n)| ≤ ω2.

This assumption bounds from below the conditional variance of Xa for all a ∈ Γ(n) and
ensures positive definiteness of the covariance matrix.
Finally, consider the definition in (1) of the coefficients for optimal prediction of Xa, given
a subset of variables {Xk; k ∈ Ψ} and Ψ ⊆ Γ(n)\{a}.

A4 There exists some ϑ1 < 1 so that for all n ∈ N and for all a, b ∈ Γ(n) with a <

neb ∪ {b},
∑

k∈neb∪{b} |θ
a,neb∪{b}
k | < ϑ1. There exists furthermore some ϑ2 < ∞ so that

for all n ∈ N and for all a, b ∈ Γ(n) with a ∈ neb\{b},
∑

k∈neb∪{b} |θ
a,neb∪{b}
k | < ϑ2.

This assumption is automatically fulfilled for trees, that is graphs without cycles. It is
much more generally valid, though. Using Lemma 2 in the appendix, it can be seen that
assumption A4 is fulfilled if the inverse covariance matrix K(n) = Σ(n)−1 is diagonally
dominant, meaning that there exists some ϑ1 < 1 so that∑

b∈Γ(n)\{a}

|Kab(n)| ≤ ϑ1|Kaa(n)| ∀a ∈ Γ(n), n ∈ N.

Using Gershgorins Theorem, a diagonally dominant inverse covariance matrix ensures
that the minimal eigenvalue of the inverse covariance matrix is bounded away from zero
for all n ∈ N. Diagonal dominance is sufficient but not necessary for positive definite-
ness. However, there are examples where diagonal dominance is a necessary condition
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for positive definiteness of the inverse covariance matrix. Consider for example a sim-
ple two-dimensional lattice with identical partial correlation between neighbouring nodes
and periodic boundary conditions. Here, the boundary between positive definiteness and
positive semi-definiteness is marked precisely by the value ϑ1 = 1. However, to keep
results as general as possible, we use instead of diagonal dominance the less restrictive
assumption A4.

Consistency Now we are ready to prove the first part of the consistency result.

Theorem 1 Assume A1-A4. Let the penalty parameter satisfy λ ∼ dn−
1
2+ε with some

0 < ε < 1/2 and d > 0. If pn = O(nγ) with any γ > 0, there exists some constant c > 0 so

that,

P
(
n̂eλa * nea

)
= O(exp(−cnε)) for n→ ∞.

A proof is given in the appendix.
Theorem 1 states that the probability of (falsely) including any of the non-neighbouring
variables of the node a ∈ Γ(n) into the neighbourhood estimate is vanishing exponentially
fast, even though the number of non-neighbouring variables may grow very rapidly with
the number of observations.
The converse of Theorem 1 also holds true the magnitude of the partial correlations be-
tween neighbours are not vanishing to zero too fast, as shown in the following theorem.
The partial correlation πab between Xa and Xb is the correlation conditional on all re-
maining variables XΓ(n)\{a,b} and is identical to πab = −Kab(n)/(Kaa(n)Kbb(n))1/2, where
K(n) = Σ(n)−1; for details see Lauritzen (1996).

Theorem 2 Assume the conditions of Theorem 1. Moreover, assume that there exists a

constant δ > 0 so that for every a ∈ Γ(n), b ∈ nea, and n ∈ N, |πab| ≥ δn−
1
2+ξ with some

max{ε, κ/2} < ξ < 1/2 (ε and κ as in Theorem 1). Then there exists some constant c > 0
so that

P
(
nea , n̂eλa

)
= O(exp(−cnε)) for n→ ∞.

A proof is given in the appendix.
In summary, Theorems 1 and 2 show that the neighbourhood of any variable in a sparse
high-dimensional graph can be estimated consistently with the Lasso.

8



3 Covariance Selection

It follows from section 2 that it is possible under certain conditions to estimate the neigh-
bourhood of each node in the graph consistently, e.g.

P(n̂eλa = nea)→ 1 for n→ ∞.

The full graph is given by the set Γ(n) of nodes and the edge set E = E(n). The edge set
contains those pairs (a, b) ∈ Γ(n) × Γ(n), for which the partial correlation between Xa and
Xb is not zero. As the partial correlations are precisely non-zero for neighbours, the edge
set E ⊆ Γ(n) × Γ(n) is given by

E = {(a, b) : a ∈ neb ∧ b ∈ nea}.

The first condition, a ∈ neb, implies in fact the second, b ∈ nea, and vice versa, so that
the edge is as well identical to {(a, b) : a ∈ neb ∨ b ∈ nea}. For an estimate of the edge set
of a graph, we can apply neighbourhood selection to each node in the graph. A natural
estimate of the edge set is then given by Êλ,∧ ⊆ Γ(n) × Γ(n), where

Êλ,∧ = {(a, b) : a ∈ n̂eλb ∧ b ∈ n̂eλa}.

Note that a ∈ n̂eλb does not necessarily imply b ∈ n̂eλa and vice versa. We can also define a
second, less conservative, estimate of the edge set by Êλ,∨ = {(a, b) : a ∈ n̂eλb ∨ b ∈ n̂eλa}.
The edge set estimates Êλ,∧ and Êλ,∨ tend to give very similar results in our experience.
The following theoretical result about consistency holds true for either of these edge set
estimates and we refer to both collectively with the generic notation Êλ.

Corrolary 1 Under the conditions of Theorem 2, there exists some constant c > 0 so that

P(Êλ , E) = O(exp(−cnε)) for n→ ∞.

Proof: The result follows since |Γ(n)|2 = p2
n = O(n2γ) and neighbourhood selection has an

exponentially fast convergence rate as described by Theorem 2.
Corrolary 1 says that the conditional independence structure of a multivariate normal
distribution can be estimated consistently by combining the neighbourhood estimates for
all variables. The procedure is moreover computationally efficient due to the convexity of
the objective function.
Before providing some numerical results, we discuss in the following the choice of the
penalty parameter.
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Finite sample results and significance The previous results showed that consistent
neighbourhood and covariance selection is possible with the Lasso in a high-dimensional
setting. The asymptotic considerations give, however, little advice on how to choose a
specific penalty parameter for a given problem.
Ideally, one would like to guarantee that pairs of variables which are not contained in
the edge set enter the estimate of the edge set only with very low (pre-specified) proba-
bility. Unfortunately, it seems very difficult to obtain such a result as the probability of
falsely including a pair of variables into the estimate of the edge set depends on the exact
covariance matrix, which is in general unknown.
It is possible, however, to constrain the probability of (falsely) connecting two distinct
connectivity components of the true graph. The connectivity component Ca ⊆ Γ(n) of a
node a ∈ Γ(n) is the set of nodes which are connected to node a by a chain of edges. The
neighbourhood nea is clearly part of the connectivity component Ca.
Let Ĉλa be the connectivity component of a in the estimated graph (Γ, Êλ). For any level
0 < α < 1, consider the choice of the penalty

λ(α) =
σ̂a
√

n
Φ̃−1(

α

2p2
n

), (3)

where Φ̃ = 1 − Φ (Φ the c.d.f. of N(0, 1)) and σ̂2
a =

1
n
∑n

i=1(X(i)
a )2. The probability of

falsely joining two distinct connectivity components with the estimate of the edge set is
limited by the level α under the choice λ = λ(α) of the penalty parameter, as shown in the
following theorem.

Theorem 3 Under assumptions A2 and A3, using penalty parameter λ(α), it holds for all

n ∈ N that

P(there exists a ∈ Γ(n) : Ĉλa * Ca) ≤ α.

A proof is given in the appendix. This implies that if the edge set is empty, E = ∅, it is
estimated by an empty set with high probability,

P(Êλ = ∅) ≥ 1 − α.

Note that Theorem 3 is a finite sample result. The previous asymptotic results in Theorem
1 and 2 hold true if the level α is vanishing exponentially to zero for an increasing number
of observations, leading to consistent edge set estimation. The above consideration offers
a principled choice of the penalty parameter and allows a meaningful interpretation of the
obtained results.
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Figure 1: The average number of correct positives as a function of the number of false positives. The
Lasso neighbourhood selection schemes (short dashed line for Êλ,∧ and long dashed line for Êλ,∨), the forward
selection MLE (dotted line) and finally, for comparison, the random guess solution (solid line) for n = 40
observations and 10, 20 and 30 variables (from left to right).

4 Numerical examples

We use both the Lasso estimate from section 3 and forward selection MLE (Lauritzen
1996; Edwards 2000) to estimate sparse graphs.
We found it difficult to compare numerically neighbourhood selection with forward se-
lection MLE for more than, say, thirty nodes in the graph. The high computational com-
plexity of the forward selection MLE made the computations for such relatively low-
dimensional problems very costly already. The Lasso scheme in contrast handled with
ease graphs with more than 1000 nodes, using the recent algorithm developed in Efron
et al. (2004).
Where comparison was feasible, the performance of the neighbourhood selection scheme
was better. The difference was particularly pronounced if the ratio between observations
to variables was low, as can be seen in Figure 1, which will be described in more detail
below.
First we give an account of the generation of the underlying graphs, which we are trying
to estimate. A realization of an underlying (random) graph is given in the left panel of
Figure 2. The nodes of the graph are associated with a spatial location and the location of
each node is distributed identically and uniformly on the two-dimensional square [0, 1]2.
Every pair of nodes is included initially in the edge set with a probability of ϕ(d/

√
p),

where d is the Euclidean distance between the pair of variables and ϕ the density of the
standard normal distribution. The maximum number of edges connecting to each node is
limited to four to achieve the desired sparsity of the graph. Edges which connect to nodes
which do not fulfill this constraint are removed randomly until the constraint is fulfilled
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Figure 2: A realization of a graph with 1000 nodes, generated as described in the text, is shown in the right
panel. The graph consists of 1000 nodes and 2256 edges out of a possible 449500 distinct pairs of variables.
The estimated edge set Êλ,∧, using (3) at level α = .05, is shown in the left panel. The estimated edge set
contains 1836 pairs of variables of which only 4 are falsely included. Not a single pair of disjoint connectivity
components of the true graph has been (falsely) joined.

for all edges.
Initially all variables have identical conditional variance and the partial correlation be-
tween neighbours is set to 0.245 (absolute values less than 0.25 guarantee positive defi-
niteness of the inverse covariance matrix), that is Σ−1

aa = 1 for all nodes a ∈ Γ, Σ−1
ab = 0.245

if there is an edge connecting a and b, Σ−1
ab = 0 otherwise. Variables are then re-scaled so

that the (unconditional) variance of each variable is identical to 1.
The average number of edges which are correctly included into the estimate of the edge
set is shown in Figure 1 as a function of the number of edges which are falsely included.
The accuracy of the forward selection MLE is comparable (or slightly worse) to the pro-
posed Lasso neighbourhood selection if the number of nodes is much smaller than the
number of observations. The accuracy of the forward selection MLE breaks down, how-
ever, if the number of nodes is comparable with the number of observations. This can be
observed in the right panel of Figure 1, where forward selection MLE is only marginally
better than random guessing. Computation of the forward selection MLE (using MIM,
Edwards 2000) took on the same desktop up to several hundred times longer than the
Lasso neighbourhood selection for the full graph. For more than 30 nodes, the differences
are even more pronounced.
The Lasso neighbourhood selection can be applied to hundred- or thousand-dimensional

12



3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

log(n)
3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

log(n)
3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

p=2n

p=n/2

3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.
99

90
0.

99
92

0.
99

94
0.

99
96

0.
99

98
1.

00
00

log(n)
3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.
99

90
0.

99
92

0.
99

94
0.

99
96

0.
99

98
1.

00
00

3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.
99

90
0.

99
92

0.
99

94
0.

99
96

0.
99

98
1.

00
00

log(n)
3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.
99

90
0.

99
92

0.
99

94
0.

99
96

0.
99

98
1.

00
00

p=2n

p=n/2

Figure 3: The percentage of all edges in E which are correctly included in Êλ,∧ (left panel) for pn = 2n
(broken line) and pn = n/2 (solid line) variables. The percentage of edges not in E which are correctly not
included in Êλ,∧ (right panel). The absolute number of correct negatives is smaller for pn = 2n than for
pn = n/2 but the number of possible edges is vastly greater for the first case, leading to better relative proportion
of correct negatives.

graphs, a realistic size for e.g. biological networks. A graph with 1000 nodes (following
the same model as described above) and its estimate (with the Lasso neighbourhood selec-
tion using (3) at level α = .05 and 500 observations) are shown in Figure 2. The average
accuracy over 50 simulations is shown in the table below. Out of more than 4 · 105 pairs
of variables, only about 5 are on average falsely included into the estimated edge set.

(a, b) ∈ Êλ,∧ (a, b) < Êλ,∧

(a, b) ∈ E 1459.5 509.5 1969
(a, b) < E 5.1 497525.9 497531

1464.6 498035.4 499500

Next, the number of observations is varied together with the number of nodes in the graph.
The proportion of all pairs of variables in the true edge set which are (correctly) included
into the estimate of the edge set is shown in Figure 3 (averaged over 100 simulations).
The proportion of all pairs of variables not included in the true edge set which are (cor-
rectly) not included into the estimated edge set is shown on the right side of the same
figure. The estimates of the edge set are clearly increasing in accuracy with the number
of observations, even though the number of observations per variable remains constant.
The result illustrates that the quality of neighbourhood selection with the Lasso is im-
proving for an increasing number of observations even if the number of observations per
variable is remaining constant, as expected from Theorems 1 and 2.
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5 Appendix

Definition 1 As a generalization of (2), consider optimal prediction of Xa, given only a

subset of variables {Xk; k ∈ Ψ}, where Ψ ⊆ Γ(n)\{a}. The Lasso estimate θ̂a,Ψ,λ of θa,Ψ is

given by

θ̂a,Ψ,λ = arg min
θ:θk=0 ∀k<Ψ

(1
n

n∑
i=1

(X(i)
a −

∑
k∈Γ(n)

θkX(i)
k )2 + λ‖θ‖1

)
. (4)

The notation θ̂a,λ is thus just a shorthand for θ̂a,Γ(n)\{a},λ.

Lemma 1 Let G(θ) be a pn-dimensional vector with elements Gb(θ) = − 2
n
∑n

i=1(X(i)
a −∑

k∈Γ(n) θkX(i)
k )X(i)

b . A vector θ with θk = 0 ∀k ∈ Γ(n)\Ψ is a solution to (4) iff for all b ∈ Ψ,

Gb(θ) = sign(θb)λ in case θb , 0 and |Gb(θ)| ≤ λ in case θb = 0. Moreover, if the solution

is not unique and |Gb(θ)| < λ for some solution θ, then θb = 0 for all solutions of (4).

Proof of Lemma 1 Denote the subdifferential of 1
n
∑n

i=1(X(i)
a −
∑

k∈Γ(n) θkX(i)
k )2 + λ‖θ‖1

with respect to θ by D(θ). The vector θ̃ is a solution to (4) iff there exists an element
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d ∈ D(θ̃) so that db = 0, ∀b ∈ Ψ. D(θ) is given by {G(θ) + λe, e ∈ S }, where S ⊂ Rpn is
given by S := {e ∈ Rpn : eb = sign(θb) if θb , 0 and eb ∈ [−1, 1] if θb = 0}. The first part
of the claim follows. The second part follows from the proof of Theorem 3.1. in Osborne
et al. (2000).

Proof of Theorem 1 The event n̂eλa * nea implies that there exists some node b ∈

Γ(n)\nea in the set of non-neighbours of node a such that the estimated coefficient θ̂a,λb is
not zero. Thus

P(n̂eλa * nea) ≤ P(∃b ∈ Γ(n)\nea : θ̂a,λb , 0). (5)

Consider the Lasso estimate θ̂a,nea,λ, which is by (4) constrained to have non-zero compo-
nents only in the neighbourhood of node a ∈ Γ(n). Using |nea| = O(nκ) with some κ < 1,
we can assume w.l.o.g. that |nea| ≤ n. This in turn implies, see e.g. Osborne et al. (2000),
that θ̂a,nea,λ is a.s. a unique solution to (4) with Ψ = nea. LetA be the event

max
k∈Γ(n)\nea

|Gk(θ̂a,nea,λ)| < λ.

Given the event A, it follows from the first part of Lemma 1 that θ̂a,nea,λ is not only
a solution of (4), with Ψ = nea, but as well a solution of (2). As θ̂a,nea,λ

b = 0 for all
b ∈ Γ(n)\nea, it follows from the second part of Lemma 1, that θ̂a,λb = 0, ∀b ∈ Γ(n)\nea.
Hence

P(∃b ∈ Γ(n)\nea : θ̂a,λb , 0) ≤ 1 − P(A)

= P( max
k∈Γ(n)\nea

|Gk(θ̂a,nea,λ)| ≥ λ),

where

Gb(θ̂a,nea,λ) = −
2
n

n∑
i=1

(X(i)
a −

∑
k∈nea

θ̂a,nea,λ
k X(i)

k )X(i)
b . (6)

Using Bonferroni’s inequality and pn = O(nγ) for any γ > 0, it suffices to show that there
exist constants c, d > 0 so that for all b ∈ Γ(n)\(nea ∪ {a}),

P(|Gb(θ̂a,nea,λ)| ≥ λ) ≤ d exp(−cnε). (7)

One can write for any b ∈ Γ(n)\(nea ∪ {a}),

Xb =
∑
k∈nea

θb,nea
k Xk +Wb, (8)

where Wb ∼ N(0, σ2
b) for someω−2 ≤ σ2

b ≤ 1 and Wb is independent of {Xk; k ∈ nea∪{a}}.
By A4 it follows that for some ϑ1 < 1,∑

k∈nea

|θb,nea
k | ≤ ϑ1. (9)
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Furthermore, by Lemma 1,

|
2
n

n∑
i=1

(X(i)
a −

∑
m∈nea

θ̂a,nea,λ
m X(i)

m )X(i)
k | ≤ λ ∀k ∈ nea. (10)

Using (8)-(10), the absolute value of the gradient Gb in equation (6) is hence bounded by

|Gb(θ̂a,nea,λ)| ≤ ϑ1λ + |
2
n

n∑
i=1

(X(i)
a −

∑
k∈nea

θ̂a,nea,λ
k X(i)

k )W (i)
b |. (11)

Conditional on X(1,...,n)
nea∪{a}

= {X(i)
k ; k ∈ nea∪{a}, i = 1, . . . , n}, the random variable |

∑n
i=1(X(i)

a −∑
k∈Γ(n) θ̂

a,nea,λ
k X(i)

k )W (i)
b | is normally distributed with mean zero and variance σ2

b
∑n

i=1(X(i)
a −∑

k∈nea
θ̂a,nea,λ

k X(i)
k )2. On the one hand, σ2

b ≤ 1. On the other hand, by definition of θ̂a,nea,λ,∑n
i=1(X(i)

a −
∑

k∈nea
θ̂a,nea,λ

k X(i)
k )2 ≤

∑n
i=1(X(i)

a )2. Thus

|
2
n

n∑
i=1

(X(i)
a −

∑
k∈nea

θ̂a,nea,λ
k X(i)

k )W (i)
b |

st.
≤ |

2
n

n∑
i=1

X(i)
a W (i)

b |,

where
st.
≤ denotes stochastically smaller or equal. Using (11), it follows that

P(|Gb(θ̂a,nea,λ)| ≥ λ) ≤ P(|
2
n

n∑
i=1

X(i)
a W (i)

b | ≥ (1 − ϑ1)λ).

As Wb is independent of Xa, it follows that E(X(i)
a W (i)

b ) = 0 for all i ≤ n. Using the
Gaussianity and bounded variance of both Xa and Wb, there exists some g < ∞ so that
E(exp(|X(i)

a W (i)
b |)) ≤ g. Hence, using Bernstein’s inequality, see e.g. Lemma 2.2.11 in

van der Vaart and Wellner (1996), there exist indeed constants c, d > 0 so that for all
b ∈ nea, P(|Gb(θ̂a,nea,λ)| ≥ λ) ≤ d exp(−c(1 − ϑ1)

√
nλ). The claim (7) follows, which

completes the proof.

Proof of Theorem 2 First,

P(nea = n̂eλa) ≥ 1 − P(n̂eλa * nea) − P(nea * n̂eλa).

It follows from Theorem 1 that the second term on the right hand side has the correct
asymptotic behaviour and we can focus on the last term. The last term is identical to
P(nea * n̂eλa) = P(∃b ∈ nea : θ̂a,λb = 0). LetA again be the event

max
k∈Γ(n)\nea

|Gk(θ̂a,nea,λ)| < λ.

Given A, we can conclude as in the proof of Theorem 1 that θ̂a,nea,λ and θ̂a,λ are unique
solutions to (4) and (2) respectively, and θ̂a,nea,λ = θ̂a,λ. Thus

P(∃b ∈ nea : θ̂a,λb = 0) ≤ P(∃b ∈ nea : θ̂a,nea,λ
b = 0)P(A) + P(Ac)
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It follows from the proof of Theorem 1 that there exists some c > 0 so that P(Ac) =
O(exp(−cnε)). Using Bonferroni’s inequality, it hence remains to show that there exist
c, d > 0 so that for all b ∈ nea,

P(θ̂a,nea,λ
b = 0) ≤ d exp(−cnε), (12)

which is equivalent to, using Lemma 1,

P(|Gb(θ̂a,nea\{b},λ)| ≤ λ) ≤ d exp(−cnε) ∀b ∈ nea. (13)

We summarise briefly the calculations yielding the equivalence of (12) and (13). If the
absolute value of the gradient Gb(θ̂a,nea\{b},λ) is larger than λ, it follows by Lemma 1 that
θ̂a,nea,λ , θ̂a,nea\{b},λ. However, as θ̂a,nea,λ

b = 0 would imply the equality θ̂a,nea,λ = θ̂a,nea\{b},λ,
it follows indeed that θ̂a,nea,λ

b , 0 as long as |Gb(θ̂a,nea\{b},λ)| > λ. Given the event A, this
implies that also θ̂a,λb , 0, and it is hence sufficient to show (13).
We can write Xb as

Xb =
∑

k∈nea\{b}

θb,nea\{b}
k Xk +Wb, (14)

where Wb is independent of {Xk; k ∈ nea\{b}}. Let in the following Rλ,(i)a be the residual

Rλ,(i)a = X(i)
a −

∑
k∈nea\{b}

θ̂a,nea\{b},λ
k X(i)

k i = 1, . . . , n.

Then, by straightforward calculation using (14)

Gb(θ̂a,nea\{b},λ) = −
∑

k∈nea\{b}

θb,nea\{b}
k

(2
n

n∑
i=1

Rλ,(i)a X(i)
k

)
−

2
n

n∑
i=1

Rλ,(i)a W (i)
b . (15)

By Lemma 1, for all k ∈ nea\{b}, |Gk(θ̂a,nea\{b},λ)| = | 2n
∑n

i=1 Rλ,(i)a X(i)
k | ≤ λ. This together

with (15) yields

|Gb(θ̂a,nea\{b},λ)| ≥ |
2
n

n∑
i=1

Rλ,(i)a W (i)
b | − λ

∑
k∈nea\{b}

|θb,nea\{b}
k |.

Using A4, there exists some ϑ2 < ∞ so that
∑

k∈nea
|θa,nea\{b}

k | ≤ ϑ2 and for proving (13) it
is therefore sufficient to show that there exist c, d > 0 so that

P
(
|
2
n

n∑
i=1

Rλ,(i)a W (i)
b | ≤ (ϑ2 + 1)λ

)
≤ d exp(−cnε) ∀b ∈ nea. (16)

Consider any κ with max{ε, κ/2} < κ/2 < ξ. To show (16), it is sufficient to prove that
there exist c, d > 0 for any g > 0 so that

P
(
|
2
n

n∑
i=1

Rλ,(i)a W (i)
b | ≤ gn−

1−κ
2

)
≤ d exp(−cnε) ∀b ∈ nea. (17)
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It holds for some random variable Wa, independent of Xnea , that

Xa =
∑
k∈nea

θa,nea
k Xk +Wa =

∑
k∈nea\{b}

(θa,nea
k + θa,nea

b θb,nea\{b}
k )Xk + θ

a,nea
b Wb +Wa, (18)

having used (8). Note that Wa and Wb are independent normal distributed random vari-
ables with variances σ2

b and σ2
a respectively. By A3, ω−2 < σ2

b, σ
2
a ≤ 1.

Note that Wb is independent of Xnea\{b} and Wa but not necessarily of Xa and θ̂a,nea\{b},λ.
With a little abuse of notation, split the n-dimensional vector of observations (W (1)

b ,W
(2)
b , . . . ,W

(n)
b ),

into the sum of two vectors (W (1),⊥
b ,W (2),⊥

b , . . . ,W (n),⊥
b ) and (W (1),‖

b ,W (2),‖
b , . . . ,W (n),‖

b ) where
the latter vector is contained in the (at most |nea\{b}|-dimensional) space V‖ ⊆ Rn, which
is spanned by the vectors (X(1)

k , X
(2)
k , . . . , X

(n)
k ) for all k ∈ nea\{b}. The remaining part

W⊥b is chosen orthogonal to this space (in the orthogonal complement of V‖). The same
notation is adopted for the residuals Rλa. Then, using the orthogonality property of W (i),⊥

b ,

|
2
n

n∑
i=1

Rλ,(i)a W (i)
b | ≥ |

2
n

n∑
i=1

Rλ,(i)a W (i),⊥
b | − |

2
n

n∑
i=1

Rλ,(i)a W (i),‖
b |

≥ |
2
n

n∑
i=1

θa,nea
b (W (i),⊥

b )2| − |
2
n

n∑
i=1

W (i)
a W (i),⊥

b | − |
2
n

n∑
i=1

Rλ,(i)a W (i),‖
b |(19)

Consider the third term. By basic algebra,

|
2
n

n∑
i=1

Rλ,(i)a W (i),‖
b | = |

2
n

n∑
i=1

Rλ,(i),‖a W (i),‖
b | ≤

2
n

( n∑
i=1

(Rλ,(i),‖a )2
) 1

2
( n∑

i=1

(W (i),‖
b )2
) 1

2 . (20)

The sum of squares of the residuals is increasing with increasing value of λ. Thus

n∑
i=1

(Rλ,(i),‖a )2 ≤

n∑
i=1

(X(i)
a )2.

The residual sum of squares is hence stochastically smaller than a χ2(n)-distributed ran-
dom variable. For the second term on the r.h.s. of (20), the expression σ−2

b
∑n

i=1(W (i),‖
b )2 is

χ2(|nea| − 1)-distributed, which is stochastically smaller than a χ2(|nea|)-distributed ran-
dom variable. As |nea| = O(nκ) and ξ > max{ε, κ/2}, we can choose some t2 > 0 and
some κ with max{ε, κ/2} < κ/2 < ξ so that |nea| ≤ t2nκ. The right hand side of (20) is then
stochastically smaller than

2tn−
1−κ

2 (Z1Z2)
1
2 ,

where Z1 ∼ χ
2(n)/n and Z2 ∼ χ

2(t2nκ)/(t2nκ). Note that Z1 and Z2 are not necessarily in-
dependent. However, using Bonferroni’s inequality, the properties of the χ2-distribution,
and using κ/2 > ε, it follows for the third term on the right hand side of (19) that there
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exist c, d > 0 so that

P(|
2
n

n∑
i=1

Rλ,(i)a W (i),‖
b | ≥ 4tn−

1−κ
2 ) ≤ d exp(−cnε). (21)

For the middle term on the right hand side of (19), due to Bernstein’s inequality (Lemma
2.2.11 in van der Vaart and Wellner 1996), there exists c, d > 0 so that

P(|
1
n

n∑
i=1

W (i)
a W (i),⊥

b | ≥ n−
1−κ

2 ) ≤ d exp(−cn
κ
2 ). (22)

To show (16), and hence complete the proof, it thus suffices by (21) and (22) to show that
there exist c, d > 0 (possibly different from the one above) so that for the first term on the
right hand side of (19), for any constant g > 0,

P(|
2
n

n∑
i=1

θa,nea
b (W (i),⊥

b )2| ≤ gn−
1−κ

2 ) ≤ d exp(−cnε). (23)

By assumption, |πab| is of order at least n−
1
2+ξ. Using additionally A2 and A3, this im-

plies that there exist some q > 0 so that |θa,nea
b | ≥ qn−

1
2+ξ (using θa = θa,nea ). The term∑n

i=1(W (i),⊥
b )2 follows a χ2(n − |nea|)-distribution. As |nea| = O(nκ) with κ < 1, it follows

for the term on the left hand side of (23), for n ≥ n0 with some n0 ∈ N, that

|
2
n

n∑
i=1

θa,nea
b (W (i),⊥

b )2|
st.
≥ kn−

3
2+ξZ3,

where k is some positive constant, Z3 is a χ2(n/2)-distributed random variable, and
st.
≥

denotes stochastically larger or equal. Thus, for some constant c > 0,

P(|
2
n

n∑
i=1

θa,nea
b (W (i),⊥

b )2| ≤ gn−
1−κ

2 ) ≤ P(
Z3

n/2
≤ cn

κ
2−ξ).

from which the claim (23) follows by the properties of the χ2-distribution as κ/2 < ξ.
This in turns shows that (17) holds and completes the proof.

Proof of Proposition 1 All diagonal elements of the covariance matrix Σ(n) are equal
to 1, while all off-diagonal elements vanish for all pairs except for a, b ∈ Γ(n), where
Σab(n) = s with s > 0. Assume w.l.o.g. that a corresponds to the first and b to the
second variable. The best vector of coefficients θa for linear prediction of Xa is given by
θa = (0,−Kab(n)/Kaa(n), 0, 0, . . .) = (0, s, 0, 0, . . .), where K(n) = Σ(n)−1. A necessary
condition for n̂eλa = nea is, that θ̂a,λ = (0, τ, 0, 0, . . .) is the oracle Lasso solution for some
τ , 0. In the following, we show first, that

P(∃λ, τ ≥ s : θ̂a,λ = (0, τ, 0, 0, . . .))→ 0 n→ ∞. (24)
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The proof is then completed by showing in addition that (0, τ, 0, 0, . . .) cannot be the oracle

Lasso solution as long as τ < s.
We begin by showing (24). If θ̂ = (0, τ, 0, 0, . . .) is a Lasso solution for some value of the
penalty, it follows that, using Lemma 1 and positivity of τ,

1
n

n∑
i=1

(X(i)
1 − τX

(i)
2 )X(i)

2 ≥ |
1
n

n∑
i=1

(X(i)
1 − τX

(i)
2 )X(i)

k )| ∀k ∈ Γ(n), k > 2. (25)

It is assumed for notational simplicity only that 1
n
∑n

i=1(X(i)
k )2 = 1, for all k ∈ Γ(n). This

is w.l.o.g. due to the Bernstein-type exponential inequality. Under the made assumptions,
X2, X3, . . . can be understood to be independently and identical distributed, while X1 =

sX2 +W1, with W1 independent of (X2, X3, . . .). Substituting X1 = sX2 +W1 in (25) yields

1
n

n∑
i=1

W (i)
1 X(i)

2 ≥ |
1
n

n∑
i=1

W (i)
1 X(i)

k − (τ − s)
1
n

n∑
i=1

X(i)
2 X(i)

k | + (τ − s) ∀k ∈ Γ(n), k > 2.

The condition τ ≥ s implies

1
n

n∑
i=1

W (i)
1 X(i)

2 = max
k∈Γ(n),k≥2

1
n

n∑
i=1

W (i)
1 X(i)

k .

Let U2,U3, . . . ,Upn be the random variables defined by Uk =
∑n

i=1 W (i)
1 X(i)

k .As the random
variables Uk, k = 2, . . . , pn are exchangeable,

P(
1
n

n∑
i=1

W (i)
1 X(i)

2 = max
k∈Γ(n),k≥2

1
n

n∑
i=1

W (i)
1 X(i)

k ) = (pn − 1)−1

and the claim (24) follows as pn → ∞ for n → ∞. It hence suffices to show that
(0, τ, 0, 0, . . .) with τ < s cannot be the oracle Lasso solution. Let τmax be the maxi-
mal value of τ so that (0, τ, 0, . . .) is a Lasso solution for some value λ > 0. By the
previous assumption, τmax < s. In this case, (0, τ, 0, . . .) cannot be the oracle Lasso solu-
tion if τ < τmax . We show in the following that (0, τmax , 0, . . .) can not be an oracle Lasso
solution either.
Let (0, τmax , 0, 0, . . .) be the Lasso solution θ̂a,λ for some λ = λ̃ > 0. By appropriately
reordering the variables X3, . . . , Xpn , Lasso solutions for values λ < λ̃ are given by θ̂a,λ =
(0, (τmax + δ),±δ, 0, 0, . . .) for any 0 < δ < δmax with some δmax > 0. The sign of the third
coefficient is equal to the sign of

∑n
i=1(X(i)

1 − τmax X(i)
2 )X(i)

3 . Denote by Lδ the squared error
loss for this solution. Then, for any δ ≤ δmax .

Lδ − L0 = E(X1 − (τmax + δ)X2 + δX3)2 − E(X1 − τmax X2)2,

= (s − (τmax + δ))2 + δ2 − (s − τmax )2,

= −2(s − τmax )δ + 2δ2.
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It holds that Lδ − L0 < 0 for any 0 < δ < 1
2 (s− τmax ), which shows that (0, τ, 0, . . .) cannot

be the oracle solution for τ < s. Together with (24), this completes the proof.

Proof of Theorem 3 A necessary condition for Ĉλa * Ca) is that there exists an edge in
Êλ joining two nodes in two different connectivity components. Hence

P(∃a ∈ Γ(n) : Ĉλa * Ca) ≤ pn max
a∈Γ(n)

P(∃b ∈ Γ(n)\Ca : b ∈ n̂eλa).

Using the same arguments as in the proof of Theorem 1,

P(∃b ∈ Γ(n)\Ca : b ∈ n̂eλa) ≤ P( max
b∈Γ(n)\Ca

|Gb(θ̂a,Ca,λ)| ≥ λ),

where θ̂a,Ca,λ, according to (4), has non-zero components only for variables in the connec-
tivity component Ca of node a. Hence it is sufficient to show that

p2
n max

a∈Γ(n),b∈Γ(n)\Ca

P(|Gb(θ̂a,Ca,λ)| ≥ λ) ≤ α, (26)

The gradient is given by Gb(θ̂a,Ca,λ) = − 1
n
∑n

i=1(X(i)
a −
∑

k∈Ca
θ̂a,Ca,λ

k X(i)
k )X(i)

b . It holds for
all k ∈ Ca that the variables Xb and Xk are independent as they are in different con-
nectivity components. Hence, conditional on X(1,...,n)

Ca
= {X(i)

k ; k ∈ Ca, i = 1, . . . , n},
Gb(θ̂a,Ca,λ) ∼ N(0,R2/n), where R2 = 1

n
∑n

i=1(X(i)
a −
∑

k∈Ca
θ̂a,Ca,λ

k X(i)
k )2, which is smaller

than or equal to σ̂2
a =

1
n
∑n

i=1(X(i)
a )2 by definition of θ̂a,Ca,λ. Hence it holds for all a ∈ Γ(n)

and b ∈ Γ(n)\Ca that P(|Gb(θ̂a,Ca,λ)| ≥ λ|X(1,...,n)
Ca

) ≤ 2Φ̃(
√

n
σ̂a
λ), where Φ̃ = 1 − Φ. Using

the proposed λ = σ̂a√
n Φ̃
−1( α2p2

n
), it follows that P(|Gb(θ̂a,Ca,λ)| ≥ λ|X(1,...,n)

Ca
) ≤ αp−2

n , and
therefore P(|Gb(θ̂a,Ca,λ)| ≥ λ) ≤ αp−2

n . Thus (26) follows, which completes the proof.

Lemma 2 Let K(n) = Σ(n)−1. If
∑

a∈Γ(n)\{a} |Kab(n)| ≤ ϑ1|Kaa(n)|, with ϑ1 < 1, ∀a ∈ Γ(n),
∀n ∈ N, then, for all Ψ ⊆ Γ(n)\{a}, and all n ∈ N,∑

k∈Ψ

|θa,Ψk | ≤ ϑ1. (27)

Proof of Lemma 2 In the following, let for every subset Ψ ⊆ Γ(n)\{a}, KΨ be the
inverse of the submatrix (Σmk)m,k∈Ψ∪{a}. Using θa,Ψk = −KΨak(n)/KΨaa(n), the assumption∑

a∈Γ(n)\{a} |Kab(n)| ≤ ϑ1|Kaa(n)|, ∀a ∈ Γ(n) and n ∈ N, is equivalent to
∑

k∈Γ(n)\{a} |θ
a,Γ(n)\{a}
k | ≤

ϑ1, so that (27) holds for Ψ = Γ\{a}. By induction, it suffices to show that the claim holds
then for Ψ = Γ(n)\{a, b} with any b ∈ Γ(n)\{a}. Note that the optimal predictor of Xa (in
the least-squares sense), given XΓ(n)\{a}, is∑

k∈Γ(n)\{a}

θa,Γ(n)\{a}
k Xk,
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while the optimal predictor of Xb, given XΓ(n)\{a,b}, is∑
k∈Γ(n)\{a,b}

θb,Γ(n)\{a,b}
k Xk.

By the properties of the multivariate normal distribution we conclude that the optimal
predictor of Xa, given XΓ(n)\{a,b}, is∑

k∈Γ(n)\{a,b}

θa,Γ(n)\{a,b}
k Xk =

∑
k∈Γ(n)\{a,b}

(θa,Γ(n)\{a}
k + θa,Γ(n)\{a}

b θb,Γ(n)\{a,b}
k )Xk,

Thus θa,Γ\{a,b}k = θa,Γ(n)\{a}
k + θa,Γ(n)\{a}

b θb,Γ(n)\{a,b}
k for all k ∈ Γ(n)\{a, b} and∑

k∈Γ(n)\{a,b}

|θa,Γ(n)\{a,b}
k | ≤

∑
k∈Γ(n)\{a,b}

|θa,Γ(n)\{a}
k | + |θa,Γ(n)\{a}

b |
∑

k∈Γ(n)\{a,b}

|θb,Γ(n)\{a,b}
k |

=
∑

k∈Γ(n)\{a}

|θa,Γ(n)\{a}
k | + |θa,Γ(n)\{a}

b |
( ∑

k∈Γ(n)\{a,b}

|θb,Γ(n)\{a,b}
k | − 1

)
.

Using
∑

k∈Γ(n)\{a} |θ
a,Γ(n)\{a}
k | ≤ ϑ1 and ϑ1 < 1, it follows that∑

k∈Γ(n)\{a,b}

|θa,Γ(n)\{a,b}
k | − ϑ1 ≤ |θ

a,Γ(n)\{a}
b |

( ∑
k∈Γ(n)\{a,b}

|θb,Γ(n)\{a,b}
k | − ϑ1

)
. (28)

By symmetry between a and b, it also holds that∑
k∈Γ(n)\{a,b}

|θb,Γ(n)\{a,b}
k | − ϑ1 ≤ |θ

b,Γ(n)\{b}
a |

( ∑
k∈Γ(n)\{a,b}

|θa,Γ(n)\{a,b}
k | − ϑ1

)
. (29)

Combining (28) and (29),∑
k∈Γ(n)\{a,b}

|θa,Γ(n)\{a,b}
k | − ϑ1 ≤ |θ

a,Γ(n)\{a}||θb,Γ(n)\{b}
a |

( ∑
k∈Γ(n)\{a,b}

|θa,Γ(n)\{a,b}
k | − ϑ1

)
.

As both |θa,Γ(n)\{a}
b | ≤

∑
k∈Γ(n)\{a} |θ

a,Γ(n)\{a}
k | ≤ ϑ1 < 1 and |θb,Γ(n)\{b}

a | ≤
∑

k∈Γ(n)\{b} |θ
b,Γ(n)\{b}
k | ≤

ϑ1 < 1, it follows that ∑
k∈Γ(n)\{a,b}

|θa,Γ(n)\{a,b}
k | − ϑ1 ≤ 0,

which completes the proof.
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