Consistency for LsBoosting and Matching Pursuit
with Trees and Tree-type Basis Functions

Peter Biithlmann
ETH Ziirich, Switzerland

October 2002

Abstract

We present new consistency results in regression and classification for LyBoosting,
a powerful variant of boosting with the squared error loss function. For any dimension
of the predictor, a square-integrable regression or an arbitrary conditional probability
function, potentially discontinuous, can be consistently estimated with LoBoosting
using tree-type learners. We also discuss close connections to matching pursuits for
basis functions in signal processing and demonstrate differences between tree and
rectangle indicator basis functions. Depending on the signal to noise ratio, one of
them will be better than the other and we thus get additional flexibility to tune
boosting to high or low noise problems.

Key Words: basis selection, Bayes risk consistency, boosting, multiple decision trees, nonpara-
metric classification, nonparametric regression

Heading: Consistency of Boosting

1 Introduction

Freund and Schapire’s (1996) AdaBoost algorithm for classification has attracted much
attention in the machine learning community (Schapire, 2002 and the references therein)
as well as in related areas in statistics (Breiman, 1998; Friedman et al., 2000), mainly
because of its good empirical performance in a variety of data sets. Boosting methods have
been originally introduced as multiple prediction schemes, averaging estimated predictions
from re-weighted data. Later Breiman (1998, 1999) then noted first that the AdaBoost
algorithm can be viewed as a gradient descent optimization technique in function space.
This important insight opened a new perspective, namely to use boosting methods in other
contexts than classification. Friedman (2001) developed boosting methods for regression.
He also considers the case where boosting is implemented as an optimization with the
squared error loss function: this is what we call LoBoosting. It is essentially the same as
Mallat and Zhang’s (1993) matching pursuit algorithm in signal processing.

Theoretical results for the AdaBoost and other boosting algorithms include VC-type
bounds for the generalization error in classification (cf. Koltchinskii and Panchenko, 2002)
or consistency for approximating the theoretically optimal Bayes procedure (Jiang, 2000;
Lugosi and Vayatis, 2001; Mannor et al., 2002). For LyBoosting in regression, only very
few theoretical results exist, maybe because regression is in a sense more difficult than clas-
sification (cf. Devroye et al., 1996). Biithlmann and Yu (2001) have shown that LyBoosting
with smoothing spline learners for one-dimensional curve estimation achieves the minimax
mean squared error rate asymptotically. Although this is the only asymptotic result about
optimal minimax error rates in the boosting literature, it only deals (in theory) with one-
dimensional curve estimation.

We present here consistency results for LoBoosting in regression and classification with
regression tree learners and versions thereof, where the nonparametric regression or condi-
tional probability function f(z) : R? — R allows for any dimension p of the predictor. This
boosting method is Friedman’s MART procedure (Multiple Additive Regression Trees),
and we thus prove here its consistency. Our consistency result for classification is com-
parable to Jiang’s (2000) theoretical work on AdaBoost. However, we do not need any
smoothness assumption on the underlying conditional probability functions whereas Jiang
does. In particular, we allow for jumps which is necessary for classification problems with
Bayes error zero. Because we consider regression trees as learners in LoBoosting, we need
an assumption requiring a growing number of observations in every terminal node in the
tree as sample size increases. While such a requirement is very plausible for regression
trees, we show here also how it turns out to become unnecessary for classification tree
learners. But we argue in section 4 that classification tree learners can be very inefficient
for the more ambitious goal of estimating the conditional probability functions instead of
just classification. All of the other theoretical consistency results on some of the boost-
ing algorithms consider the simpler case with classification tree learners (Breiman, 2000;
Jiang, 2000; Lugosi and Vayatis, 2001), and they bypass the problem about very unbal-
anced trees; an exception is here the analysis by Mannor et al. (2002), but related to our
restriction, they also require some regularity in terms of the magnitude of the coefficients
in the convex combination of the base learner.

We also point out that our analysis is for a computationally efficient boosting algorithm
which has to be regularized via early stopping of the iterations in the gradient descent

optimization technique, like the original AdaBoost algorithm. This is computationally
attractive since the minimum of the estimated test set error, e.g. by cross-validation, can
be found effectively by running the boosting algorithm once, even not until numerical
convergence. More recent works (cf. Lugosi and Vayatis, 2001; Mannor et al., 2002) have
considered regularization of boosting by constraining the magnitude of the coefficients in
the convex combination of the base learner. When doing so, the major computational
advantages of boosting is lost: for every candidate regularization parameter, a regular-
ized boosting algorithm has to be run until numerical convergence, and thus to find the
best regularization, we need to run regularized boosting very many times. The theoret-
ical analysis of computationally efficient versions of boosting, which seems more difficult
than for regularized boosting, has otherwise only been considered by Jiang (2000) for the
AdaBoost algorithm.

We also include in section 4 new insights for more fundamental understanding of the
role of the base learner, here always in terms of tree-type learners. A connection to
the matching pursuit algorithm in signal processing (Mallat and Zhang, 1993) is given,
which is exactly equal to LoBoosting if the learner is an estimated projection onto a basis
function from a typically over-complete library of functions. This helps to identify cases,
where projection onto single rectangular indicator functions is better than regression tree
learners and vice-versa.

2 LyBoosting and Matching Pursuit algorithm

Consider data (X1,Y7),...,(X,,Y,) with X; € RP and Y; € R for regression or Y; € {0,1}
for 2-class classification. The goal is to estimate the conditional mean f(z) =E[Y|X = z:
for classification, this is just the conditional probability function f(z) = P[Y = 1|X = z].

We have a base procedure, called also the base learner, which fits an arbitrary response
vector U = (Uy,...,U,)" € R™ by least squares:

n
g() = a‘rgmingeg Z(UZ - g(Xi))Za (21)
i=1
where minimization is over a chosen class G of real-valued functions. We consider here
most often the case of regression trees. A d terminal nodes regression tree function is of
the form
d
Giree(®) = gpo(r) = Y Oilperinyy U RY =RP, RUINRE =0 (j £k), (22)
j=1
where P = {R(j); j =1,...d} denotes a partition and 0; € R are coefficients. The partition
P is representable in form of a binary tree (see Breiman et al., 1984), and each partition
cell is a rectangle of the form R = (a1,b1] x - -+ X (ap, bp] in R? with oo < a; < b; < oo.
When fitting the response variables U = (Uy,...,U,)" by least squares,

n n
0; =Y Ulix.cran/ Y xieroy G =1,---,d), (2.3)
i-1 i-1

and the R()’s are from recursive binary splitting with the squared error loss function, see
Breiman et al. (1984).

L;Boosting algorithm

Step 1 (initialization). Start with F9 = 0. Set r = 0.
Step 2. Compute residuals U; = Y; — £ (X;) (=1,...,n) and fit the real-valued base
procedure to the current residuals by least squares, as in (2.1),

gri ey = gty

)

where the notation emphasizes the dependence on the current residuals U = (Uy,...,U,)".
Update

() = B + 450 ().

Step 8 (iteration). Increase the iteration index 7 by one and repeat Step 2 until r reaches
a pre-specified stopping value m.

LyBoosting is thus nothing else than repeated least squares fitting of residuals (cf.
Friedman, 2001). With m = 2, it has already been proposed by Tukey (1977) under the
name “twicing”.

For continuous response variables Y; € R, a regression estimate for f(z) =E[Y|X = z]
is directly given by the LsBoosting-estimate F,Em)() For a two-class problem with Y €
{0,1}, a classifier under equal misclassification costs is given by

Liggm sz
Empirically, LoBoosting has been demonstrated to be very competitive in both regression
and classification, particularly if the predictor is high-dimensional, cf. Friedman (2001)
and Biithlmann and Yu (2001).

We can view the LoBoosting algorithm in terms of fitting functions from RP — R from
a given class,

G ={946();v €T},

where I is discrete, indexing the family of functions G, and 6 = 6, denotes the unknown
parameters for each function g,. For example with tree functions in (2.2), I' is the set
of all rectangle partitions P = {RU); j = 1,...,d} (with corner points of RY) between
observed predictor variables) which can be represented by a binary tree with d terminal
nodes, and § = 0p are the unknown coefficients 64, ..., 6. The LoBoosting algorithm then
selects in every iteration step (Step 2) the function gs.(-) such that

n
§ = argmin,er > (Ui — g.,5(Xi))? (2.4)

=1

)

where 6 = 57 is the least squares estimate (for given 7). The distinction between selecting
a function with discrete 4 in (2.4) and parameter estimation § = 6, will become more
important in section 4. The selection aspect in (2.4) also connects to the familiar setting

of matching pursuit, namely basis selection from an over-complete library, see Mallat and
Zhang (1993).

3 Consistency

Our proof for consistency of LoBoosting with regression trees requires only few and simple
regularity conditions. We distinguish between nonparametric regression and classification.
For the former, we assume the data generating model

Y= f(Xi)+ei, Xi€RP, f:RP R (i=1,...,n), (3.1)

where Xi,...,X, are i.id., €1,...,&, are i.i.d. and independent from {X;;1 < s < n},
satisfying E[e;] = 0. For two-class classification with Y; € {0,1} we assume

(X1,Y1),...,(Xp,Yy) 1id., X; € RP) Y; € {0,1}. (3.2)
For regression, we impose a moment condition.
(A) In case of the regression model (3.1), 02 =E|g;|? < oo and E|f(X;)]? < oo.
Furthermore, when using regression tree functions as base procedure, we require:

(B) Fitted tree functions with d terminal nodes are restricted to partitions {R\); j =
1,...,d} such that there are at least N,,q. observations in every partition cell
RY (j =1,...,d) satisfying n=2/3N,,,430 — 0.

Condition (B) requires a reasonable amount of observations per terminal node in a fitted
tree, in order to guarantee sufficiently fast convergence of estimated means in terminal
nodes. The value N,,,4. equals the “minbucket” parameter in the function rpart from the
statistical software package R, publicly available at http://www.r-project.org/. It is
quite natural to have such a constraint when boosting regression trees. In case of boosting
+1-trees (see (4.2)), i.e. classification trees, this restriction is not necessary anymore, see
also Remark 2 below for further discussion.

Theorem 1 Consider model (3.1) for regression satisfying assumption (A). Then, for
Lo Boosting with regression trees having d = p+1 terminal nodes, satisfying (B), and with
boosting iterations my, — oo, m, = o(log(n)),

Ex|F{™)(X) - f(X)” = op(1) (n = o0),

where X is a new predictor variable, independent from but with the same distributions as
the data.

A proof is given in section 6. The restriction about the increase of m, as n — oo is
probably far from the fastest possible whose exploration is beyond our scope. But our
result is still a bit more general than Jiang’s (2000) for consistency of AdaBoost, where
only the non-constructive existence of a sufficiently slowly increasing m,, is used to prove
consistency.

Our assumption in (A) allows for non-smooth regression functions f(-) and for arbitrary
predictors X, including finite categorical variables which are very common when modeling
with trees.

Corollary 1 Consider the setting of Theorem 1 but using Lo Boosting with regression trees
having d < p + 1 terminal nodes satisfying (B). Then,

Ex|F{™)(X) = f*(X)[* = op(1) (n — o),
where
f* = argminger E|f(X) — g(X)P?,
and Ty is the space of functions with additive and interaction terms up to order d — 1:
Ta = {g € Lao(P);
g9(z) = E?:l gj(z) + Z?hjz:l i (T, Tjo) + .- Zgl,...,jd_lzl Girewdar(Ejus - Tjg_y)

A proof is given in the Appendix. In case of d = 2, the Corollary says that LsBoosting
with regression stumps consistently estimates the best approximating additive (in the
predictor variables) function f*.

Theorem 2 Consider model (3.2) for two-class classification. Then, for Lo Boosting with
regression trees having d = p+1 terminal nodes, satisfying (B), and with boosting iterations
my — 00, my, = o(log(n)),

Ex|F{™)(X) = f(X)] = 0p(1) (n = o0), f(z)=P[Y =1|X =],
and
Px)Y # 1[ﬁ7§mn)(x)>1/2]] — Bayes risk] = op(1) (n — o),

where (X,Y) are new variables, independent from but with the same distribution as the
data.

Proof: The first assertion follows exactly as in the proof of Theorem 1, although the
equivalent regression model Y; = f(X;) + ¢; has heteroscedastic errors ¢; = Y; — f(X;)
(in Lemma 2, one cannot isolate o2 from ||R™ f||3 but this cancels out later in (6.6)). Tt
is well known (cf. Theorem 2.3 of Devroye et al., 1996) that the misclassification risk is
upper bounded by 2 times the Li-norm and hence by 2 times the Lo-norm. [l

Theorem 2 establishes the Bayes risk consistency of LoBoosting with decision trees
having p 4+ 1 terminal nodes. There is no further assumption besides the i.i.d. structure
of the data pairs in (3.2). In particular, we allow for non-smooth conditional probability
functions p(-) and thus classification problems having Bayes error zero; for AdaBoost,
Jiang (2000) does not cover that case and he also assumes a probability density for the
predictor.

Remark 1. Theorems 1, 2 and Corollary 1 also hold for learners with rectangle
indicator basis functions (see (4.1)) which are sometimes better than trees, as discussed
in section 4.

Remark 2. Theorems 1, 2 and Corollary 1 also hold for +1-trees (see (4.2)) without
imposing condition (B). This, because +1-trees are complete in Lo(P) (Breiman, 2000)
and any +1-tree satisfies ||g+1—trecllz = 77! Yo1_ g41-tree(Xi)? = 1 which simplifies the
proofs in section 6 considerably. Thus consistency can be achieved without assumption
(B). However, we do not advise to use £1-trees in the regression context nor in LoBoost
or LogitBoost (Friedman et al, 2000) for classification problems where conditional proba-
bilities are the target. For further discussion, see section 4.5.3.

4 'Trees, +1-trees and rectangle indicator basis functions

We develop here more fundamental understanding how LoBoosting depends on the kind of
base procedure. We focus exclusively on tree-type base procedures which are still the most
popular so far. Already there, we will see that trees can be decomposed which may be
advantageous in some cases. As in section 2, we always denote by R = (a1, b1] X+ - x (ap, bp]
with co < a; < b; < oo arectangle in RP. By computational reasons, we typically constrain
R to be representable as a terminal node in a binary tree, see Breiman et al. (1984).

When taking linear combinations of £ regression tree functions in (2.2), as in boosting,
we fit £ - d coefficients, see (2.3), and it is therefore not a linear combination of £ basis
functions gy, Z£:1 Brgr(-) (Br € R), involving £ parameters [y only. Thus, regression tree
functions as in (2.2) are not basis functions in the process of LyBoosting.

Tree functions in (2.2) have related cousins which are basis functions. One of them are
indicators of rectangles

grect(m) = gR(m) = 1[3:672} (41)

The other basis functions are +1-trees

Q:I:Iftree()—QP,n an [zeR@]> Tj E{ 1 +1}
j=1
P={RY;j=1,....d}, UV, RY =R, RONR® =0 (j £k). (4.2)

When fitting response variables U = (Uy,...,U,)" € R", we view the functions in (4.1) or
(4.2) as single basis functions and multiply them by the single coefficient

n
ﬂ = Z)/igrect /Zgrect fOI‘ (41)a (43)
=1
n
_ 1 :
=n ZYiQil—tree(Xi) for (4.2), respectively. (4.4)

Note that n~!)DF g1 tree(Xi)? = 1.

4.1 A population version in Hilbert space: Matching Pursuit

To understand differences among various tree-type learners in boosting, we focus first on
a population version of LgBoosting It has an elegant formalization in the Hilbert space
Ly(P) = {f;IfI? = [f(z)?dP(z) < oo} with inner product (f,g) = [f(z) dP(z).
Here, the probability measure P is generating the predictor X in model (3. 1) or (3 2).

We closely follow the analysis of Mallat and Zhang’s (1993) matching pursuit algorithm.
Consider first for simplicity the rectangle indicator basis function gz (-) as in (4.1). Define
the following sequence of remainder functions, called matching pursuit algorithm:

Rf =,

Rmf — Rmflf o <Rm_1f’ ng>

5 GRm> M =1,2,... (4.5)
97w 113

where R, is chosen as

Rm—l
Rm = argmawa. (4.6)
lgr |3
It follows that
m—1
R f7 gr
f= < g T|+1> Rit1 T R™f,
_7:0 Rj+1 2
and
Rmfl , 2
1Rm 1 = R~ A 0| @)

g% 13

Thus, ||R™f||2 is monotonely decreasing, and since the family {gz} is complete in Lo(P)
(by requiring p+ 1 terminal nodes in the binary tree construction), convergence to zero as
m — oo follows from Mallat and Zhang (1993) . In case of regression tree functions (2.2),
convergence of the population version holds as well (one rectangle indicator basis function
is one tree function with d — 1 parameters ; equal to 0).

From the pure approximation point of view in the population setting, the rectangle
indicator basis functions are the most flexible for matching pursuit. To elaborate this,
instead of choosing a whole partition {RU); j =1,...,d} as in (2.2) or (4.2) once, based
on the same remainder function, it chooses d rectangles one at a time such that in every
of the d matching pursuit (or boosting) iterations, the most current remainder function is
matched best.

For example, two matching pursuit steps with rectangle indicator basis functions, when
starting from the remainder R™ f, then look like

<Rmfa IR m+1 >

R:'zi_tl = Rmf_ Rm+1
|| Rm+1||2
Rm+1 gRr
Rvme_c|—152 — R%;l _ < rect J m+2> Romin
19Rm 1213
1
= Rmf _ <Rmf’ng+1> R _ <R7me—c+_t f’ng+2> R
19Rmi 5 77 19R m 213 e

where Ry, 1 (j = 1,2) are chosen as in (4.6); in particular, R,12 depends on the most
current remainder function Rféjtl f and not directly on R™f. On the other hand with
regression stumps, i.e. a tree in (2.2) with d = 2, one population LoBoosting step also
subtracts a linear combination of two indicator functions from the remainder

. (B™f, 950) (B™f 95)

R f=R"f—-—2H g ny ———— g 0

stumps 195 (15 “Rmis 9 15 “Rmis’
m+1 m-+41

where Rg)ﬂ = RP\ Rg,lb)ﬂ is just the complement of Rg,lb)ﬂ and the whole partition

{’RSLZLD R 1) is determined by R™ f. Thus, two steps of matching pursuit with rectangle
indicator basis functions in (4.1) is more greedy than doing one matching pursuit with one

of the tree functions in (2.2): the former pursues maximal norm reduction in every step
as described by (4.6) and ((4.7).

Like tree functions in (2.2), the £1-trees in (4.2) are determining the partition {R%)+1 3=
1,...d} with one remainder function (denoted by R™ f above) but their associated param-
eter is only one-dimensional (see (4.3)) which makes a fitted +1-tree more parsimonious,
but less flexible, than a regression tree.

Instead of classical binary trees, we can also consider k-ary (regression) trees where
k > 2 branches grow out from every internal node in the tree, all of them corresponding to
the same predictor variable. For example, a 3-ary tree could involve 3 out-growing branches
which are determined by x; < k1,k1 < 7; < Ro, k9 < x; using an estimated component
i €{1,...,p} and two estimated split points &1, k2. k-ary trees are still yielding functions
of the form (2.2) but with partitions restricted to be representable as a k-ary tree. We
will discuss below which types of trees or rectangle indicators are most useful and when.

4.2 Finite samples and stochastic noise

In case of finite samples and stochastic noise, selection of the best element in (2.4) from
the base procedure has a cost and adds variance to the procedure.

It is known that, if the underlying regression function and the density of the predictor
X are smooth, the estimated split point & in a tree has cube-root convergence rate n~'/3
(Bithlmann and Yu, 2002) which is slower than n~1/2 for the estimated parameters in (2.3),
(4.3) or (4.4). Therefore, tree-type procedures with an overall low number of selections
in (2.4), but possibly fitting a function with more parameters for each selected member
in (2.4), can become better than fitting basis functions many times, each involving only a
one-dimensional parameter. For example, pursuing the strategy with rectangle indicator
basis functions in (4.1) can have high variance due to selection of d rectangles in (2.4) one
at a time: if every rectangle is constructed by say 2 split points and splitting variables
(second order interactions), we would estimate 2d split points (e.g. for d = 3 equal to 6).
On the other hand with regression trees in (2.2) or +1-trees in (4.2), we only select one
partition P which amounts to at most d — 1 estimated split points (e.g. for d = 3 equal to
2 which is three times less than with rectangle indicator basis functions). Particularly in
high noise settings (and small to moderate sample size), the cost of selection in (2.4) (in
every LoBoosting iteration) comes into play, more precisely the slow n~1/3 convergence
rate. And vice versa, in low noise settings, or in case of very large sample size, the
variance in estimating split points becomes negligible relative to “bias” in terms of non-
greedy proceeding (systematically different from the maximal norm reduction in one step
as in (4.7)), and LoBoosting with rectangle indicator basis functions in (4.1) can be better
than using trees.

We give now some summarizing heuristics why some of the tree-type functions are
almost never appropriate and when some of them are better than others.

Regression tree functions in (2.2). As outlined above, they can be most efficient
in high noise or small sample size settings. See also Figures 1-3.

Rectangle indicator basis functions in (4.1). As outlined above, they can be
most efficient in low noise or large sample size settings. See also Figures 1-3.

+1-trees in (4.2). They are generally expected to be inferior than regression trees

in (2.2) for the task of regression or estimating conditional probabilities in classification.
The cost, or variability, to estimate the partition P = {R(j); j =1,...,d} is the same
as for trees. Since the variance contribution for selecting such a partition is larger than
estimating the parameters in a tree as in (2.3), at least asymptotically, we should choose
the more flexible tree-function involving d parameters rather than just one parameter as
in (4.4) and the signs 7; in the +1-tree. See also Figure 3.

k-ary trees with k > 2. k-ary trees (k > 2) are generally expected to be inferior than
regression trees. k-ary trees (k > 2) also require the selection of a partition P, as with
regression trees or +1-trees and estimating d parameters as with regression trees. Having
the same complexity as trees in terms of parameters and partitions, regression trees offer
more flexibility. For example, a 3-ary tree with d = 3 nodes is a special type of a binary
tree with d = 3 nodes. See also Figures 1-3.

4.3 Complementariness of tree functions and complementary rectangle
functions

A tree function in (2.2) makes full use of complementariness in the following sense. For
every estimated split point, say <, we always use both rectangles, characterized by z; < &
and the complementary relation z; > &, where { is a selected component € {1,...,p}.

We can always select instead of a single rectangle indicator basis functions, say 1;.cxj,
also in addition its complement 1j.czc), where RC = RP \ R. This gives rise to the
complementary pair of rectangle functions,

ge-rect(T) = 011 [zer) + O21jzeror, (4.8)

where 0; € R are coefficients determined by the response variable, analogously as in (2.3).
With one split point for the rectangle construction, the complementary rectangle functions
coincide with stumps, i.e. trees with d = 2. But differences start to emerge when using
rectangles which arise with more than one split point.

Complementary rectangle functions in (4.8) are somewhere between trees in (2.2) and
rectangle indicator basis functions in (4.1). Depending on signal to noise level, among
other things as seen also from Figure 1, one of them will sometimes be better than the
other. Among the tree-type functions we have just discussed, none of them will be best
overall. We did argue why +1-trees in (4.2) and k-ary trees are expected to be rarely better
than regression trees; but ranking LsBoosting with regression trees, with complementary
rectangle functions or with rectangle indicator basis functions is generally impossible. See
also Figure 3.

4.4 Shrinking estimates

Shrinkage is another way to influence the bias-variance behavior of the base procedure.
Instead of using a fitted function §(-), generally as in (2.1), we can use vg(-) (0 < v <
1) with shrinkage factor v. Friedman (2001) demonstrates empirically that shrinkage
“never” hurts but sometimes improves considerably; Biithlmann and Yu’s (2001) result
about asymptotic optimality of LoBoosting with smoothing splines for one-dimensional
curve estimation also holds for the shrunken base procedure with any 0 < v < 1.

10

We found empirically, that the effect of shrinkage is rather unrelated from the effect
of choosing a tree or a rectangle indicator basis function. The heuristics that rectangle
indicator basis functions in (4.1) are better than trees in (2.2) in low noise (large sample
size) problems is not directly affected by shrinkage.

4.5 Numerical examples

We focus here mainly on the case of LyBoosting where the base procedure involves one or
two selected predictor variables. For the former, we consider stumps, i.e. a tree in (2.2)
with d = 2, or the following versions thereof: the rectangle indicator basis function in (4.1)
involving only one split point x for the rectangle R =R xR--- X (a,b] x R x --- x R with
(a,b] = (00, K] or (a,b] = (k,o0] for one of the axis in R?, or the +1-stumps as in (4.2), or
a 3-ary tree with d = 3 (i.e. only one variable will be used for splitting). All of such tree-
type learners yield an estimated function of one predictor variable and hence, by linear
combination of such estimates, we obtain an estimated function which is additive in the
predictor variables. In section 4.5.3, we also look at tree-type learners which involve two
split points and at most two predictor variables, yielding LoBoosting function estimates
which include additive and second-order interaction effects.

linear function linear function

12
|

i
-1 | ‘\ —— 3-ary
stumps
- | - - - rectangle

0.154

1
|

MSE
0.152
1
MSE
10

0.150

0.148
|
7
|

o 1000 2000 3000 4000 5000 o 20 40 60 80 100
boosting iteration boosting iteration
indicator function indicator function

15
20

18
|

1.0
16

'
| —— 3-ary

| —— stumps

! - rectangle

MSE
MSE

14

05

o 200 400 600 800 1000 0 20 40 60 80 100

boosting iteration boosting iteration

Figure 1: MSE of LsBoosting with stumps (solid line), rectangle indicator basis function
(short dashed line) as in (4.1) and 3-ary tree with 3 nodes (long dashed line). Top: linear
function f(z) = 5z; Bottom: indicator function f(z) = 10.29 - 1|_g5<z<0.5- Left: no
shrinkage (v = 1) and noise variance o2 = 0.01. Right: shrinkage with factor v = 0.1 and
noise variance o2 = 10. Sample size n = 100.

11

4.5.1 One-dimensional functions in low and high noise settings

We consider here simulated data from the following nonparametric regression model:
Y; = f(Xi) + €, e ~ N(0,07),
f(z) =5z or f(z) =10.29 - 1[_g5<z<0.5]; (4.9)
where X1,...,X, areiid. ~ N(0,1), &1,..., &, i.i.d., independent from {X,;1 < s < n}.
We always choose sample size n = 100. The two different functions f(-) are scaled such
that the signal to noise ratios are equal.

Figure 1 shows the mean squared error E[(F/(X) — F(X))?] (MSE) behavior of
LsBoosting with different base procedures, based on 10 independent realizations from
model (4.9). In case of the rectangle indicator basis function, we see a substantial gain in
the low noise situation. In case of the linear function, both stumps and rectangles perform

about equally. We add here that shrinkage for stumps did not help in the lower left panel
of Figure 1.

4.5.2 Additive function with many non-effective variables

We also consider simulated data from an additive regression model:

10-dimensional predictor, low additive noise

< _|
o
o~
o
H 8
=
K ——- 3-ary
—— stumps
o _|
L R N - rectangle
< _
o~
T T T T T T T
[} 50 100 150 200 250 300
boosting iteration
10—-dimensional predictor, high additive noise
o~]
<
o _|
o
L —
%]
=

34

——- 3-ary
stumps
- rectangle

30
|

(0] 20 40 60 80 100

boosting iteration

Figure 2: MSE of LsBoosting with stumps (solid line), rectangle basis indicator function
(short dashed line) as in (4.1) and 3-ary tree with 3 nodes (long dashed line), always
with shrinkage factor v = 0.1. Indicator function f(z) as in (4.10). Top: noise variance
0?2 = 0.01; Bottom: noise variance o2 = 100. Sample size n = 100.

Y, = f(Xz) + €&y €5~ N(0,0’?),
F(2) = 10.29(1[—g5<z1<0.5) + L—0.5<<05])/ V2, (4.10)

12

where X1,...,X,, are i.i.d. ~ Nip(0,1), and the ¢;’s as in (4.9). Sample size is again
n = 100. The function f(-) involves only 2 of the 10 available predictor variables. The
signal to noise ratio in (4.9) and (4.10) are the same.

Figure 2 shows the mean squared error E[(F™(X) — F(X))?] behavior of LyBoosting
with different base procedures, based on 10 independent realizations from model (4.10).
The advantage of rectangle indicator basis functions over stumps is lost here, even for the
low additive noise case, see Figure 2. The number of effective predictor variables, namely
2, is small in comparison to p = 10 and the variance when making a choice in (2.4) is of
course also depending on the number of predictor variables. Thus, what seems to be a low
noise problem in the upper panel of Figure 2 is in fact only low additive error noise but
overall a high noise problem due to the many non-effective predictor variables.

additive for Boston housing data

S T
\\ ' — .~ 3-ary . +/—1 stumps
© ! M T P
IS W\ —— stumps | T TTTTommommmeoes -
© | \\ --- rectangle
o~
w
[72] < 4
= o~
o~
o~
o _
o~
T T T T T T
(0] 100 200 300 400 500
boosting iteration
up to second order interactions for Boston housing data
o] T
o \
‘\ rectangle
o _| \
N \ \ —— 3 nodes tree
© \ * ——- compl. rectangle
< -
w
[%2] < -
= o~
o~
o~
o
~N

(o] 100 200 300 400 500

boosting iteration

Figure 3: Estimated MSE E[(F"(X) — Y)?2], via 5-fold cross-validation, for Boston hous-
ing data. Top: additive LoBoosting fits where every tree or rectangle involves only one
predictor variable. LoBoosting with stumps (solid line), rectangle indicator basis function
(short dashed line) as in (4.1) and 3-ary tree with 3 nodes (long dashed line); in the upper
right hand corner, also with £1-stumps (dashed line) as in (4.2). Bottom: LeBoosting
fits where every tree or rectangle involves one or two predictor variable (second order
interactions). LoBoosting with 3 nodes regression tree (solid line), rectangle indicator ba-
sis function (short dashed line) as in (4.1) and complementary rectangle indicators (long
dashed line) as in (4.8). Always using shrinkage factor v = 0.1.

13

4.5.3 Real dataset

We consider here the dataset about Boston housing prices with p = 13 predictor variables,
available at http://lib.stat.cmu.edu/datasets/boston . Sample size is n = 506 and we
always estimate mean squared error by 5-fold cross-validation. We force LoBoosting to
produce additive functions fits or estimates including additive and second-order interaction
effects: this can be realized by using rectangles or tree which involve only one predictor
variable or two variables in case of interaction effects. Particularly the method including
second but not higher order interaction effects is popular for many practical problems.

Results are displayed in Figure 3: for comparison, the estimated MSE for a linear model
is 37.1 so that LyBoosting improves by more than 40%. In case of additive modelling,
for this real dataset, we see a slight advantage of rectangle indicator basis functions over
stumps. The top panel of Figure 3 also demonstrates that +1-trees can be very inefficient
for estimating the regression function. Generalizing, we expect that +1-trees are inefficient
for estimating the conditional probability function IP[Y = 1|X = z] in 2-class classifica-
tion. An improvement can be achieved by modelling including second order interactions.
We see an advantage (5.8 % when stopping optimally) of complementary rectangle basis
functions over classical regression trees with 3 terminal nodes. The rectangle indicator
basis functions are not best anymore. It is interesting to note that in both, pure additive
and interaction modelling, the classical regression tree learner could be slightly improved
by using a more parsimonious tree-type function.

5 Conclusions

We present here consistency results for LoBoosting with regression trees and related learn-
ers, both in regression and classification. It is the first consistency result for boosting-
estimates of a nonparametric regression function f(-) =E[Y|X =] : R? — R with arbi-
trary p. In the classification problem, our theory and assumptions can be compared to
other theoretical analyses of boosting algorithms. Table 5.1 gives a comparative overview.

reference ‘ algorithm ‘ f() ‘ predictor ‘ learner
current | LoBoosting | arbitrary arbitrary R-valued regression tree
and versions
Jiang AdaBoost | smooth density on +1-tree
compact support
Lugosi regularized | arbitrary arbitrary +1-valued
& Vayatis | boosting with finite VC-dim.
Mannor | regularized | arbitrary arbitrary general with condition on
et al. boosting Rademacher complexity

Table 5.1: Assumptions for consistency of different boosting methods in classification. In
contrast to all others, our analysis for LoBoosting also covers regression.

Besides our analysis, only Jiang (2000) also looks at non-regularized boosting which is
computationally much more attractive, see also section 1, but we require clearly less than
he does. In particular we allow for f(-) = IP[Y = 1|X = -] having jumps which is necessary
for Bayes error zero, for categorical predictors, and for R-valued regression trees which are

14

more efficient for estimating f(-) (but not necessarily better for classification). Even when
comparing to regularized boosting, which seems simpler to analyze, our assumptions are
competitive.

Finally, we discuss in section 4 the fundamental difference between a tree learner and
projection onto basis functions, the latter being the common setting for matching pursuit
(Mallat and Zhang, 1993) in signal processing. Depending on the signal to noise ratio,
one will be better than the other. This adds flexibility to choose among different tree-type
base learners.

6 Proofs

It is notationally more convenient to work with basis functions in (4.1), but the analysis
for tree functions in (2.2) is analogous. We also consider the regression problem only in
Theorem 1 and Corollary 1. From section 4.1 we know that the population version of
LyBoosting converges to the underlying target function f(-).
We consider here also a semi-population version of LsBoosting: similarly as in (4.5),
we define the sequence of remainder functions
Rgf = f,
Rm—l f g5
anf:Rﬁ*lf—wwz ,m=1,2,... (6.1)
gz, 13 "
where R, is chosen as in (2.4) which implies that R™f is random.

6.1 Asymptotic analysis as sample size increases

We show here how the effect of estimation errors can be controlled. The key ingredients
are uniform bounds with respect to the rectangles R in (4.1).
Analogously to (6.1), define the n x 1 vectors
Rf=Y=,...,Y,)7,
S RN (Xa)gp (Xi)g -
> 9%, (Xi)? Rom?

With some abuse of notation, we denote by f, R f, RZ‘ f either functions from R? — R
or n X 1 vectors, evaluated at the observed predictors.

Ryf=Rp'f— —1,2,...

Lemma 1 Assume assumption (A). Then:
(i) supg [n"" 307, gr(Xi)® — [lgr 3] = €n1 = Op(n™1/2),
(i) supg [n™"' o0, f(Xi)gr(Xi) = (f:gr) | = &n2 = Op(n~'7?),
(iii) supg [n~' Yo, €igr(Xi)| = éng = Op(n~1/?),
Proof: The Donsker property holds for empirical processes with indicator functions
indexed by hyper-rectangles R = (—00,a1] x -+ x (—00,ap] C RP, see van der Vaart and
Wellner (1996, p.129). By taking differences of hyper-rectangles R = (—o0,a1] X --- X

(—00,,a,] C RP we can obtain any hyper-rectangle R C RP. Therefore, assertions (i)-(iii)
follow. g

15

Lemma 2 Assume assumptions (A) and (B). Then, for m = my, — oo, my = o(log(n)),
IR £113 = | R £1I3 + 02 + op(1).
Proof: Consider first m = 1. Then, by definition,

(f,92,)
R e A =RLf +e+ Arp,
92,13
{(f:92,) n~t Y Yigg, (Xi)
gz, 5 nt 200 g5, (X6)?
The scalar random variable 71, can then be analyzed via Taylor expansion and using

Lemma 1. The general bound in (6.4) below also applies to 7y 4.
Now, we proceed iteratively. Denote by Ay, = VknIR, - Then,

Ruf=f+e-

Al,n =Mndg,s Mn = (

n! Z?:1(R%_1f)i97@j (Xi)
T o, (X2 R

n~t Z?:l(R%flf)igf,@j (X5)
NI gp (X2 R

mf = R -

= e+ R A At DA

= e+ R f+ A1+ +Djn,

(R fo9,) n 'S (B Nigg, (X)W U, 6.2
Yin = - — = — — —. .
o lgg, 13 nt Yl 9g, (X0)? v Va

Next, we control the random variable ; ,. Since
RV =e+ RV + Arp+.o.+ A1y,

we expand U, in (6.2) into j + 1 summands, and

U,—ug = n! Z EigR, (X;) + (n_l Z(R%_lf)igﬁj (X;) — (Rgz—lf’ gfzj))
i=1 i=1

Jj—1 n
+ YTy Apa(Xi)gp, (Xi) = W + Waz + Wi (6.3)
k=1 i=1

Denote in the sequel by &, = max;<i<3{,; the maximum of the quantities in Lemma 1.
Expanding R} f into j summands as in (6.1), we get

[Wh,i| < Cén,
[Whe| < C&nj.

Bounding the third term in (6.3) can be done as follows:

Jj—1 n Jj—1 n
Wasl <)l Aknlleon™ Zgﬁj (X:) = [yenln™ Zgﬁj (X3)?,
k=1 i=1 k=1 -1

16

because 9%, is an indicator function. Therefore, using Lemma 1 again, we get the bound
for (6.3),
j—1
|Un - u0| < &G+ + Z |'7k,n|(||g7éj ”% + &)
.
< gn(] + 1) + Z |7k,n|||g7€j ”%OP(l)a
k=1

since || 9%, |32 = o(n'/3) due to assumption (B). Using a Taylor expansion for 7, in (6.2),

we get
o ug — Un 1 1
|7],n| = % + (UO Vn)Un
j—1
< lgg, 152606+ 1) + X WealOp (D) + &0p g, 174U
k=1
j—1
< lgg, 157606 +1) + 3 ealOp (1) + €0 (g, 7). (6.4)
k=1
because
n] n
Unl < (07 _(BETHDV2D 9%, (X:)%)? < Op(1)llgg, ll2,
i=1 i=1

sincen™' 3 (R)7 <o 00 Y = Op(1) and n™! YL g5 (X0)” < llgg, I3+6n <
Op(||g7@j 13) since ||g72j 52 = o(n'/3) due to assumption(B). A crude upper bound for (6.4)
is then

j—1

92ll2° (G +2) + D [l Op(1).
k=1

[Viml £ Op(&n)mazy

(The Op(1) term does not depend on j). Recursive use of this bound then yields

[Vjnl < Op(&n)mazplgsllz 2.

Hence for A;, = Vin9R;

m m m
1Y " Ajallz <D 1A nll2 <Y il < Op(én)mazg llgn
j=1 j=1 j=1

m

22 Y 2 =op(l), (65)
j=1

if m = m,, = o(log(n)). Therefore, using formula (6.2) and (6.5) we arrive at

m m
IBZFIE < o2 + IRRFIE + 11D Agnll3 + 2R +ell2 | Ajallz
Jj=1 7=1

= o + |RYFI3 + op(1).

17

Lemma 3 Assume assumptions (A) and (B). Then, for any € > 0, there exists mg =
mg(e) and ng = no(e) such that

PR fll2 <e] > 1—¢ for all n > ngy(e).

Proof: Lemma 1 implies that in the first boosting step, the empirical scaled inner prod-
uct in (2.4) is close to the population quantity in (4.6) (not necessarily the maximizers).
This holds for finitely many further iterations. Moreover, the first population maximizers
Ri,...,Rm, in (4.6) all satisfy ||g72j||2_2 = o(n'/?) (j = 1,...,mp) as n gets large (mq
finite) so that they belong to the class of trees (rectangles) satisfying assumption (B).
Hence, formula (11) in Mallat and Zhang (1993) holds in probability for the empirically
chosen 7?,1, .- ,ﬁmo (myg finite) and their result then implies the existence of an mg(e)
such that the assertion of the Lemma holds. O

Proof of Theorem 1:
Let X,Y be a new test observation, independent from the (training) data D = (X;, Y;)? ;.
Lemma 2 and the monotone decay of | R f||2 as m — oo then imply, for any € > 0,

Ex|E (X) — f(X)? =E|F(X) = Y|* — o = |y f |3 — o2
< IBRFflI3 + op(1) < IRFOFII3 + 0p(1) < €0p(1) + op(1), (6.6)

where the last inequality is due to Lemma 3. O

Proof of Corollary 1:
The population version of LoBoosting is converging to the best approximating function
f* in the space spanned by regression trees with d terminal nodes, see Mallat and Zhang
(1993). Clearly, this space coincides with T; described in the Corollary. Finally, the
estimation errors can be controlled analogously to the proof of Theorem 1. O

References

[1] Breiman, L. (1998). Arcing classifiers. Ann. Statist. 26, 801-849 (with discussion).

[2] Breiman, L. (1999). Prediction games & arcing algorithms. Neural Computation 11,
1493-1517.

[3] Breiman, L. (2000). Some infinity theory for predictor ensembles. Tech. Report 579,
Dept. of Statist., Univ. of Calif., Berkeley.

[4] Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984). Classification and
Regression Trees. Wadsworth, Belmont (CA).

[5] Bithlmann, P. and Yu, B. (2001). Boosting with the Ly-loss: regression and classifi-
cation. Preprint, ETH Zirich.

[6] Bithlmann, P. and Yu, B. (2002). Analyzing bagging. To appear in Ann. Statist. 30.

[7] Devroye, L., Gyorfi, L., and Lugosi, G. (1996). A probabilistic theory of pattern recog-
nition. Springer, New York.

18

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

Freund, Y. and Schapire, R.E. (1996). Experiments with a new boosting algorithm. In
Machine Learning: Proc. Thirteenth International Conference, pp. 148-156. Morgan
Kauffman, San Francisco.

Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine.
Ann. Statist. 29, 1189-1232.

Friedman, J.H., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a
statistical view of boosting. Ann. Statist. 28, 337-407 (with discussion).

Jiang, W. (2000). Process consistency for AdaBoost. Preprint, available at
http://neyman.stats.northwestern.edu/jiang/boosting.html

Koltchingkii, V. and Panchenko, D. Empirical margin distributions and bounding the
generalization error of combined classifiers. Ann. Statist. 30, 1-50.

Lugosi, G. and Vayatis, N. (2001). On the Bayes-risk consistency of boosting methods.
Preprint, available at http://www.econ.upf.es/~lugosi/pre.html

Mallat, S and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries.
IEEE Trans. Signal Proc. 41, 3397-3415.

Mannor, S., Meir, R. and Zhang, T. (2002). The consistency of greedy algorithms
for classification. To appear in COLT (fifteenth annual conference on computational
learning theory).

Schapire, R. E. (2002). The boosting approach to machine learning: an overview. In
MSRI Workshop on Nonlinear Estimation and Classification (D. D. Denison, M. H.
Hansen, C. C. Holmes, B. Mallick and B. Yu, Eds.). Springer, New York.

Tukey, J.W. (1977). Ezploratory data analysis. Addison-Wesley, Reading, MA.

van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical
Processes: With Applications to Statistics. Springer, New York.

19

