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We assume that we have observational data, generated from an
unknown underlying directed acyclic graph (DAG) model. A DAG is
typically not identifiable from observational data, but it is possible
to consistently estimate the equivalence class of a DAG. Moreover,
for any given DAG, causal effects can be estimated using intervention
calculus. In this paper, we combine these two parts. For each DAG in
the estimated equivalence class, we use intervention calculus to esti-
mate the causal effects of the covariates on the response. This yields
a collection of estimated causal effects for each covariate. We show
that the distinct values in this set can be consistently estimated by
an algorithm that uses only local information of the graph. This lo-
cal approach is computationally fast and feasible in high-dimensional
problems. We propose to use summary measures of the set of possible
causal effects to determine variable importance. In particular, we use
the minimum absolute value of this set, since that is a lower bound
on the size of the causal effect. We demonstrate the merits of our
methods in a simulation study, and on a data set about riboflavin
production.

1. Introduction. Our work is motivated by the following problem in
biology. We want to know which genes play a role in a certain phenotype,
say a disease status or, in our case, a continuous value of riboflavin (vitamin
B2) production in the bacterium Bacillus subtilis. To be more precise, our
goal is to infer which genes have an effect on the phenotype in terms of an
intervention: if we knocked down single genes, which of them would show
a relevant or important effect on the phenotype? The difficulty is, however,
that the available data are only observational. For our concrete problem,
we observe the logarithm of the riboflavin production rate as a continuous
response and expression measurements from essentially the whole genome of
B. subtilis as high-dimensional covariates. Using such observational data, we
want to infer all (single gene) intervention effects. This task coincides with
inferring causal effects, a well-established area in statistics [e.g., 5, 9, 11, 12,
14, 19, 25–27, 30]. We emphasize that in our application, it is exactly the
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intervention or causal effect which is of interest, rather than a regression-
type effect of association. If we can estimate the intervention effects from
observational data, we can score each gene according to its potential to have
an intervention (knock-down) effect on the riboflavin production rate, and
the most promising candidate genes can be tested afterwards in biological
experiments.

Pearl [26, p. 285] formulates the distinction between associational and
causal concepts as follows: “An associational concept is any relationship that
can be defined in terms of a joint distribution of observed variables, and a
causal concept is any relationship that cannot be defined from the distribu-
tion alone. (...) Every claim invoking causal concepts must be traced to some
premises that invoke such concepts; it cannot be inferred or derived from
statistical associations alone.” Thus, in order to obtain causal statements
from observational data, one needs to make additional assumptions. One
possibility is to assume that the data were generated by a directed acyclic
graph (DAG) which is known beforehand. DAGs describe causal concepts,
since they code potential causal relationships between variables: the exis-
tence of a directed edge x→ y means that x may have a direct causal effect
on y, and the absence of a directed edge x → y means that x cannot have
a direct causal effect on y (see Remark 2.3 for a definition of direct causal
effect).

Given a set of conditional dependencies from observational data and a
corresponding DAG model, one can compute causal effects using interven-
tion calculus [e.g., 25, 26]. In this paper, we consider the problem of inferring
causal information from observational data, under the assumption that the
data were generated by an unknown DAG. This is a more realistic assump-
tion, since in many practical problems, one does not know the DAG. In this
scenario, the causal effect is typically not defined uniquely, and that is not
surprising given the description of causality by Pearl [26] above.

A DAG is typically not identifiable from observational data, because
conditional dependencies only determine the skeleton and the so-called v-
structures of the graph. The skeleton and v-structures determine an equiva-
lence class of DAGs that all correspond to the same probability distribution.
This equivalence class can be described by a completed partially directed
acyclic graph (CPDAG), see Section 2.1.

The existence of the equivalence class opens the way to the following
strategy. Suppose that we are interested in the causal effects of a collection
of covariates X1, . . . ,Xp on a response Y . We are given the joint distribution
of X1, . . . ,Xp, Y , and use this to find the equivalence class of DAGs that
correspond to this distribution. Assume that this equivalence class contains
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m different DAGs. For each DAG Gj in this class, we can apply intervention
calculus to obtain the causal effects θ1j, . . . , θpj of X1, . . . ,Xp on Y . We can
summarize this information in a p×m matrix Θ, where each row corresponds
to a covariate and each column corresponds to a DAG in the equivalence
class. Since the ordering of the DAGs in the equivalence class is arbitrary,
the columns of this matrix can be permuted in any order. It is our goal
to estimate this matrix Θ. A slightly less ambitious goal is to estimate the
multisets Θi = {θij}j∈{1,...,m}, i = 1, . . . , p, containing the possible causal
effects of covariate Xi on Y (see Section 3.2 for the definition of a multiset).
Note that Θ contains slightly more information than Θi, i = 1, . . . , p, since
the columns of Θ tell us which possible causal effects originated from the
same DAG, while this information is lost in the multisets Θi, i = 1, . . . , p.

In special cases, all values θij , j = 1, . . . ,m in Θi may be identical, so that
the causal effect of Xi on Y is uniquely determined. But even if Θi contains
distinct values, it still contains useful causal information. For example, if
θij 6= 0 for all j = 1, . . . ,m, then Xi must have a causal effect on Y (positive
or negative). Similarly, if θij > 0 for all j = 1, . . . ,m, then Xi must have a
positive causal effect on Y . Finally, the minimum absolute value minj |θij | is
a lower bound on the size of the causal effect of Xi on Y . We use this bound
to determine variable importance.

There is a large existing literature on estimating the equivalence class
of DAGs [e.g., 2–4, 13, 15, 29, 30, 32] and there is also a large literature
on estimating causal effects when a DAG is given [e.g., 19, 20, 24–26]. Our
new approach combines these two parts in order to estimate the multisets
of possible causal effects Θi, i = 1, . . . , p. We use these multisets to deter-
mine bounds for causal effects and causal importance of variables. We also
show that the distinct values of Θi can be estimated by a new algorithm
that uses only local information of the estimated CPDAG, thus allowing for
efficient computation in very large problems, and we prove that this method
is asymptotically consistent in sparse high-dimensional settings.

The outline of this paper is as follows. In Section 2 we introduce termi-
nology for graphs and intervention calculus. Sections 3 and 4 discuss our
proposed methodology to estimate the multisets of possible causal effects
Θi, i = 1, . . . , p. Section 3 discusses so-called population versions of the al-
gorithms that can be used if all conditional dependencies are known exactly.
Section 4 discusses sample versions of the algorithms that can be used if the
conditional dependencies are estimated from data. In Section 5 we prove
asymptotic consistency of our methods in high-dimensional settings with
certain sparsity and regularity assumptions. In Section 6 we evaluate our
methods in a simulation study, and apply them to the riboflavin data set.
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Finally, Section 7 contains a brief discussion, Section 8 contains collected
proofs, and the Appendix contains a description of possible modifications of
the algorithms.

2. Graph terminology and intervention calculus.

2.1. Graphs. Let G = (V,E) be a graph consisting of vertices V and
a set of edges E ⊆ V × V . In our context, the vertices represent random
variables X1, . . . ,Xp and Y , and the edges represent relationships between
pairs of these variables.

An edge between two vertices, say Xi and Xj , is directed if the edge
has an arrowhead: Xi ← Xj or Xi → Xj . An edge between Xi and Xj is
undirected if it has no arrowhead: Xi −Xj . A directed graph is a graph in
which all edges are directed. An undirected graph is a graph in which all
edges are undirected. A partially directed graph may contain both directed
and undirected edges. The skeleton of a (partially) directed graph G is the
undirected graph that is obtained from G by removing all arrowheads.

Two vertices Xi and Xj are adjacent if there is a directed or undirected
edge between them. The adjacency set of a vertex Xi, denoted by adji(G),
is the collection of all vertices that are adjacent to Xi in G. A path is any
unbroken nonintersecting route that can be traced along the edges of the
skeleton of the graph. A directed path is a path along directed edges that
follows the direction of the arrows. A (directed) cycle is a (directed) path
that starts and ends at the same vertex. A graph that contains no directed
cycles is called acyclic. A graph that is both directed and acyclic is called a
directed acyclic graph (DAG) or Bayesian network. A v-structure in a graph
G is an ordered triple of vertices, say (Xi,Xj ,Xk), such that G contains
directed edges Xi → Xj and Xj ← Xk, and Xi and Xk are not adjacent in
G: the vertex Xj is then called a collider.

Consider a partially directed graph G. Vertex Xj is said to be a parent
of Xi in G if there is a directed edge Xj → Xi. The set of all parents of
Xi in G is denoted by pai(G). Vertex Xj is said to be a sibling of Xi in
G if there is an undirected edge Xi − Xj . The set of all siblings of Xi in
G is denoted by sibi(G). For any subset S of sibi(G), we let GS→i denote
the graph that is obtained by changing all undirected edges Xj −Xi with
Xj ∈ S into directed edges Xi ← Xj , and all undirected edges Xj −Xi with
Xj ∈ sibi(G)\S into directed edges Xi → Xj. If the graph G is clear from
the context, we write pai and sibi instead of pai(G) and sibi(G).

A DAG encodes conditional independence relationships via the notion of
d-separation [25, Def. 1.2.3, p. 16]. A distribution P is said to be faithful
to a graph G if the conditional independence relationships of P are exactly
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the same as those encoded by G via d-separation. In general, the same
set of conditional independence relationships can be described by several
DAGs. These DAGs form an equivalence class, consisting of DAGs with
the same skeleton and the same v-structures [32]. Such an equivalence class
can be uniquely described by a completed partially directed acyclic graph
(CPDAG) [2]. This is a partially directed graph with the same skeleton as
the graphs in the equivalence class in which the edges are directed as follows:
(i) the directed edges represent arrows that are common to all DAGs in the
equivalence class, and (ii) the undirected edges correspond to edges that are
directed one way in some DAGs and the other way in other DAGs in the
equivalence class. We say that a partially directed graph G is extendable to
a DAG, if its undirected edges can be directed without creating directed
cycles or additional v-structures.

A CPDAG can be estimated in various ways, including the PC-algorithm
[30], search and score methods [cf. 2–4, 32] and Bayesian methods [cf. 13, 29].
In this paper, we will use the PC-algorithm, since this algorithm is compu-
tationally feasible and asymptotically consistent in sparse high-dimensional
settings [15]. We refer to [28, 33] for a discussion about pointwise versus
uniform consistency of the PC-algorithm.

2.2. Intervention calculus. We now give a brief introduction to inter-
vention calculus, mostly based on [25, 26]. We consider p + 1 variables
X1, . . . ,Xp, Y (sometimes also referred to as X1, . . . ,Xp+1).

Any distribution that is generated from a DAG with independent error
terms is called Markovian. Any Markovian distribution can be factorized as

f(x1, . . . , xp+1) =
p+1
∏

j=1

f(xj|paj)

[26, Th. 3.1, p. 297]; see also [18, Section 3.2.2] for a formulation in terms
of directed local or global Markov properties.

In order to represent the effect of an intervention on a set of variables,
[17, 24] introduced so-called do or set operators. In particular, they used
expressions of the form f(y|do(Xi = x′

i)) or f(y|set(Xi = x′
i)) to denote the

distribution of Y that would occur if treatment condition Xi = x′
i was en-

forced uniformly over the population via some intervention. For a Markovian
model, the distribution generated by an intervention do(Xi = x′

i) on the set
of variables X1, . . . ,Xp+1 is given by the following truncated factorization
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formula:

f(x1, . . . , xp+1|do(Xi = x′
i)) =

{

∏p+1
j=1,j 6=i f(xj |paj)|xi=x′

i
if xi = x′

i,

0 otherwise,

(1)

where f(xj|paj) are the pre-intervention conditional distributions [26, Cor.
3.1, p. 297]. Note that this formula uses the DAG structure (determining
the sets paj) to write the interventional distribution on the left hand side in
terms of pre-intervention conditional distributions on the right hand side.

The distribution of Y = Xp+1 after an intervention do(Xi = x′
i) can be

found by integrating out x1, . . . , xp in equation (1). It can be shown that
this simplifies to the following:

f(y|do(Xi = x′
i)) =

{

f(y) if Y ∈ pai,
∫

f(y|x′
i, pai)f(pai)dpai if Y /∈ pai,

(2)

where f(·) and f(·|x′
i, pai) represent pre-intervention distributions [25, Th.

3.2.2, p. 73]. Note that the expression in equation (2) for Y /∈ pai is a special
case of so-called back-door adjustment [25, Th. 3.3.2, p. 79], since pai satisfies
the back-door criterion relative to (Xi, Y ) if Y /∈ pai [25, Def. 3.3.1, p. 79].

It is common [e.g., 25, p. 70] to summarize the distribution generated by
an intervention by its mean:

E(Y |do(Xi = x′
i)) =

{

E(Y ) if Y ∈ pai,
∫

E(Y |x′
i, pai)f(pai)dpai if Y /∈ pai,

and we can then define the causal effect of do(Xi = x′
i) on Y by:

∂

∂x
E(Y |do(Xi = x))

∣

∣

∣

∣

x=x′
i

.(3)

In the remainder of the paper, we consider the case that X1, . . . ,Xp, Y
are jointly Gaussian, and we are interested in the causal effect of the Xi’s
on Y . In this case, it is very simple to compute the causal effects as defined
in equation (3), since Gaussianity implies that E(Y |x′

i, pai) is linear in x′
i

and pai:

E(Y |x′
i, pai) = γix

′
i + γT

pai
pai

for some values γi ∈ R and γpai
∈ R

|pai|, where |pai| is the cardinality of the
set pai. Hence,

∫

E(Y |x′
i, pai)f(pai)dpai = γix

′
i +

∫

γT
pai

paif(pai)dpai
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Example 2.1

X1

X2

X3

Y

-1

2

-1

0.8

0.8

Example 2.2

X1

X2

X3

Y

1

1

0.8

0.8

Fig 1. Graphical representation of the models used in Example 2.1 (left) and Example 2.2
(right).

is linear in x′
i. Combining this with equation (3), it follows that the causal

effect of Xi on Y with Y /∈ pai is given by γi, which is simply the regression
coefficient of Xi in the regression of Y on Xi and pai. In general, the causal
effect of Xi on Y as defined in equation (3) is given by βi|pai

, where for any
set S ⊆ {X1, . . . ,Xp, Y }\{Xi},

βi|S =

{

0 if Y ∈ S,
coefficient of Xi in Y ∼ Xi + S if Y /∈ S,

(4)

and Y ∼ Xi + S is shorthand for the linear regression of Y on Xi and S.
Hence, in the Gaussian case the causal effect does not depend on the value
of x′

i, and can be interpreted as

E(Y |do(Xi = x′
i + 1)) − E(Y |do(Xi = x′

i))

for any value of x′
i.

2.3. Intervention calculus versus association. In the previous section we
discussed that for jointly Gaussian variables, intervention effects can be com-
puted using linear regression. We emphasize, however, that intervention cal-
culus and multiple regression analysis generally give different results, since
the set of variables that is controlled for is different. We illustrate this dif-
ference using two examples. In Example 2.1 the variable that appears to be
most important in the regression analysis is least important in the causal
analysis. Example 2.2 shows that the opposite is also possible: the variable
that has no importance in the regression analysis is most important in the
causal analysis. Throughout, we will use β to denote the regression param-
eters, and θ to denote the intervention effects.

Example 2.1. Consider the following model (see Figure 1, left panel):
X2 = ǫ2, X1 = 0.8X2 + ǫ1, X3 = 0.8X2 + ǫ3, and

Y = −X1 + 2X2 −X3 + ǫ,
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where ǫ1, ǫ2, ǫ3 and ǫ are mutually independent Normal random variables
with mean zero and variances σ2

1 = 0.36, σ2
2 = 1, σ2

3 = 0.36 and σ2 = 1.
Note that X1, X2 and X3 all have variance 1, so that we can meaningfully
compare their regression coefficients or causal effects.

First suppose that we apply multiple linear regression Y = α + β1X1 +
β2X2 + β3X3 + ǫ. Then the regression coefficients are β1 = −1, β2 = 2 and
β3 = −1. Looking at the sizes of the effects, variable X2 is most important
in the regression analysis.

Next, we apply intervention calculus. We assume that the distribution of
the random variables corresponds to (a factorization in terms of) the DAG
in the left panel of Figure 1. Let θ = (θ1, θ2, θ3), where θi represents the
causal effect of Xi on Y . Since pa1 = {X2}, pa2 = ∅ and pa3 = {X2}, we
have θ1 = β1|X2

= −1, θ2 = β2|∅ = 0.4 and θ3 = β3|X2
= −1. We see that

θ1 = β1 and θ3 = β3, but that θ2 6= β2. Considering the sizes of the causal
effects, variable X2 is least important in the causal analysis.

Example 2.2. Let X1, X2 and X3 be as in Example 2.1, and let

Y = X1 + X3 + ǫ

(Figure 1, right panel). Applying multiple linear regression Y = α+β1X1 +
β2X2 + β3X3 + ǫ, the regression coefficients are β1 = 1, β2 = 0 and β3 = 1.
Looking at the sizes of the effects, variable X2 is least important.

On the other hand, if we consider intervention calculus and assume that
the distribution of the random variables corresponds to the DAG in the right
panel of Figure 1, we get θ1 = β1|X2

= 1, θ2 = β2|∅ = 1.6 and θ3 = β3|X2
= 1.

We again see that θ1 = β1 and θ3 = β3, but that θ2 6= β2. Considering the
sizes of the causal effects, variable X2 is now most important.

Remark 2.3. In Examples 2.1 and 2.2, Y is not a parent of any of the
X’s. For such DAGs, we can formulate the distinction between intervention
calculus and multiple regression as follows. The causal effect θi measures
the total effect of variable Xi on the response Y , i.e., the sensitivity of Y to
interventional changes in Xi. On the other hand, the regression parameter
βi measures the direct effect of Xi on Y , i.e., the sensitivity of Y to inter-
ventional changes in Xi when all other variables in the model are held fixed
(for a precise definition of direct effect see, e.g., [25, p. 126-127]).

3. Population versions of the algorithms. The intervention calcu-
lus discussed in Section 2.2 assumes that the DAG that generates the distri-
bution of X1, . . . ,Xp, Y is known. We now present our new methodology for
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determining causal effects when the DAG is unknown. First, in Section 3.1,
we state our assumptions. In Section 3.2 we discuss our methods, assuming
that all conditional dependencies are known exactly (hence the terminology
population versions). Section 4 will treat sample versions of the algorithms,
that is, versions of the algorithms that can be used if the conditional depen-
dencies are estimated from the data. We split the exposition in these two
parts, since this allows us to separate the main ideas of the methods (Sec-
tion 3) from the extra complications that arise from working with estimated
conditional dependencies (Section 4).

3.1. Assumptions. We make the following assumptions:

(A) The distribution of (X1, . . . ,Xp, Y ) is multivariate Normal. Moreover,
it is Markovian and faithful to an (unknown) DAG.

(B) X1, . . . ,Xp have equal variance.

The Gaussianity assumption in (A) implies that E(Y |S) is linear for any
S ⊆ {X1, . . . ,Xp}, so that the causal effects can be easily computed (see
Section 2.2). Moreover, it allows us to equate conditional independence with
zero partial correlation. This is useful in the PC-algorithm [30] which we
employ to find the equivalence class of DAGs. Faithfulness is also used in
the PC-algorithm. It makes it possible to move hierarchically from marginal
or low-order partial correlations to higher orders, yielding a tremendous
computational advantage if p is large. Both normality and faithfulness are
used to prove consistency of our methods, see Section 5. Assumption (B) is
made for convenience, so that we can easily compare the causal effects of
different variables.

3.2. The algorithms. In the population versions of the algorithms we as-
sume that all conditional dependencies are known exactly. In this case, the
population version of the PC-algorithm (see [15, 30] for a detailed descrip-
tion) yields the correct CPDAG.

Based on this CPDAG, we can compute the sets of possible causal effects.
Before describing the algorithms to do this, we note that the output of the
algorithms consists of multisets. A multiset is similar to a set, with the only
difference that in a multiset the multiplicity of elements matters. Thus, the
multisets {a, b} and {b, a} are equal, just as the sets {a, b} and {b, a}, since
the order of the elements does not matter. But the multisets {a, a} and {a}
are not equal, while the sets {a, a} and {a} are.

The basic idea of our method is given in pseudocode in Algorithm 1. We
illustrate this algorithm by computing Θ1, the set of possible causal effects
of X1 on Y , for the CPDAG G in Figure 2. First, we list all DAGs in the
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CPDAG G

X1

X2 X3

X4 Y

G1

X1

X2 X3

X4 Y

G2

X1

X2 X3

X4 Y

G3

X1

X2 X3

X4 Y

G4

X1

X2 X3

X4 Y

Fig 2. A CPDAG G with the DAGs G1, . . . , G4 that are in its equivalence class.

Algorithm 1: Basic algorithm
Input: CPDAG G, conditional dependencies of X1, . . . , Xp, Y

Output: Matrix Θ of possible causal effects
Determine all DAGs G1, . . . , Gm in the equivalence class of G1

for j = 1 to m do2

for i = 1 to p do3

θij = βi|pai(Gj ) (see equation (4))4

end5

end6

equivalence class of G. Note that G has 3 undirected edges: X1−X2, X1−X4

and X2 −X3. There are 8 possible ways to direct these edges, but some of
these lead to graphs that are not in the equivalence class of G. For example,
the configuration X1 → X2, X1 → X4 and X2 ← X3 is invalid, since this
creates a new v-structure X1 → X2 ← X3 and that is incompatible with the
equivalence class represented by G (see Section 2.1). Excluding such invalid
configurations leaves four DAGs in the equivalence class of G, see G1, . . . , G4

in Figure 2. Next, for each j = 1, . . . , 4 we compute the causal effect θ1j of
X1 on Y , assuming the data were generated from DAG Gj . Using equation
(4) and assumption (A) of Section 3.1, this yields

Θ1 = {θ11, θ12, θ13, θ14} = {β1|pa1(G1), β1|pa1(G2), β1|pa1(G3), β1|pa1(G4)}(5)

= {β1|∅, β1|X2
, β1|X2

, β1|X4
}.

Note that the parental sets of X1 in the four DAGs in the equivalence class
of G play a crucial role in determining the possible causal effects of X1

on Y . In particular, since pa1(G1) = ∅, pa1(G2) = pa1(G3) = {X2}, and
pa1(G4) = {X4}, the multiset Θ1 contains β1|∅ with multiplicity 1, β1|X2

with multiplicity 2, and β1|X4
with multiplicity 1.

The basic Algorithm 1 works well if the number of covariates is small, say
less than 10 or so. But if the number of covariates increases, it quickly be-
comes infeasible to compute all DAGs in the equivalence class. We therefore
developed a localized algorithm which is much faster. In order to explain this
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local algorithm, we first discuss a variation on the basic algorithm, given in
pseudocode in Algorithm 2.

Algorithm 2: Variation on Algorithm 1 (for instructive purposes)

Input: CPDAG G, conditional dependencies of X1, . . . , Xp, Y

Output: Multisets Θ1, . . . , Θp of possible causal effects
for i = 1 to p do1

Θi = ∅2

foreach subset S of sibi(G) do3

mS = number of DAGs to which GS→i is extendable4

add mS copies of βi|pai(G)∪S to Θi5

end6

end7

Algorithm 2 is based on the idea that for the computation of Θ1, the
parents of X1 in the different DAGs in the equivalence class are of key
importance. Therefore, we first consider the CPDAG G and determine all
possible parental sets of X1, that is, we take all sets pa1(G) ∪ S where
S ⊆ sib1(G). In Figure 2, pa1(G) = ∅ and sib1(G) = {X2,X4}, so that the
possible parental sets of X1 are ∅, {X2}, {X4} and {X2,X4}. These sets S
determine the direction of the edges between X1 and the vertices in sib1(G):
all edges between X1 and vertices in S must be directed towards X1, and
all edges between X1 and vertices in sib1(G)\S must be directed away from
X1, exactly as in GS→1 (see Section 2.1). For each set S, we then determine
the number of DAGs mS to which GS→1 is extendable. As illustration, we
compute mS for S = {X2} and S = {X4}. First, note that S = {X2} implies
that X1 ← X2 and X1 → X4, since X2 is a parent of X1 and X4 is not. The
undirected edge X2 −X3 in GS→1 can then be directed both ways without
creating a new v-structure or a cycle. Hence, for S = {X2} we have mS = 2.
On the other hand, S = {X4} implies X1 → X2 and X1 ← X4. In this case,
the undirected edge X2 −X3 in GS→1 must be directed towards X3, since
otherwise a new v-structure X1 → X2 ← X3 is created. Hence, for S = {X4}
we have mS = 1. Using the same reasoning for S = ∅ and S = {X2,X4}, one
can easily check that the multiplicities corresponding to S = ∅, {X2}, {X4},
{X2,X4} are mS = 1, 2, 1, 0. Finally, we form the multiset Θ1 by taking
the elements β1|pa1(G)∪S with multiplicities mS, for all S ⊆ sib1(G) (where
elements with multiplicity zero are omitted). Thus, in Figure 2 we obtain
Θ1 = {β1|∅, β1|X2

, β1|X2
, β1|X4

}.
From this construction, it is clear that Algorithm 2 gives the same output

as Algorithm 1 (with the only difference that Algorithm 2 does not yield
the column structure of Θ, telling us which causal effects originate from the
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same DAG). Note that Algorithm 2 is not faster than Algorithm 1. The new
bottleneck is the computation of the multiplicities mS, which again quickly
becomes infeasible if the number of covariates increases. We therefore do
not recommend to use this algorithm in practice. However, we can slightly
modify Algorithm 2 to obtain a fast localized algorithm, given in pseudocode
in Algorithm 3.

Algorithm 3: Local algorithm
Input: CPDAG G, conditional dependencies of X1, . . . , Xp, Y

Output: Multisets ΘL
i , i = 1, . . . , p

for i = 1 to p do1

ΘL
i = ∅2

foreach subset S of sibi(G) do3

if GS→i is locally valid (i.e., has no new v-structure with collider Xi) then4

add βi|pai(G)∪S to ΘL
i5

end6

end7

end8

The difference between Algorithms 2 and 3 is that Algorithm 3 replaces
the computation of mS by a much simpler step which only checks if GS→i is
locally valid, meaning that GS→i does not contain an additional v-structure
with Xi as collider. In the example in Figure 2, GS→1 is locally valid for
S = ∅, {X2} and {X4}, and it is not locally valid for S = {X2,X4}. We then
form a new multiset ΘL

1 by taking all elements β1|pa1(G)∪S for which GS→1

is locally valid. In the example, this results in ΘL
1 = {β1|∅, β1|X2

, β1|X4
}.

Note that for the CPDAG in Figure 2, the sets of distinct values in ΘL
1

and Θ1 are the same, but the multiplicities are different. It turns out that
this holds in general. To show this, we need the following lemma:

Lemma 3.1. Let S ⊆ sibi(G). Then GS→i is locally valid if and only
if there is a DAG Gj in the equivalence class of G such that pai(Gj) =
pai(G) ∪ S.

One direction of this lemma is trivial: if there is a DAG Gj in the equiv-
alence class of G with pai(Gj) = pai(G)∪S, then by definition Gj is locally
valid and hence GS→i must be locally valid. Surprisingly, the other direction
also holds, as proved in Section 8.

Lemma 3.1 directly leads to the following result:
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Theorem 3.2. Θi and ΘL
i are qual when they are interpreted as sets:

Θi
set
= ΘL

i , i = 1, . . . , p.

Theorem 3.2 implies that the only information we lose by using the local
Algorithm 3 is the multiplicity of the values. The sets of distinct values in
ΘL

i and Θi are exactly the same. Implications of this result are that for
example the range of possible causal effects or the minimum absolute value
of the possible causal effects can be obtained via the local Algorithm 3.

Remark 3.3. Note that the multiplicities of elements in Θi and ΘL
i have

different meanings. The multiplicity of an element θ in Θi corresponds to
the number of DAGs in the equivalence class for which the causal effect of
Xi on Y equals θ. On the other hand, the multiplicity of an element θ′ in
ΘL

i corresponds to the number of subsets S in the local Algorithm 3 that
yield causal effect θ′. The cardinality of ΘL

i is always smaller or equal to the
cardinality of Θi, since each set S in Algorithm 3 corresponds to at least
one DAG in the equivalence class (Lemma 3.1).

4. Sample versions of the algorithms. Assume that we have a sam-
ple consisting of n i.i.d. copies of (X1, . . . ,Xp, Y ) = (X1, . . . ,Xp+1). We then
obtain sample versions of the algorithms by using the estimated conditional
dependencies of X1, . . . ,Xp, Y as input. In the Gaussian case, we use esti-
mated partial correlations ρ̂nij|S between Xi and Xj given some set of other
variables S. We then use the sample version of the PC-algorithm to esti-
mate the corresponding CPDAG G [15, 30]. This involves multiple testing
for Z-transformed partial correlations

Ẑnij|S =
1

2
log

(

1 + ρ̂nij|S

1− ρ̂nij|S

)

.

Since Ẑnij|S has a N(0, (n−|S|−3)−1) distribution if ρij|S = 0, we conclude
that ρij|S 6= 0 if

|Ẑnij|S|
√

n− |S| − 3 > Φ−1(1− α/2),

where Φ is the standard Normal distribution function, and 0 < α < 1 is a
tuning parameter.

Next, we use the estimated CPDAG Ĝ(α) to estimate the multisets of
possible causal effects, by using sample versions of equation (4), i.e., we use
the least squares estimated regression coefficients. This procedure will be
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implemented in the R-package pcalg [16] (in the meantime, code is available
from the authors). We denote the estimated multisets by

Θ̂ni(α) for the sample version of the basic Algorithm 1,

Θ̂L
ni(α) for the sample version of the local Algorithm 3,

for i = 1, . . . , p, where we emphasize the dependence of the estimates on
the tuning parameter α. Possible modifications of Algorithms 1 and 3 that
can be beneficial in the sample versions of the algorithms are discussed in
Appendix A.

4.1. Tuning of the PC-algorithm. The tuning parameter α in the PC-
algorithm can be chosen via a Bayesian Information Criterion (BIC). First,
for a given choice of α, we compute the estimated CPDAG Ĝ(α). Next, we
find a DAG Ĝ′(α) that is in the equivalence class described by Ĝ(α). Based
on Ĝ′(α), we then compute the maximum likelihood estimators Σ̂MLE,Ĝ′(α)
and µ̂MLE for the covariance matrix and mean vector of the Gaussian dis-
tribution of X1, . . . ,Xp+1 [cf. 20]. Finally, we choose α to minimize

−2ℓ
(

Σ̂MLE,Ĝ′(α), µ̂MLE

)

+ log n

(

∑

i≤j

1(Σ̂
MLE,Ĝ′(α))ij 6=0 + p + 1

)

,

where ℓ(·) denotes the log-likelihood of a (p + 1)-dimensional multivariate
Gaussian distribution. We point out that the behavior of BIC is still un-
known in the high-dimensional setting where the dimensionality p may be
much larger than the sample size n.

Another approach to tune the PC-algorithm, is to choose α relatively
large, so that the resulting graph contains a large number of edges. We
then investigate which edges (directed or undirected) are stable under a
subsampling procedure, where stability is measured in terms of the rela-
tive frequency of occurrence of (directed or undirected) edges under the
sub-sampling scheme. An edge is kept if the corresponding subsampling
frequency is larger than a certain cut-off. Surprisingly, this cut-off can be
determined via controlling a multiple testing error rate. Details of such a
generic procedure are described in [23].

4.2. Incoherences with sample versions. Two types of incoherences may
occur in the sample version of the PC-algorithm (but the probability of these
incoherences converges to zero as the sample size n goes to infinity).

First, the sample version of the PC-algorithm may produce conflicting
v-structures. For example, the algorithm can produce v-structures X1 →
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X2 ← X3 and X2 → X3 ← X4, giving conflicting information about the
direction of the edge X2 −X3. In such cases, the algorithm overwrites the
v-structures in the order in which they were tested. Hence, the resulting
structure depends on the order in which the independence tests are per-
formed. Since we usually do not prefer one order of tests over another, we
simply choose the structure that arises by the ordering of the variables.

Second, the sample version of the PC-algorithm may produce invalid
CPDAGs, i.e., CPDAGs that are not extendable. For example, the algorithm
may yield a graph with undirected edges X1 −X2, X2 −X3, X3 −X4 and
X4−X1. This is not a valid CPDAG, since it is impossible to direct its edges
without creating a cycle or a v-structure. In other words, this graph does
not describe an equivalence class of DAGs. While such an invalid CPDAG
does not cause problems in the local Algorithm 3, it is problematic in the
basic Algorithm 1, since in the latter algorithm the CPDAG has to be ex-
tended in order to find all DAGs in the equivalence class. In Algorithm 1,
we solve this problem by modifying the estimated CPDAG in the following
way. First, we search for conflicting v-structures, and we try to rearrange
them until we get an extendable CPDAG. If this is not possible, we destroy
as few v-structures as possible to obtain an extendable CPDAG.

5. Asymptotic consistency. In this section we prove asymptotic con-
sistency of our methods in high-dimensional settings, i.e., in situations where
the number of covariates p can be much larger than the sample size n. We
consider a framework where the model depends on n: we use pn to denote
the number of covariates, Gn to denote the CPDAG, and Pn to denote the
distribution of (Xn1, . . . ,Xnpn , Yn) = (Xn1, . . . ,Xnpn ,Xn,pn+1). We assume
that the data consist of n i.i.d. copies of (Xn1, . . . ,Xn,pn+1) ∼ Pn. Regarding
Pn, we make assumption (A) of Section 3.1. Additionally, we assume:

(C) The number of covariates pn = O(na) for some 0 ≤ a <∞.
(D) The maximum neighborhood size of Gn, qn = maxi=1,...,pn+1 |adji(Gn)|,

satisfies qn = O(n1−b) for some 0 < b ≤ 1.
(E) The partial correlations ρnij|S between Xni and Xnj given S satisfy the

following upper and lower bounds, uniformly over i, j ∈ {1, . . . , pn +1}
and S ⊆ {Xn1, . . . ,Xn,pn+1}\{Xni,Xnj}:

sup
n,i6=j,S

|ρnij|S| ≤M for some M < 1,(6)

inf
i,j,S
{|ρnij|S| : ρnij|S 6= 0} ≥ cn,(7)

where c−1
n = O(nd) for some 0 < d < b/2 with b as in (D).
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(F) The conditional variances satisfy the following bound:

inf
i=1,...,pn,S⊆adji(Gn)

Var(Xni|S)

Var(Yn|Xni, S)
≥ v2 for some v > 0.

Assumptions (C)-(E) were also made in [15]. Assumption (C) allows the
number of covariates to grow as any polynomial of the sample size, rep-
resenting the high-dimensional setting. Assumption (D) is a sparseness as-
sumption, requiring that the maximum neighborhood size in the DAG grows
at a slower rate than O(n). Condition (6) in assumption (E) excludes (se-
quences of) models in which the partial correlations approach 1. Condition
(7) in assumption (E) requires the non-zero partial correlations to be outside
of the n−b/2 range, with b as in assumption (D). Note that this condition
is similar to, e.g., assumption 5 in [22] and condition (8) in [34]. Finally,
we note that assumption (F) is of the same spirit as assumption 2 in [22].
Namely, if we scale Yn such that Var(Yn) = σ2 for all n, then assumption
(F) is implied by requiring that Var(Xni|S) ≥ v2σ2 for all i = 1, . . . , pn and
S ⊆ adji(Gn).

Under assumptions (A) and (C)-(E), the PC-algorithm was shown to be
consistent [15, Th. 2]. The underlying reason for this result is the hierar-
chical nature of estimation and testing of partial correlations within the
PC-algorithm. Due to sparsity and the faithfulness assumption, there is no
need to estimate high-order partial correlations. This, together with the fact
that the error in the estimation of partial correlations decays exponentially
fast with increasing sample size, form the key elements of the consistency
proof for the underlying CPDAG.

Consistency of the PC-algorithm means that there is a sequence αn such
that P (Ĝn(αn) = Gn)→ 1 as n→∞. By combining this with the fact that
for any given valid CPDAG the sample versions of Algorithms 1 and 3 per-
form exactly the same linear regressions, the following result is immediate:

Theorem 5.1. Under assumptions (A) and (C)-(E), there is a sequence
αn such that for all n ≥ 1 the following holds on sets An with P (An)→ 1:

Θ̂ni(αn)
set
= Θ̂L

ni(αn) for all i = 1, . . . , p.

The next theorem shows that Θ̂ni and Θ̂L
ni are consistent estimators for

Θni and ΘL
ni, respectively:
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ΘL
ni

set
= Θni

↑ ↑ (as multisets)

Θ̂L
ni

set
= Θ̂ni (on An)

Fig 3. Illustration of the connections between ΘL
ni, Θni, Θ̂L

ni and Θ̂ni, given by Theorems
3.2, 5.1, and 5.2.

Theorem 5.2. Under assumptions (A) and (C)-(F), there exists a se-
quence αn such that

sup
i=1,...,pn

dmultiset(Θ̂ni(αn),Θni)→p 0,

sup
i=1,...,pn

dmultiset(Θ̂
L
ni(αn),ΘL

ni)→p 0,

where for any two multisets A = {a1, . . . , am} and B = {b1, . . . , bq} with
order statistics a(1) ≤ · · · ≤ a(m) and b(1) ≤ · · · ≤ b(q),

dmultiset(A,B) =

{

supj=1,...,m |a(j) − b(j)| if m = q,

∞ if m 6= q.

The proof of Theorem 5.2 is given in Section 8. The key elements of the
proof are similar to the ones in the consistency proof of the PC-algorithm:
we only need to perform a limited number of low-order regression problems,
and the estimation error we make in such problems decays exponentially
fast when the sample size increases.

Figure 5 illustrates the connections between Theorems 3.2, 5.1 and 5.2.
In particular, combining Theorems 3.2 and 5.2 yields the elements of Θ̂L

ni

converge in probability to elements of Θni, uniformly over the elements in
Θ̂L

ni and i = 1, . . . , pn. Moreover, every element of Θni is reached in this way.
This leads to the following corollary:

Corollary 5.3. Let f : R→ R be a continuous function. Then, under
assumptions (A) and (C)-(F)

sup
i=1,...,pn

|min{f(θ̂) : θ̂ ∈ Θ̂L
ni} −min{f(θ) : θ ∈ Θni}| →p 0.

An important implication of this corollary is obtained by taking f(x) =
|x|, yielding that under assumptions (A) and (C)-(F)

sup
i=1,...,pn

|min{|θ̂| : θ̂ ∈ Θ̂L
ni} −min{|θ| : θ ∈ Θni}| →p 0.(8)



18 MAATHUIS, KALISCH AND BÜHLMANN

The minimum absolute value of Θni is a lower bound on the size of the
causal effect of Xi on Y . Equation (8) implies that we can estimate this
bound consistently via the local method, uniformly in i = 1, . . . , pn.

Another implication of Corollary 5.3 follows by taking f(x) = x and
f(x) = −x, yielding that the local method is consistent for the joint esti-
mation of (min(Θni),max(Θni)) = (min{θ : θ ∈ Θni},max{θ : θ ∈ Θni}),
uniformly in i = 1, . . . , pn. Hence, any continuous function g : R

2 → R of
(min(Θni),max(Θni)) can be consistently estimated by the local method. In
particular, taking g(x, y) = y − x, we obtain that under assumptions (A)
and (C)-(F)

sup
i=1,...,pn

|range(Θ̂L
ni)− range(Θni)| →p 0.

Thus, the range of possible causal effects of Xi on Y can be consistently
estimated by the local method, uniformly in i = 1, . . . , pn.

We close this section by pointing out that not all functions of Θni can be
consistently estimated by the local method. For example, the mean of Θ̂L

ni is
typically not a consistent estimate of the mean of Θni, since the multiplicities
of Θni and ΘL

ni have different meanings (see Remark 3.3). In our simulations,
however, the local method still yielded surprisingly good results in such a
setting (see Figure 4, left panel).

6. Simulations and real data analysis. We now demonstrate the
behavior of our methods in simulation studies and on a real data set. First,
in Section 6.1 we use simulation studies to examine the behavior and speed
of the basic method (Algorithm 1) and the local method (Algorithm 3).
Next, in Section 6.2, we apply our methods to the problem of riboflavin
production by B. subtilis that was discussed in the introduction.

6.1. Simulation studies. We use the following simulation scheme. We
generate nreps i.i.d. DAGs with edge weights for the following two settings:

Setting 1: p + 1 = 10, en = 4, nreps = 1000,
Setting 2: p + 1 = 1000, en = 4 (block structure), nreps = 100,

where p + 1 is the number of vertices of the DAG and en is the expected
neighborhood size of the DAG. The simulation of a single DAG with edge
weights proceeds as follows. First, we use the R-package pcalg [16] to simu-
late a random DAG on X1, . . . ,Xp+1 with the pre-specified expected neigh-
borhood size en. In Setting 2, we enforce a special block structure on the
DAG, by letting it consist of 100 disconnected components (blocks) of 10
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variables each. Subsequently, we equip all edges Xi ← Xj with edge weights
βij which are drawn independently from a Uniform([1, 2]) distribution.

For each k = 1, . . . , nreps in the two settings, the DAG G(k) with edge

weights β
(k)
ij defines an underlying distribution on (X

(k)
1 , . . . ,X

(k)
p+1):

let ǫ1, . . . , ǫp+1 i.i.d ∼ N (0, 1)

for i = 1, . . . , p + 1, set X
(k)
i =

∑

X
(k)
j

∈pai(G(k))

β
(k)
ij X

(k)
j + ǫi.(9)

(Note that the X
(k)
i ’s can be defined recursively as in equation (9), since

pcalg automatically orders the variables in the DAGs so that pa(X1) = ∅
and pai ⊆ {X1, . . . ,Xi−1} for i = 2, . . . , p + 1.)

For each DAG G(k), we randomly choose one vertex as the response vari-
able Y (k), and another vertex as the covariate of interest X(k). We then
determine the true multiset of possible causal effects of X(k) on Y (k) based

on the true underlying distribution of (X
(k)
1 , . . . ,X

(k)
p+1), and denote this by

Θ(k). In Setting 2, X(k) and Y (k) are randomly chosen from the same block,
in order to allow for a more direct and fair comparison with Setting 1. (If
X(k) and Y (k) were chosen from different blocks, then the causal effect could
be quite easily identified as zero, giving an unfair advantage to Setting 2.)

For each DAG G(k), we simulate a data set consisting of n i.i.d. copies of

(X
(k)
1 , . . . ,X

(k)
p+1). We use two different sample sizes for Setting 1, and one

sample size for Setting 2:

Setting 1: n = 20 (Setting 1a) and n = 2000 (Setting 1b),
Setting 2: n = 100.

Based on these simulated data, we compute estimates of Θ(k), using tuning
parameter α = 0.01 in the PC-algorithm. In Settings 1a and 1b we use
both the basic and the local algorithm. In Setting 2 we only use the local
algorithm, since the basic algorithm is infeasible. We denote the output of
the basic algorithm by Θ̂(k), and the output of the local algorithm by Θ̂(k,L).

We compare Θ̂(k) to Θ(k) using the following two measures:

e2
ave

(k)
=



|Θ̂(k)|−1
∑

θ̂∈Θ̂(k)

|θ̂| − |Θ(k)|−1
∑

θ∈Θ(k)

|θ|




2

,

e2
min

(k)
=
(

min{|θ̂| : θ̂ ∈ Θ̂(k)} −min{|θ| : θ ∈ Θ(k)}
)2

,

with analogous measures for comparing Θ̂(k,L) to Θ(k). Note that e2
ave

(k)

measures the squared error in the estimation of the mean absolute value
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Fig 4. Comparison of the basic method (B) and the local method (L) over Settings 1a,

1b, and 2. The left panel shows boxplots for e2
ave

(k)
and the right panel shows boxplots for

e2
min

(k)
, k = 1, . . . , nreps (outliers excluded). The combination of the algorithm (B/L) and

the simulation setting (1a/1b/2) is indicated on the x-axis.

of Θ(k), and e2
min

(k)
measures the squared error in the estimation of the

minimum absolute value of Θ(k).
Figure 4 compares the results of the basic method and the local method,

showing boxplots for e2
ave (left panel) and e2

min (right panel). From the dis-
cussion following Corollary 5.3 we know that the local method is consistent
for the minimum absolute value of Θ(k), while it is typically inconsistent for
the mean absolute value of Θ(k). On the other hand, the basic method is
consistent for both parameters. In light of this, it is surprising to see that
the boxplots for the basic method and the local method are basically iden-
tical for both measures of performance e2

ave and e2
min. We also note that

both methods perform better in Setting 1b than in Setting 1a, because of
the larger sample size in Setting 1b. Finally, the performance of the local
method deteriorates only slightly in the high dimensional Setting 2.

In order to demonstrate the behavior of the basic method and the local
method in more detail, we also evaluate their performance on several data
sets that are generated from a fixed DAG with edge weights. Thus, we
generate a random DAG G (p = 7, en = 3) with edge weights, and randomly
choose a covariate X and a response variable Y , as before. Next, we generate
50 data sets of size 1000 from this DAG, according to the model given in
equation (9). For each data set, we estimate the multiset of possible causal
effects, using α = 0.01. We then aggregate these 50 estimates, and construct
a density plot.

Figure 5 shows the results for four typical DAGs. The true multisets of
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Fig 5. The estimated effects (density plots for the output of the basic and the local method
over 50 replicates) are compared to the true multisets of possible causal effects (vertical
lines; heights indicate the relative frequencies of the values). The parameters in all four
settings are p = 7, en = 3, n = 1000, α = 0.01.

possible causal effects are indicated by vertical lines, where the height of
each line indicates the relative frequency of the given value in the multiset.
In the upper left panel, we see that both methods pick up the set of possible
causal effects quite reliably. The basic method captures the multiplicities
better than the local method, as expected from our theory (see Remark 3.3).
However, this advantage of the basic method is not so clear in the upper right
panel. The lower left panel shows an example where the true causal effect
is zero, and this is identified correctly by both methods. Finally, the lower
right panel shows an example where the true causal effect is unique, and
is approximately 0.63. Both methods find this effect, but they also identify
zero as a possible causal effect. This error is caused by the fact that the
CPDAG is estimated incorrectly for some of the 50 data sets.

Finally, we consider the runtime of the algorithms. Table 1 shows that
the runtime of the basic algorithm is much larger and much more volatile
than the runtime of the local algorithm. This was to be expected since
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p = 4 p = 9 p = 14 p = 29 p = 49 p = 99

Basic 0.120(0.01) 17.6(5.4) NA NA NA NA

Local 0.038(0.002) 0.088(0.008) 0.15(0.02) 0.50(0.06) 0.99(0.06) 2.8(0.3)
Table 1

Mean runtime in seconds of the basic algorithm and the local algorithm over 10 replicates
with settings en = 3, n = 1000, α = 0.01, and the specified number of covariates p.

Standard errors of the mean are given in parentheses. A value NA means that at least one
of the 10 replicates took more than 48 hours to compute, so that the computation was
aborted. All computations were carried out on a 2.6 GHz Dual-Core AMD Opteron

Processor with 32 GB RAM on Red Hat Linux 2.6.18, using R 2.7.2.

the basic algorithm has to find all DAGs within an equivalence class. In
our implementation, graphs with 15 vertices or more cannot be handled
reliably by the basic algorithm, while they can be handled easily by the
local algorithm.

6.2. Riboflavin data. We now apply our methods to a data set about
riboflavin (vitamin B2) production by B. subtilis, kindly provided to us by
DSM Nutritional Products (Switzerland). As discussed in the introduction,
the data are observational. The real-valued response variable is the loga-
rithm of the riboflavin production rate, and there are p = 4088 covariates
measuring the logarithm of the expression level of 4088 genes that cover
essentially the whole genome of B. subtilis. The sample size is n = 71 and
hence, this is a high-dimensional setting with p≫ n.

The data are of high quality, for example in terms of a large signal to
noise ratio in a properly regularized linear model. Furthermore, Gaussianity
of the marginal distributions of the data seems a reasonable approximation.
Detecting strong deviations from joint multivariate Gaussianity in such high-
dimensional data is extremely hard, as is verification of the DAG and faith-
fulness assumptions. A more detailed discussion about these assumptions
can be found in Section 7.

Due to the large number of covariates in this data set, our basic algorithm
is infeasible, and we only apply the local algorithm. After standardizing the
data so that all covariates have unit variance, we estimate the multiset of
possible causal effects of each gene on the riboflavin production. We first
analyze the number of distinct values in each of these multisets, which we
call the ambiguity of the multiset. In high dimensional problems, one might
fear that these ambiguities can be very large, but this is not the case for
the riboflavin data. Varying the tuning parameter α for the PC-algorithm
between 0.01 and 0.5, there is no gene in the pool of 4088 genes with an
ambiguity greater than 5, and the large majority of genes have ambiguity 1,
i.e., they yield a unique estimate for the causal effect (see Table 2).
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â = 1 â = 2 â = 3 â = 4 â = 5

α = 0.01 0.775 0.186 0.036 0.004 0.001
α = 0.05 0.845 0.120 0.029 0.005 0.001
α = 0.1 0.897 0.085 0.016 0.002 0
α = 0.2 0.951 0.042 0.005 0.002 0
α = 0.3 0.970 0.025 0.003 0.002 0
α = 0.4 0.974 0.023 0.002 0.001 0
α = 0.5 0.981 0.018 0.001 0 0

Table 2

The fraction of the 4088 genes in the riboflavin data set with a certain ambiguity â, for
various values of the tuning parameter α.

In the remainder of the analysis, we set the tuning parameter α to 0.01.
In order to obtain a single estimate for the causal effect of each gene, we
compute the minimum absolute value of its estimated multiset. As discussed
before, this is a consistent estimate for the minimum absolute value of the
true multiset of possible causal effects of the gene (under our assumptions).
In order to assess the reliability of these estimates, we bootstrap the data
10 times, and take the median of the 10 estimates for each gene. We call the
resulting values the causal scores of the genes. Figure 6 shows a histogram of
these causal scores. Note that the histogram has a strong right tail, indicat-
ing that there is a group of genes with strongly estimated causal effects that
are stable in a bootstrap analysis. In order to decide which causal scores
should be considered “significantly high”, we use the local false discovery
rate (FDR) [8]. The vertical line in Figure 6 shows the cut-off for a local
FDR of 10%. About 200 of the 4088 genes fall to the right of this cut-off, and
hence have a local FDR that is less than 10%. According to our analysis,
these genes are promising candidates for genetic modification.

We compare our method also to an association approach using regression,
which is, as we have argued before, inappropriate for inferring causal effects.
To cope with high-dimensional variable selection in a linear model, we use
the (prediction optimal tuned) Lasso; properties of the Lasso for variable
selection in regression are discussed in [22, 34]. Among the top ten genes of
Lasso (ordered by absolute values of estimated regression coefficients), we
found only one gene that was also among the top ten genes of our method
(ordered by the causal scores). This difference is due to the fact that causal
effects and association can be very different. If the target is prediction of
intervention or causal effects, an association analysis like regression will not
provide an appropriate answer.

7. Discussion. In this paper we present a new method that combines
estimation of the equivalence class of DAGs with causal inference methods



24 MAATHUIS, KALISCH AND BÜHLMANN
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Fig 6. Histogram of the causal scores (median of the minimum absolute effect over 10
bootstrap samples) for the 4088 genes in the riboflavin data set. All genes to the right of
the vertical line have a local FDR of less than 10%.

that can be used when the DAG is known. The need for such a combination
is due to the fact that for a large class of practical problems, it is unrealistic
to assume that the graph structure or influence diagram among the variables
of interest is known. Thus, we assume that we have observational data that
were generated from an unknown DAG, and based on these data we want
to estimate causal effects. We argue that in this situation, causal effects can
typically not be uniquely determined, and we focus our estimation on the
multisets Θi of possible causal effects of Xi on Y , i = 1, . . . , p. Summary
measures of Θi can be used to determine variable importance. In particular,
we propose to use the minimum absolute value of Θi, since this is a lower
bound on the size of the causal effect of Xi on Y . We show that the distinct
values of Θi can be estimated by a fast local method which is computation-
ally feasible and asymptotically consistent in sparse high-dimensional set-
tings. Thus, we achieve consistent estimation, based on observational data,
for the lower bound of the size of each individual covariate’s causal effect on
Y .

The motivation for our work comes from a problem about genetic engi-
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neering of B. subtilis in order to improve its riboflavin production rate. The
response variable of interest is the riboflavin production rate and there are
p = 4088 covariates (genes) from which we have expression levels. Based on
these observational data, our goal is to find genes that are good candidates
for single-gene interventions that improve the riboflavin production rate.
With our new method we find a list of genes whose top-ranking members
are surprisingly stable (when doing a bootstrap analysis) and clearly rele-
vant in terms of a local false discovery rate. Furthermore, our list of genes
with large lower bounds for their causal effects is markedly different from a
regression approach which measures only association (instead of intervention
or causality).

One should be careful in over-interpreting our results. We have shown
that within the class of Gaussian distributions that are faithful to a DAG,
it is possible to estimate good lower bounds for causal effects on the basis
of observational data. In practice, it is hard or impossible to check whether
our assumptions hold, at least in an approximate sense. The Gaussian as-
sumption is conceptually not a key assumption: for non-Gaussian data, the
PC-algorithm can still be used to estimate the equivalence class of DAGs,
and the causal effects are still given by equation (3) (but they will not
be constant in general, and depend on the value x′

i in equation (3)). The
DAG assumption implicitly includes the assumption that we have no un-
measured confounders. This is a very strong assumption in general (but a
bit less strong in our particular example from biology where we observe
the expressions from essentially all genes of the B. subtilis genome). Relax-
ing the assumption of unmeasured confounders is possible by extending our
methodology to ancestral graphs [7, 27], which allow hidden variables. This
is a topic of current research.

We conclude by coming back to our practical problem of riboflavin pro-
duction by B. subtilis. This problem is of a causal or interventional type,
and hence our intervention approach is more appropriate than a regression-
type association analysis using high-dimensional variable selection in a linear
model. Therefore, despite open issues in the difficult field of inferring bounds
for causal effects, our new approach offers both conceptual and practical im-
provements.

8. Proofs. In order to prove Lemma 3.1, we need some more graph
theory and terminology. Consider an undirected graph G = (V,E). For any
subset V ′ ⊆ V , the subgraph induced by V ′ is GV ′ = (V ′, EV ′), where EV ′

is the set of all edges in E whose endpoints are both in V ′. G is called
chordal (or triangulated) if each of its cycles of length four or more has a
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chord, which is an edge joining two nonconsecutive vertices in the cycle. G
is called complete if every pair of distinct vertices is adjacent. A clique is a
set of vertices so that every pair of distinct vertices in this set is adjacent. A
vertex is simplicial if its adjacency set forms a clique. A perfect elimination
scheme of a graph G is an ordering σ = (v1, . . . , vn) of its vertices, so that
each vi is a simplicial vertex in the induced subgraph G{vi,...,vn}.

Chordal graphs have many nice properties. We will use the following [c.f.
1, 6, 10]:

1. Every chordal graph G has a simplicial vertex. If G is not complete,
then it has at least two non-adjacent simplicial vertices.

2. Chordality of graphs is a hereditary property: If G = (V,E) is chordal,
then all subgraphs of G induced by V ′ ⊆ V are chordal.

3. Every chordal graph has a perfect elimination scheme.

We also note that we can turn an undirected graph into a DAG without
v-structures by directing its edges according to a perfect elimination scheme
σ = (v1, . . . , vn): for any vertex vi, determine the adjacency set of vi in
G{vi,...,vn}, and for each vertex vj in this adjacency set, direct the edge vj−vi

towards vi. Note that the ordering of the vertices ensures that we cannot
create cycles. Moreover, we cannot create v-structures since the adjacency
set of vi in G{vi,...,vn} is a clique for all i = 1, . . . , n.

Proof of Lemma 3.1. Let i ∈ {1, . . . , p} and let S ⊆ sibi(G). We only
prove the non-trivial direction of the lemma: we assume that GS→i is locally
valid, and we show that there is a corresponding DAG G∗ in the equivalence
class with pai(G

∗) = pai(G) ∪ S.
First, we note that Xi∪S is a clique. This is trivial if S = ∅. If S 6= ∅, take

an arbitrary vertex v in S. Since S ⊆ sibi(G), v is adjacent to Xi. It must
also be adjacent to all other vertices in S, since otherwise GS→i contains
a new v-structure with Xi as collider, and this contradicts the assumption
that GS→i is locally valid.

Next, we use the following facts that were proved in [21, Proof of Th. 3]:
(i) no orientation of the edges not oriented in G will create a cycle which
includes an edge or edges that were oriented in G, (ii) no orientation of an
edge not directed in G can create a new v-structure with an edge that was
oriented in G, and (iii) the subgraph G′ of G, obtained by removing all of
the oriented edges in G, is the union of disjoint chordal graphs. Combining
these facts implies that any orientation of the edges in G′ that does not
create cycles or v-structures corresponds to a DAG in the equivalence class
of G. Moreover, in order to find such an orientation, each of the disjoint
chordal graphs in G′ can be considered separately.
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Let G′′
1 , . . . , G

′′
d be the collection of disjoint chordal graphs constituting

G′. Without loss of generality, we assume that Xi is contained in G′′
1 . Since

G′′
2 , . . . , G

′′
d are chordal, we can find a perfect elimination scheme for each of

these graphs and order their edges accordingly. We need to be more careful
with G′′

1 , since we need to find a direction of the edges so that all and only
all vertices in S are parents of Xi. In terms of a perfect elimination scheme,
this means that we need to order the vertices V ′′

1 of G′′
1 such that all vertices

in V ′′
1 \{Xi ∪ S} are ordered before Xi, and all vertices in S are ordered

after Xi. If G′′
1 is complete, then such an ordering exists trivially, since any

ordering of the vertices of a complete graph is a perfect elimination scheme.
If G′′

1 is not complete, then there must be at least two non-adjacent simplicial
vertices. Since Xi ∪ S is a clique, at least one of these vertices must be in
V ′′

1 \{Xi∪S}. We take such a vertex, say v1, as the first vertex in the perfect
elimination scheme. Next, we consider the induced subgraph GV ′′

1 \{v1}. This
graph is again chordal, since chordality is a hereditary property. If GV ′′

1 \{v1}

is complete, then we are done. If it is not complete, then we take a simplicial
vertex in {V ′′

1 \{v1}}\{Xi ∪S} as the next vertex in the elimination scheme.
We repeat this procedure until it terminates, which is guaranteed to happen
for some graph GA with A ⊇ Xi ∪ S, since Xi ∪ S is a clique.

Directing the edges of G′′
1 , . . . , G

′′
d according to the resulting perfect elimi-

nation schemes yields a DAG without v-structures and with the same skele-
ton as G′, where all and only all vertices in S are parents of Xi. Hence, using
this direction of edges in the original CPDAG G yields a DAG G∗ that is in
the equivalence class of G and that satisfies pai(G

∗) = pai(G) ∪ S.

In order to prove Theorem 5.2, we need the following lemma:

Lemma 8.1. Assume that assumptions (A) and (C)-(F) hold. Then for
every ǫ > 0 we have

sup
i=1,...,pn,S⊆adji(Gn)

P (|β̂ni|S − βni|S| > ǫ)

≤ C1

ǫ
exp(−C2ǫ

2(n− qn − 1)) + 2 exp(−C3(n/2− qn − 1)), n ≥ N,

where N > 0 is a constant depending on qn (see assumption (D)), C1, C2 >
0 are constants depending on v (see assumption (F)), and C3 > 0 is an
absolute constant.

Proof. Let i ∈ {1, . . . , pn}, S ⊆ adji(Gn), and ǫ > 0. If Yn ∈ S, then
β̂ni|S = βni|S = 0. Hence, we assume Yn /∈ S. In that case β̂ni|S is the
estimated regression coefficient of Xni in the regression of Yn on Xni and S,
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and βni|S is the true regression coefficient of Xni in the regression of Yn on
Xni and S.

We first analyze the distribution of β̂ni|S |{Xni, S}. Let σ2
ny|i,S denote the

variance of Yn|{Xni, S}, and let σ2
ni|S denote the variance of Xni|S. Moreover,

let s2
ni denote the sample variance of Xni (using (n−1) in the denominator),

let s2
ni|S denote the sample variance of Xni|S (using the residuals in the

regression of Xni on S, with n − |S| − 1 in the denominator), and let R2
ni|S

denote the sample multiple correlation coefficient between Xni and S. Then,

Var(β̂ni|S |{Xni, S}) =
1

1−R2
ni|S

σ2
ny|i,S

(n− 1)s2
ni

=
σ2

ny|i,S

(n − |S| − 1)s2
ni|S

,(10)

where the first equality is a well-known identity, and the second equality
follows from 1−R2

ni|S = {(n−|S|−1)s2
ni|S}/{(n−1)s2

ni}. Combining equation

(10) with E(β̂ni|S |{Xni, S}) = βni|S and assumption (A), we obtain

P (|β̂ni|S − βni|S | > ǫ|{Xni, S}) = P

(

|Z| > ǫ
√

n− |S| − 1sni|S

σny|i,S

∣

∣

∣

∣

{Xni, S}
)

,

(11)

where Z is a standard Normal random variable.
We first analyze equation (11) on the event BniS = {Xni, S : s2

ni|S >
1
2σ2

ni|S}. Using assumption (F), we obtain

P

(

|Z| > ǫ
√

n− |S| − 1sni|S

σny|i,S

∣

∣

∣

∣

{Xni, S}
)

1BniS

≤ P

(

|Z| > ǫv

√

n− |S| − 1√
2

)

≤ P
(

|Z| > Cǫ
√

n− qn − 1
)

,

where C depends on v, and qn is as in assumption (D). Using the well-known
bound on tail probabilities of the standard Normal distribution P (|Z| > a) ≤
2/(
√

2πa) exp(−a2/2), the last display is bounded above by

C1

ǫ
exp(−C2ǫ

2(n − qn − 1))

for all n ≥ qn + 2, where C1, C2 > 0 are constants depending on v.
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Next, we compute an upper bound for P (BC
niS). Note that

P (BC
niS |S) = P

(

(n− |S| − 1)s2
ni|S

σ2
ni|S

≤ 1

2
(n− |S| − 1)

∣

∣

∣

∣

S

)

= P

(

χ2
n−|S|−1 ≤ (n− |S| − 1)/2

∣

∣

∣

∣

S

)

≤ P
(

χ2
n−qn−1 ≤ (n− 1)/2

)

,

where χ2
k denotes a chi-squared random variable with k degrees of freedom.

We now apply Bernstein’s inequality [see, e.g., 31, Lemma 2.2.11, p. 103],
by writing

P (χ2
n−qn−1 ≤ (n− 1)/2) = P

(

χ2
n−qn−1 − (n− qn − 1) ≤ −(n− 1)/2 + qn

)

≤ P
(

|χ2
n−qn−1 − (n− qn − 1)| ≥ (n− 1)/2 − qn

)

.

By viewing a χ2
n−qn−1−(n−qn−1) random variable as the sum of n−qn−1

independent centered χ2
1 random variables, and noting that a centered χ2

1

random variable satisfies the moment conditions of Bernstein’s inequality, it
follows that the last display is bounded above by

2 exp

(

− ((n − 1)/2 − qn)2

C ′
3 + C ′

4((n − 1)/2 − qn)

)

,

where C ′
3, C

′
4 > 0 are constants coming from the moment conditions. This

expression is in turn bounded above by 2 exp(−C3(n/2 − qn − 1)) for all n
such that (n−1)/2−qn ≥ C ′

3. Since this bound holds for all S with |S| ≤ qn,
it also holds for the unconditional probability P (BC

niS).
The result now follows from putting the parts together:

P (|β̂ni|S − βni|S| > ǫ)

≤
∫

P
(

|β̂ni|S − βni|S | > ǫ|{Xni, S}
)

1BniS
dFXni,S + P (BC

niS)

≤ C1

ǫ
exp(−C2ǫ

2(n− qn − 1)) + 2 exp(−C3(n/2− qn − 1)),

where FXni,S denotes the distribution of (Xni, S).

Proof of Theorem 5.2. Let ǫ > 0. By consistency of the PC-algorithm
[15, Th. 2], there is a sequence αn such that P (An) → 1 for the event
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An = {Ĝn(αn) = Gn}. Hence, it is sufficient to show that

lim
n→∞

P

(

sup
i=1,...,pn

dmultiset(Θ̂ni(αn),Θni) > ǫ,An

)

→ 0 and(12)

lim
n→∞

P

(

sup
i=1,...,pn

dmultiset(Θ̂
L
ni(αn),ΘL

ni) > ǫ,An

)

→ 0.(13)

In the remainder of the proof, we suppress the dependence of αn in the nota-
tion. We first consider the local method. On the event An, the cardinalities
|Θ̂L

ni| and |ΘL
ni| of the multisets Θ̂L

ni and ΘL
ni are equal. Hence,

P

(

sup
i=1,...,pn

dmultiset(Θ̂
L
ni,Θ

L
ni) > ǫ,An

)

= P



 sup
i=1,...,pn,j=1,...,|ΘL

ni
|

|θ̂L
ni(j) − θL

ni(j)| > ǫ,An



 ,(14)

where θ̂L
ni(j) and θL

ni(j) are the order statistics of Θ̂L
ni and ΘL

ni, respectively.
Moreover, on the event An we have that for every i = 1, . . . , pn and j =
1, . . . , |ΘL

ni|, θ̂L
ni(j) = β̂ni|pai(Gn)∪S for some S ⊆ sibi(Gn). Hence, θ̂L

ni(j) =

β̂ni|S′ for some S′ ⊆ adji(Gn). Note, however, that θ̂L
ni(j) and θL

ni(j) do not

need to correspond to the same set S, since it may happen that θ̂L
ni(j) = β̂ni|S ,

θL
ni(j) = βni|S′ , and βni|S 6= βni|S′ . But since the pairing of the elements of

Θ̂L
ni and ΘL

ni with respect to their order statistics is an optimal pairing for
the supremum distance, the following inequality holds for all i = 1, . . . , pn:

sup
j=1,...,|ΘL

ni
|

|θ̂L
ni(j) − θL

ni(j)| ≤ sup
S⊆adji(Gn)

|β̂ni|S − βni|S |.

Combining this with equation (14) yields

P

(

sup
i=1,...,pn

dmultiset(Θ̂
L
ni,Θ

L
ni) > ǫ,An

)

≤ P

(

sup
i=1,...,pn,S⊆adji(Gn)

|β̂ni|S − βni|S| > ǫ

)

≤
pn
∑

i=1

∑

S⊆adji(Gn)

P (|β̂ni|S − βni|S| > ǫ)

≤ pn2qn sup
i=1,...,pn,S⊆adji(Gn)

P (|β̂ni|S − βni|S| > ǫ),(15)
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where the last inequality follows from the fact that the number of possible
subsets of adji(Gn) is bounded above by 2qn , where qn is given in assump-
tion (D). Using Lemma 8.1 and assumptions (C) and (D), it follows that
expression (15) converges to zero as n → ∞. This completes the proof of
(13), yielding consistency of the local method.

We can use the same reasoning for the basic method. To see this, we note
that on the event An the estimated CPDAG is a valid CPDAG. Hence, the
sample versions of the basic and the local algorithm perform exactly the
same linear regressions (cf. Theorem 5.1). The only difference in the output
of the two algorithms lies in the multiplicities of the values. But since the
estimated CPDAG is correct, the multiplicities of the sample version of the
basic algorithm are correct, and they do not affect expression (12).

APPENDIX A: POSSIBLE MODIFICATIONS OF THE ALGORITHMS

We first introduce some new notation. Let pai,y(G) be the set of vertices
in pai(G) from which there is a path to Y . Similarly, let sibi,y(G) be the set
of vertices in sibi(G) from which there is a path to Y .

We now discuss two modifications that can be made to the basic Algo-
rithm 1:

(i) Replace line 4 of Algorithm 1 by: “If Gj does not contain a directed
path from Xi to Y , then set θij = 0. Otherwise, set θij = βi|pai(Gj).”
Since the causal effect of Xi on Y is by definition zero if there is no
directed path from Xi to Y , this modification does not change the out-
put of the population version of the algorithm. In the sample version,
however, it allows us to estimate exact zeroes, eliminating estimation
error from the regression estimates when there is no directed path.

(ii) Replace pai(Gj) in line 4 of Algorithm 1 by pai,y(Gj). Since both
pai(Gj) and pai,y(Gj) satisfy the back-door criterion with respect to
(Xi, Y ), the output of the population version of the algorithm is again
unchanged. In the sample version, this modification can be used to
reduce the dimensionality of the regression problems.

One can also make several modifications to the local Algorithm 3:

(i) Before line 2 of Algorithm 3, test whether the CPDAG G allows a
directed path from Xi to Y , i.e., test whether it is possible to direct
the undirected edges of G so that a directed path from Xi to Y is
created, without creating additional v-structures or cycles. If G does
not allow such a path, set Θi = {0}. If G does allow such a path,
perform lines 2-7 of Algorithm 3. This modification may change the
output of the population version of the algorithm, in the sense that the
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cardinality of Θi may change if G does not allow a directed path. In
such a case, the cardinality is always 1 in the modified version, while
it equals the number of sets S for which GS→i is locally valid in the
original version. However, the distinct values in Θi do not change. In
the sample version, this modification is useful for the same reason as
modification (i) of Algorithm 1: it allows us to estimate exact zeroes,
without estimation error from the regression problems.

(ii) Replace sibi(G) in line 3 of Algorithm 3 by sibi,y(G). This substitution
may again change the multiplicities of values in Θi, but not the distinct
values. This modification can be beneficial for two reasons. First, the
algorithm may become faster, since one has to consider fewer subsets
S in line 3 of Algorithm 3. Second, the dimensionality of the regression
problems is reduced.

(iii) Replace pai(G) in line 5 of Algorithm 3 by pai,y(G). This can be done
for the same reasons as modification (ii) of Algorithm 1.
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