Journal of Machine Learning Research Volume (Year) Page Submitted Date; Published Date

High-dimensional covariance estimation based on Gaussiaraphical

Shuheng Zhou

Department of Statistics
University of Michigan

Ann Arbor, Ml 48109-1041, USA
Philipp R Gtimann

Seminar for Statistics

ETH Zirich

8092 Zirich, Switzerland

Min Xu

Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA 15213-3815, USA
Peter Biihimann

Seminar for Statistics

ETH Zirich

8092 Zirich, Switzerland

Editor:

models
SHUHENGZ@UMICH.EDU
RUTIMANN @STAT.MATH .ETHZ.CH
MINX @CS.CMU.EDU
BUHLMANN @STAT.MATH .ETHZ.CH
Abstract

Undirected graphs are often used to describe high dimealsilistributions. Under sparsity condi-
tions, the graph can be estimated usipgrenalization methods. We propose and study the follow-
ing method. We combine a multiple regression approach witas of thresholding and refitting:
first we infer a sparse undirected graphical model struatia¢hresholding of each among many
£1-norm penalized regression functions; we then estimatedfariance matrix and its inverse us-
ing the maximum likelihood estimator. We show under sugatainditions that this approach yields
consistent estimation in terms of graphical structure astl¢onvergence rates with respect to the
Frobenius norm for the covariance matrix and its inverse al&e derive an explicit bound for the

Kullback Leibler divergence.
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1. Introduction

There have been a lot of recent activities for estimationigififtimensional covariance and inverse
covariance matrices where the dimensjoof the matrix may greatly exceed the sample size
High-dimensional covariance estimation can be classifigdtivo main categories, one which relies
on a natural ordering among the variabl&s and Pourahmad003); Bickel and Levina(2004);
Huang et al(2006); Furrer and Bengtsso(2007); Bickel and Levina(2008); Levina et al.(2008
and one where no natural ordering is given and estimatorperrautation invariant with respect
to indexing the variablesuan and Lin(2007); Friedman et al(2007); d’Aspremont et al(2008);
Banerjee et al(2009; Rothman et al(2008. We focus here on the latter class with permutation
invariant estimation and we aim for an estimator which isigat for both the covariance matdx
and its inverse, the precision matdix '. A popular approach for obtaining a permutation invariant
estimator which is sparse in the estimated precision matrikis given by the/;-norm regularized
maximume-likelihood estimation, also known as the GLassan and Lin(2007); Friedman et al.
(2007); Banerjee et al2009. The GLasso approach is simple to use, at least when retyirmub-
licly available software such as thi¢ asso package irR. Further improvements have been reported
when using some SCAD-type penalized maximum-likelihodthedor Lam and Far(2009 or an
adaptive GLasso procedurenn et al(2009, which can be thought of as a two-stage procedure. Itis
well-known from linear regression that such two- or mutige methods effectively address some
bias problems which arise frofi-penalizationZou (2006); Candes and Ta(2007); Meinshausen
(200%); Zou and Li(2008; Buhlmann and Meie(2008; Zhou (2009 20108.

In this paper we develop a new method for estimating grapbtoacture and parameters for multi-
variate Gaussian distributions using a multi-step proceduhich we call @lato (Graphestimation
with Lasso and Threslfding). Based on ari;-norm regularization and thresholding method in a
first stage, we infer a sparse undirected graphical modagel,dn estimated Gaussian conditional
independence graph, and we then perform unpenalized maxiikelihood estimation (MLE) for
the covariance& and its inverse2—! based on the estimated graph. We make the following theo-
retical contributions: (i) Our method allows us to selectrapdical structure which is sparse. In
some sense we select only the important edges even thoughniiag be many non-zero edges in
the graph. (ii) Secondly, we evaluate the quality of the graje have selected by showing consis-
tency and establishing a rate of convergence in Frobenitm nbthe estimated inverse covariance
matrix; under sparsity constraints, the latter is of lowelen than the corresponding results for the
GLassarothman et al(2008 and for the SCAD-type estimatoem and Far(2009. (iii) We show
predictive risk consistency and provide a rate of convargesf the estimated covariance matrix.
(iv) Lastly, we show general results for the MLE, where oapproximategraph structures are given
as input. Here, we explicitly analyze the performance ofrtfeximum likelihood estimator as de-
fined in (L3) in all three metrics as just mentioned. Besides these ¢fieal advantages, we found
empirically that our graph based method performs bettereimegal, and sometimes substantially
better than the GLasso, while we never found it clearly woFseally, our algorithm is simple and
is comparable to the GLasso both in terms of computatiorrsd and implementation complexity.
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There are a few key motivations and consequences for pragpesich an approach based on graph-
ical modeling. We will theoretically show that there areessvhere our graph based method can
accurately estimate conditional independencies amorigles, i.e. the zeroes &f !, in situations
where GLasso fails. The fact that GLasso easily fails tovestt the zeroes ai~! has been recog-
nized byMeinshauser(20089 and it has been discussed in more detailgdnvikumar et al(2009).
Closer relations to existing work are primarily regarding first stage of estimating the structure of
the graph. We follow the nodewise regression approach frarmshausen and Buhlmar(2006

but we make use of recent results for variable selectiomaali models assuming the much weaker
restricted eigenvalue conditighickel et al.(2009); Zhou (20101 instead of the restrictive neigh-
borhood stability conditioriVieinshausen and Buhiman(@006 or the equivalent irrepresentable
condition Zhao and Yu(2006. In some sense, the novelty of our theory extending beycnal
(20108 is the analysis for covariance and inverse covariancenattn and for risk consistency
based on an estimated sparse graph as we mentioned abovegssion and thresholding results
build upon analysis of the thresholded Lasso estimatoruakest inZhou (20101, Throughout our
analysis, the sample complexity is one of the key focus pewhich builds upon results inhou
(20109. Once the zeros are found, a constrained maximum likedirestimator of the covariance
can be computed, which was shownGmaudhuri et al(2007); it was unclear what the proper-
ties of such a procedure would be. Our theory answers sucdtigne. As a two-stage method,
our approach is also related to the adaptive Lagso (2006 which has been analyzed for high-
dimensional scenarios kuang et al(2009; Zhou et al(2009; van de Geer et a(2010. Another
relation can be made to the methodfytimann and Buhiman(2009 for covariance and inverse
covariance estimation based on a directed acyclic graphs rekation has only methodological
character: the techniques and algorithms usediinmann and Biuhlman(2009 are very different
and from a practical point of view, their approach has mugihéi degree of complexity in terms
of computation and implementation, since estimation of @mvalence class of directed acyclic
graphs is difficult and cumbersome.

Notation. We use the following notation. Given a graph= (V, Ey), whereV = {1,...,p} is the
set of vertices andy, is the set of undirected edges. we us¢o denote the degree for nodethat
is, the number of edges ifiy connecting to nodeé. For an edge sef, we let|E| denote its size.
We use©, = % L andx, to refer to the true precision and covariance matrices otispéy from
now on. We denote the number of non-zero elemené by supp©). For any matrixV = (w;;),
let || denote the determinant &, tr(W) the trace ofil. Let ¢nax(W) andemin (W) be the
largest and smallest eigenvalues, respectively. We wliitg(17) for a diagonal matrix with the

same diagonal a8’. The matrix Frobenius norm is given V|| . = />, >, wi2j' The operator

norm || W |3 is given by, (WWT). We write|- | for the/, norm of a matrix vectorized, i.e., for
amatrix| W, = [[vecW|l; = >, >, |wi;|, and sometimes writglV ||, for the number of non-zero
entries in the matrix. For an index sEtand a matrixi?’ = [w;;], write Wy = (w;;1((i,j) € T)),
whereI(-) is the indicator function.
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2. The model and the method

We assume a multivariate Gaussian model
X = (Xl, e ,Xp) ~ J\/},,(O, Eo), where EO,ii =1. Q)

The data is generated by, ... X iid. ~ N,(0,%). Requiring the mean vector and all
variances being equal to zero and one respectively is natlaestriction and in practice, we can
easily center and scale the data. We denote the concentratitrix by©, = > L

Since we will use a nodewise regression procedure, as Heddoelow in Sectio.1, we consider
a regression formulation of the model. Consider many regvas, where we regress one variable
against all others:

Xi:zﬁai'Xj+Vi(i=1,---,p), where )
i
V; ~ N(0,0%) independent of X;:j # i} (i = 1,...,p). 3)

There are explicit relations between the regression casffi, error variances and the concentration
matrix ©y = (HO,ij):

ﬁ; = —9071'3'/90,2‘2‘, Var(VZ-) = 0'\2/2. — 1/90,2‘2‘ (17] = 17 s >p)' (4)

Furthermore, it is well known that for Gaussian distriboSpconditional independence is encoded
in ©¢, and due to4), also in the regression coefficients:

X; is conditionally dependent of; given{Xy; k€ {1,...,p} \ {i,7}}
= 0o #0 < B/ #£0ands #£0. 5)

For the second equivalence, we assume YeatV;) = 1/6p;; > 0 andVar(V}) = 1/6y ;; > 0.
Conditional (in-)dependencies can be conveniently entbgean undirected graph, the conditional
independence graph which we denote(®by= (V, Ey). The set of vertices i¥ = {1,...,p} and
the set of undirected edgé C V' x V' is defined as follows:

there is an undirected edge between nodmsd;
= o #0 < B #£0andsl #0. (6)

Note that on the right hand side of the second equivalence;ontl replace the word "and” by
"or”. For the second equivalence, we assuviae(V;), Var(V;) > 0 following the remark afters).

We now define the sparsity of the concentration ma#ixor the conditional independence graph.
The definition is different than simply counting the nonezetements 0B, for which we have
supp(©g) = p + 2|Ey|. We consider instead the number of elements which are sifflgilarge.
For eachi, define the numbefrg,n as the smallest integer such that the following holds:

p

> min{65,;, \004} < sh,\ 00, Where X = +/2log(p)/n, (7)

J=1j#i
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where essential sparsit)sg,n at row i describes the number of “sufficiently large” non-diagonal
elementd), ;; relative to a giverin, p) pair anddy ;;,i = 1, ..., p. The valueSy ,, in (8) is summing
essential sparsitpcross all rows 08y,

p
Som = D> S (8)
=1

Due to the expression of, the value ofS,,, depends o andn. For example, if all non-zero
non-diagonal elements ;; of theith row are larger in absolute value thaR/d, ;;, the values;, ,
coincides with the node degreé. However, if some (many) of the elemernés ;;| are non-zero
but small, s{, ,, is (much) smaller than its node degre®e As a consequence, if some (many) of
00,i5], Vi, j,i # j are non-zero but small, the value$)f,, is also (much) smaller thatj £ |, which

is the “classical” sparsity for the matr©, — diag(©y)). See Sectior for more discussions.

2.1 The estimation procedure

The estimation oy and, = @51 is pursued in two stages. We first estimate the undirected
graph with edge seky as in @) and we then use the maximum likelihood estimator based on
the estimatels,,, that is, the non-zero elements ©f, correspond to the estimated edgesfiy.
Inferring the edge sdf, can be based the following approach as proposed and thedisejustified

in Meinshausen and Buhlmai(2006): performp regressions using the Lasso to obtawectors of
regression coefficients!, . . ., 3* where for each, 5 = {Ej; j € {1,...,p}\ i}; Then estimate
the edge set by the “OR” rule,

estimate an edge between nodesd;j <— @Z #0 orﬁg #0. (9)
Nodewise regressions for inferring the graphin the present work, we use the Lasso in com-
bination with thresholding’hou (20100). Consider the Lasso for each of the nodewise regressions
Brie = argming: S (X7 = 3" gix{)?2 40, Y161 fori=1,....p, (10)
r=1 i J#i
where),, > 0 is the same regularization parameter for all regressioimee3he Lasso typically es-

timates too many components with non-zero estimated reigresoefficients, we use thresholding
to get rid of variables with small regression coefficientsrirsolutions of {0):

B\;()\nﬂ—) - ji',init()‘n)[(yﬂj',init()‘n)‘ > 7—)7 (11)

wherer > 0 is a thresholding parameter. We obtain the corresponditm&®d edge set as defined
by (9) using the estimator inl(l) and we use the notation

En(An, 7). (12)

We note that the estimator depends on two tuning paramgteasdr.
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Maximum likelihood estimation based on graphs.Given a conditional independence graph
with edge set”, we estimate the concentration matrix by maximum likeldtoo

-~

On(E) = argminge vy, (tr(@§n) — log \@\) , Where
My ={0© cRPP; © -0 andby;; =O0forall (i,j) ¢ E, wherei # j}  (13)

defines the constrained set for positive defifitandS,, = n=1 >"_, X (X™)T is the sample
covariance estimator (using that the mean vector is zerbg €ktimator in13) is the maximum
likelihood estimator with constraints to zero-values esponding to the non-edgés:

B = A(,)) i d=1...,p,i #j,(i,j) & E}. (14)

If the edge seft is sparse having relatively few edges only, the estimat@id) is already suffi-
ciently regularized by the constraints and hence, no adgitipenalization is used at this stage. Our
final estimator for the concentration matrix is the comboravof (12) and (L3):

O, = On(En(An, 7). (15)

Choosing the regularization parameters.We propose to select the paramelgrvia cross-
validation to minimize the squared test set error among adgressions:

p
Xn = argmin, Z (CV-scoreq) of ith regressiop,

=1
where CV-scoreX) of ith regression is with respect to the squared error predittiss. Sequentially
proceeding, we then selecby cross-validating the multivariate Gaussian log-liketid, from (3).
Regarding the type of cross-validation, we usually use told scheme. Due to the sequential
nature of choosing the regularization parameters, the pumbcandidate estimators is given by
the number of candidate values fdplus the number of candidate value for In Section4, we
describe the grids of candidate values in more details. Wi that for our theoretical results, we
do not analyze the implications of our method using estichateand~.

3. Theoretical results

In this section, we present in Theorehtonvergence rates for estimating the precision and the
covariance matrices with respect to the Frobenius normgiditian, we show a risk consistency
result for an oracle risk to be defined ih7). More importantly, we show the model we select is
sufficiently sparse while at the same time, the bias term Wwedunce via sparse approximation is
sufficiently bounded as given explicitly in PropositianThese results again illustrate the classical
bias and variance tradeoff. Our analyses are non-asymptotiature; however, we first formulate
our results from an asymptotic point of view for simplicifyo do so, we consider a triangular array
of data generating random variables

XW XM iid ~ N (0,%0), n=1,2,... (16)
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wherel, = Xy, andp = p,, change withm. We make the following assumptions. L@} := 251.
(AO) The size of the neighborhood for each nadeV is upper bounded by an integex p/2.

(A1) The dimension and number of sufficiently strong norezedgesS; ,, as in @) satisfy: di-
mensionp grows withn following p = n° for some constari < ¢ < 1 and

p+ Son = o(n/log(n)) (n — c0).

(A2) The minimal and maximal eigenvalues of the true covemamatrix>, are bounded: for
some constants/,,, > M., > 0, we have

(pmin(ZO) 2 Mlow >0 and (PmaX(EO) S Mupp S 0.

Moreover, throughout our analysis, we assume the followiFigere exists? > 0 such that
for all i, andV; as defined ing): Var(V;) = 1/00.4; > v°.

For more discussions on these conditions, see Seéti@defore we proceed, we need some defini-
tions. Define for® >~ 0

R(©) = tr(©X%) — log O], a7

where minimizing {7) without constraints give®,. Given @), (7), and©, define

Cgiag := min{ max Hg’ii,imax (sém/S()m) . Hdiag(@o)H%}. (18)

221,...[) :17~~~7p

We now state the main results of this paper. We defer thefggamn on various tuning parameters,
namely,\,, T to Section3.2

Theorem 1 Consider data generating random variables aslif)(and assume that (A0), (Al), and
(A2) hold. Then, with probability at least— d/p?, for some small constamt > 2, we obtain under
appropriately chosen,, andr, an edge sek, as in (L2), such that

|E,| < 4S0.,, where |E, \ Eo| < 2S0.,; (19)

and for®,, and¥,, = (©,,)! as defined ir{15) the following holds,

16, ~6ulle = 0r (/s S0, k) )

150~ Zalle = Op (/lo+ S log(a)/n).
R(©,) — R(©0) = Op ((p+ Son)log(n)/n)

where the contants hidden in tii&q () notation depend om, Moy, Mupp, Caiag @s in(18), and
constants concerning sparse and restrictive eigenvalfie dcf. Sectior3.2andB).
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The predictive risk can be interpreted as follows. Det~ A(0, %) with fx, denoting its den-
sity. Let f5 be the density foV'(0, %,,) and Dk (X0//%5) denotes the Kullback Leibler (KL)

divergence fromV'(0, %) to N(0, £,,). Now, we have foi, &, & 0,

R(6,) — R(©o) == 2Eo [log feo(X) —log fg (X)] = 2D (3o Sn) > 0.

In Section3.2, we provide an outline for achieving TheordmThe conditions that we use are indeed
similar to those irRothman et al(2009), with (A1) being much more relaxed whefy , < |Ep.
We note that the bounded neighborhood constraint (AO) isired only for regression analysis (cf.
Theoreml0) and for bounding the bias due to sparse approximation asopoBition2. We believe

it can be relaxed when we do not aim to recover the graph steiciSeeZhou (20106 for more
discussions on this point. Actual conditions and non-adgtipresults that are involved in the
Gelato estimation appear in SectioBs C, andD respectively.

Theoreml can be interpreted as follows. First, the cardinality oféakgmated edge set exceeis,

at most by a factor 4, wher, ,, as in @) is the number of sufficiently strong edges in the model,
while the number of false positives is boundedsy ,,. Note that the factor$ and2 can be replaced
by some other constants, while achieving the same boundsobeiius norm (cf. Section.1). We
emphasize that we achieve these two goals by sparse moeelice) where only important edges
are selected even though there are many more non-zero eudgis under conditions that are in
some sense much weaker than (A2); For example, (A2) can scespby conditions on sparse and
restrictive eigenvalues df,, much in the setting of’andes and Ta(2007); Meinshausen and Yu
(2009; Bickel et al.(2009 for estimating regression coefficients except that we moywose such
conditions on%, instead of the (regression) design matrix. Second, for tbbénius norm and the
risk to converge to zero, a too large valuepaf not allowed and hence, a real high-dimensional
scenario wherg > n is excluded. Hence (A1) is brought in only for this purpos@wsdver, this
restriction comes from the nature of the Frobenius norm ahemwconsidering e.g. the operator
norm, such restrictions typically can be relaxed, se¢hman et al(2009. The convergence rate
with respect to the Frobenius norm should be compared toatesOrs(\/(p + |Eol) log(n)/n)
which is the rate irRothman et al(20089 for the GLasso and for SCADam and Far(2009. In
the scenario whergy| > S ,,, i.e. there are many weak edges, the rate in Thedrrbetter than
the one established for GLassothman et al(2009 or for the SCAD-type estimataram and Fan
(2009; hence we require a smaller sample size in order to yieldcanrate estimate ab,. We
note that convergence rates for the estimated covariant@raad for predictive risk depend on
the rate in Frobenius norm of the estimated inverse covegiamatrix. Finally, it is also of interest
to understand the bias of the estimator caused by using tinges¢sd edge sdt, instead of the true
edge setty. This is the content of Propositich For a givenﬁn, denote by

éo = diag(©g) + (@o)gn = diag(©o) + @o,EnmEo’

where the second equality holds sirteg g = 0. Note that the quantltyf)o is identical to@o on
» and on the diagonal, and it equals zeroE;‘pas in (14) Hence, the quantity, D= = 0y — Oy
measures the bias caused by a potentially wrong edg@,lsetote thatd, = O if En = Fj.
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Proposition 2 Consider data generating random variables as in expresgiéh Assume that (AO)
and (A2) hold and thathax{p, Sy ,,} = o(n/log(p))(n — oo). Then we have for choices o, 7
as in Theorem. and E,, in (12),

1©0ll,. = B0 — Oollx = Op ( Som 1og<p>/n) .

We note that we achieve essentially the same raté (@) ! — 3| »; see Remar2. We give
an account on how results in Propositidrare obtained in SectioB.2, with its non-asymptotic
statement appearing in Corollaty. Note that the sample size of= Q (max(p, Sp.,) logn) as in
Proposition2 is less stringent than that implicitly specified in (A1), wleve have specified a lower
bound on the sample size to he= Q ((p + Sp») log n). As to be shown in our analysis, the lower
bound o is slightly different for each Frobenius norm bound to hatshi a non-asymptotic point
of view (cf. Theoremnil4 and15).

3.1 Discussions and connections to previous work

It is interesting that the accuracy in terms @” — 09 - is not depending too strongly on the
property to recover the true underlying edge Egtusing (L3). Regarding the latter, suppose we
obtain with high probability the screening property

E 2 Ey, (20)

when assuming that all non-zero regression coeﬁiciqusare sufficiently large £ might be an
estimate and hence random). Although we do not intend to rmpe&keise the exact conditions
and choices of tuning parameters in regression and thidislgoin order to achieve2(), we state
Theoreni, in case 20) holds with the following condition: the number of false jives is bounded
as|F \ Ey| < p+ S. For simplicity, we state an asymptotic bound on the rate offemence in
Frobenius norm of the estimatédﬂ.

Theorem 3 Consider data generating random variables as in expres¢id) and assume that
(Al) and (A2) hold, where we replac® ,, with S := |Ey| = >°F s'. Suppose on some event
&£, such thatP (£) > 1 — d/p? for a small constant/, we obtain an edge séf such that (20)
holds and|E \ Ey| = O(S + p). Let®,(E) be the minimizer as defined {f3). Then, we have

16,,(E) — llr = Op <\/(p +5) log(n)/n>.

It is clear that this bound corresponds to exactly thatofiman et al(2008) for the GLasso esti-
mation under appropriate choice of the penalty parameteroiit the proof as it is more or less a
simplified version of Theorerii4, which proves the stronger bounds as stated in Thedremen

F satisfies the sparsity conditions as in Theoreamd the bias condition in Propositi@n We note
that the maximum node-degree bound in (AO) is not needed lieoilem3, nor for Theoreml4-

16 to hold. We now make some connections to previous work. ,Rirstnote that to obtain with
high probability the exact edge recovely,= Ej, we need again sufficiently large non-zero edge
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weights and some restricted eigenvalue conditions on th&@mce matrix as defined in Sectién
even for the multi-stage procedure. An earlier example @vshin Zhou et al.(2009, where the
second stage estimatﬁrcorresponding tol(1) is obtained with nodewise regressions using adap-
tive LassoZou (2006 rather than thresholding as in the present work in ordeetover the edge

set Fy with high probability. Clearly, given an accurafél, under (Al) and (A2) one can then
apply Theoren8 to accurately estimat®,,. On the other hand, it is known that GLasso necessarily
needs more restrictive conditions aly than the nodewise regression approach with the Lasso, as
discussed ireinshauser(2007) andRavikumar et al(2009).

Furthermore, we believe it is easy to show that the nodevegeession approach with Lasso and
thresholding (Gelato) works under the less restrictiveiiaggions on:y and with a smaller sample
size than the analogue without the thresholding operatiarder to achieveearly exact recovery
of the support in the sense thﬁg D Ep andmax; \Em \ Ey | is small, which is to be understood
as: the number of extra estimated edges at each hsdeounded by a small constant even when
node degrea’ grows sublinearly witm for eachi. This is shown essentially inhou (20105) for
single regression, in view of Theore?® in the present work. Given such propertiesﬁplf, we can
again apply Theorerato obtain®,, under (A1) and (A2). In comparison to GLasso, Gelato reguire
weaker assumptions oxj, in order to achieve the best sparsity and bias tradeoff astiidited in
Theoreml and Propositior2 when many signals are weak, and Theorf@mhen all signals inE,
are strong.

3.2 An outline for Theorem 1

Let s) = max;—1, , 36n We note that although sparse eigenvalpgsx(s), pmax(3s0) and re-
stricted eigenvalue foE, (cf. SectionA) are parameters that are unknown, we only need them to
appear in the lower bounds fdg, D4, and hence also that for, andt¢, that appear below. We sim-
plify our notation in this section to keep it consistent watlr theoretical non-asymptotic analysis
to appear toward the end of this paper.

Regression.We choose for some) > 4v/2,0 < 6 < 1, and\ = +/log(p) /n,

An = do), where dy > co(1 + 0)?\/ pmax(5) pmax (350)-

Let BLy,i = 1,...,p be the optimal solutions tda.Q) with \,, as chosen above. We first prove an
oracle result on nodewise regressions from Se@idrin Theoreml0.

Thresholding. We choose for some constarits, D, to be defined in Theorert0,
to = fo)\ = Dydp\ WhereD4 > Dy

where D, depends on restrictive eigenvalue3af; Apply (11) with 7 = to and3%,,i = 1,...,p
for thresholding our initial regression coefficients. Let

D' ={j:j#4, |Bimi] <to= for},

10
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where bounds o®?,i = 1,...,p are given in Lemma1. In view of (9), we let

D ={(i,j) :i#j:(i,j) € D' ND}. (21)

Selecting edge seE. Recall for a pair(i, j) we take theOR ruleas in Q) to decide if it is to be
included in the edge sét: for D as defined inZ1), define

E:={(i,7):4,j=1,...,p,i # 7,(i,j) &€ D}. (22)
to be the subset of pairs of non-identical verticeg;oihich do not appear i®; Let
éo = diag(@o) + ®O,EOOE (23)

for £ asin £2), which is identical t® on all diagonal entries and entries indexedHy)yN F, with
the rest being set to zero. As shown in the proof of Coroliayby thresholding, we have identified
a sparse subsetf edgesE of size at mosttSy ,,, such that the corresponding big®¢ p|| =
|©0 — ©g||F is relatively small, i.e., as bounded in Propositin

Refitting. In view of Propositior2, we aim to recovet—)o g|ven a sparse subsgt toward this goal,
we use {3) to obtain the final estlmatc@ andZn = (@ )~1. We give a more detailed account
of this procedure in Section, with a focus on elaborating the bias and variance trad®éfshow
the rate of convergence in Frobenius norm for the estim@t@dndﬁn in Theorem14 and15, and
the bound for Kullback Leibler divergence in Theorémrespectively.

3.3 Discussion on covariance estimation based on maximunkdilihood

The maximum likelihood estimate minimizes over@ll~ 0,
R,(9) = tr(©8,) — log 6] (24)

whereS,, is the sample covariance matrix. Minimizi@(@) without constraints giveﬁn =S,
We now would like to minimizeZ4) under the constraints that some pre-defined subsstedges
are set to zero. Then the follow relationships hold reg@@g(E) defined in (L3) and its inverse
., andS,: for E as defined inZ2),

(:)mj = 0, Y(i,j) € D and
5 iy V(i 5) € EU{(i,i),i =1,...,p}.

n)

nij =

Hence the entries in the covariance ma;g for the chosen set of edges i and the diagonal
entries are set to their corresponding valueS,jinindeed, we can derive the above relationships via
the Lagrange form, where we add Lagrange constaptfor edges irD,

(c(0) =1log 0] — tr(5,0) = > o (25)
(4,k)eD

11
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Now the gradient equation o2%) is:
0 1-§,-T=0,

whereT" is a matrix of Lagrange parameters such that # 0 for all (j,k) € D and~,, = 0
otherwise. Throughout this paper, we assume that gtaph(V, E) is connected. Otherwise, the
MLE problem can potentially be decomposed into a number dépendent problems, for which
we solve independently for each connected component. Tiib@vone of the directions for our
future work.

4. Numerical results

We note that the notation in this section is necessarilyehffit from the rest of the paper to make
things simple. In this section we compare the empiricalgrerfince of our estimation method with
the GLasso for simulated and real data. The GLasso is defsied a
OGLasso = argmin(tr(S,0) — log |©] + pz 1655])
O =0 i<y
where§n is the empirical covariance matrix and the minimization weropositive definite matri-

ces. For computation of the Gelato, we used the R-packagesegi-riedman et al(2010 and
glassoFriedman et al(2007).

4.1 Simulation study

In our simulation study, we look at three different models.

e An AR(1)-Block model. In this model the covariance matrixbleck-diagonal with equal-
sized AR(1)-blocks of the formt g, = {rl" =71}, ;.

e The random concentration matrix model consideregdmman et al(2008). In this model,
the concentration matrix i® = B + 61 where each off-diagonal entry in B is generated
independently and equal to 0 or 0.5 with probability- 7 or 7, respectively. All diagonal
entries of B are zero, and is chosen such that the condition numbeoi p.

e The exponential decay model considered-im et al.(2009. In this model we consider a
case where no element of the concentration matrix is exaetly. The elements @ are
given byf;; = exp(—2|i — j|) equals essentially zero when the differefice j| is large.

We compare the two estimators for each model with 300 andn = 40, 80, 320. For each model
we sample data&x™ ..., X jid. ~ N(0,%). We use two different performance measures.
The Frobenius norm of the estimation ertd — || and ||© — O/, and the Kullback-Leibler
divergence betweeN (0, %) and (0, 3):

2Dk (Z]|T) = tr <E@) —10g|26| —p:=R(O) — R(Z7Y)

12
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for R as defined inX7). For the two estimation methods we have various tuningmeters, namely
A, 7 andp. Due to the computational complexity we specify the two peeters of our Gelato
method sequentially. That is, we derive the optimal valu¢hefpenalty parameter by 10-fold
cross-validation with respect to the test set squared éoraall the nodewise regressions. After
fixing A = Aoy we obtain the optimal threshotdagain by 10-fold cross-validation but with respect
to the negative Gaussian log-likelihood. For the parametdrthe GLasso estimator we also use a
10-fold cross-validation with respect to the negative Gauslog-likelihood. The grids of candidate
values for the cross-validations are given as follows:

1 _
A= A 282 g 10 with 7, = 0.75- A,
n
1
pr =B 2P 1,10
n

whereA,, B, € {0.01,0.05,0.1,0.3,0.5,1,2,4,8,16}.

The two different performance measures are evaluated ®rethimators based on the sample
XM .. X ™) with optimal tuning parameters,  and p for each model from above. All results
are based on 50 independent simulation runs.

4.1.1 THE AR(1)-BLOCK MODEL

We consider two different covariance matrices. The first isn@ simple auto-regressive process
of order one with trivial block size equal o = 300, denoted byE(All)Q. This is also known as a
Toeplitz matrix. That is, we havEfj})%;i,j =rli=ilvy i j € {1,...,p}. The second matriE(j}% is a
block-diagonal matrix with AR(1) blocks of equal block si&@x 30, and hence the block-diagonal
of E(Azl)% equalsy pioeri; = 171, 4,5 € {1,...,30}. For both model§(A11)L2 andz(j}2 we choose

r = 0.9. The results of the simulation are shown in Figir@nd?2.

The figures show a substantial performance gain of our metbatpared to the GLasso in both
considered covariance models. This result speaks for otlvadgespecially because AR(1)-block
models are very simple.

4.1.2 THE RANDOM PRECISION MATRIX MODEL

For this model we also consider two different matrices, Whddfer in sparsity. For the sparser
matrix ©() we set the probabilityr to 0.1. That is , we have an off diagonal entry @{*) of 0.5
with probability 7 = 0.1 and an entry of O with probabilit).9. In the case of the second matrix
O™ we setr to 0.5 which provides us with a denser concentration matrix. Theukition results
for the two performance measures are given in Figuaad4.

From Figures3 and4 we see that Gelato keeps up with the GLasso in both the spaddb@dense
simulation settings. It performs better than the GLassb véspect td© — O || and the Kullback
Leibler divergence but is inferior for the Frobenius norndbf .

13
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Figure 1: Plots forZ(Al}%. The triangles (green) stand for the GLasso and the circdeh for our
Gelato method with a representative valuerofThe horizontal lines show the perfor-
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dashed line stands for our Gelato method and the dotted ottesfGLasso. Lambda/Rho
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4.1.3 THE EXPONENTIAL DECAY MODEL

In this simulation setting we only have one version of thecemration matrix®®). The entries of
©®) are generated b@f’j) — exp(—2|i — j|)-

Figure5 shows the results of the simulation. We find that both mettsbdsv equal performances
in both the Frobenius norm and the Kullback Leibler divergenThis is not entirely surprising as
we expect Gelato to work best whenis relatively sparse.

4.2 Application to real data
4.2.1 ISOPRENOID GENE PATHWAY INARABIDOBSIS THALIANA

In this example we compare the two estimators on the isopdsiosynthesis pathway data given
in Wille et al. (2004). Isoprenoids play various roles in plant and animal pHgsjical processes
and as intermediates in the biological synthesis of oth@oitant molecules. In plants they serve
numerous biochemical functions in processes such as pmtesis, regulation of growth and de-
velopment.

The data set consists pf= 39 isoprenoid genes for which we haxe= 118 gene expression pat-
terns under various experimental conditions. In order tomare the two techniques we compute
the negative log-likelihood via 10-fold cross-validatifor different values of\, 7 andp. In Figure

6 we plot the cross-validated negative log-likelihood aggaihe logarithm of the average number of
non-zero entries (logarithm of tig-norm) of the estimated concentration mattix The logarithm

of the /p-norm reflects the sparsity of the matfixand therefore the figures show the performance
of the estimators for different levels of sparsity. The pldb not allow for a clear conclusion. The
GLasso performs slightly better when allowing for a rathensk fit. On the other hand, when
requiring a sparse fit, the Gelato performs better.

4.2.2 QINICAL STATUS OF HUMAN BREAST CANCER

As a second example, we compare the two methods on the berastradataset fror/est et al.
(2007). The tumor samples were selected from the Duke Breast C&RORE tissue bank. The
data consists gf = 7129 genes witm = 49 breast tumor samples. For the analysis we use the 100
variables with the largest sample variance. As before, wepte the negative log-likelihood via
10-fold cross-validation. Figuré shows the results.

In this real data example the interpretation of the plotsnslar as for the arabidopsis dataset. For
dense fits, GLasso is better while Gelato has an advantage iebeiring a sparse fit.
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mances of the two techniques for cross-validated tunin@rpaters), 7 and p. The

dashed line stands for our Gelato method and the dotted offeefGLasso. Lambda/Rho

stands for\ or p, respectively.

19




ZHoU, RUTIMANN, XU, AND BUHLMANN

- & Tau=0.022
+ Tau=0.043
o X Tau=0.078

600
|
850
*+
o

Tau=0.108
v Tau=0.217

800
I

580

560
I

neg. log-likelihood

o
neg. log-likelihood
750
|

700
|
.
4,»"0

520
d
%
//
<
:
/“
g
S g
N
650
Il

| & Tau=0.012

+ Tau=0.025 N> °

X Tau=0.045 /
- © Tau=0.062

v Tau=0.125 oso—°

T T T T T
4 5 6 7 5 9

500

600
I

log(LO-Norm) log(LO-Norm)

(a) isoprenoid data (b) breast cancer data
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5. Conclusions

We propose and analyze the Gelato estimator. Its advargdgatiit automatically yields a positive
definite covariance matrix and the Frobenius norm on itsrge/éas in some settings a better rate
of convergence than the GLasso or SCAD type estimators. Rrtimeoretical point of view, our
method is clearly gauged for bounding the Frobenius northediriverse covariance matrix. We also
derive bounds on the convergence rate for the estimatedianga matrix and on on the Kullback-
Leibler divergence. From a non-asymptotic point of view;, method has a clear advantage when
the sample size is small relative to the sparsity:- |Ey|: for a given sample size, we bound the
variance in our re-estimation stage by excluding edgesofvith small weights from the selected
edge set@n while ensuring that we do not introduce too much bias. Ourateeinethod also
addresses the bias problem inherent in the GLasso estisiata we no longer shrink the entries
in the covariance matrix corresponding to the selected edg@n in the maximum likelihood
estimate, as shown in Section 3.3.

Our experimental results show that when the graph is sp@edato performs better (and sometimes
substantially better, for example for AR(1)-Block modetsan the GLasso consistently in all per-
formance measures, and slightly worse only with respedtéd-robenius norm of the covariance
matrix when the truth is a dense graph. We also show expetaihemow one can use cross-

validation for choosing the tuning parameters in regresaiad thresholding. Deriving theoretical

results on cross-validation is not within the scope of tlaipqy.
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Appendix A. Theoretical analysis and proofs

In this section, we specify some preliminary definitiongstinote that when we discuss estimating
the parameters, and©y = X ! we always assume that

Spmax(ZO) = 1/80min(90) < 1/2 < 0 andl/gpmax(@O) - Spmin(ZO) > E > O, (26)
where we assumé, ¢ <1 sothate <1< 1/k. 27

It is clear that these conditions are exactly that of (A2) éctn 3 with
Mypp :=1/c and M,y =k,

where it is clear that fobp,; = 1,5 = 1,...,p, we have the sum op eigenvalues oby,
S pi(X0) = tr(Xg) = p. Hence it will make sense to assume thaf)(holds, since other-
wise, 6) implies thaty,in (X0) = ¢max(20) = 1 which is unnecessarily restrictive.

We now define parameters relating to the key notioassiential sparsityy as explored ircandes and Tao
(2007); Zhou (2009 20101 for regression. Denote the number of non-zero non-didgena

tries in each row o, by s’. Lets = max;—1,..p s' denote the highest node degree(in=

(V, Ey). Consider nodewise regressions a2)nWhere we are given vectors of paramet{e(ﬁ%j =
1,...,p,j #i}fori=1,...,p. With respect to the neighborhood of nodfer eachi, we define

si < s < s as the smallest integer such that

p
Z min((ﬁ;:)z,/@\/ar(‘/;)) < siA*Var(V;), wherel = \/2log p/n. (28)
j=1,j#i
Note that we drop subscript from s{, which coincides withs{, ,, as defined in7). We use the
following symbols as a shorthand throughout our proofsnapéify our notation.

Definition 4 (Bounded neighborhood parameters.) The size of the neighborhood for each
nodei is upper bounded by an integer< p/2. For s} as in(28), define

so = max sh < s<p/2and (29)
1= 7"'7p

Som = Y sh< sop, (30)

’i:17...7p

which coincides witlb ,, as defined ir(8).
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Next, we define the following parameters that are relevamoiewise regressions for a random
designX. Recall the data is generated By, ..., X i.i.d. ~ N,(0,%), whereX ; = 1. For
an integem < p, we definem-sparse eigenvaluesf ¥, as follows:

Pmin(m) = min 12 Pmax(m) :=  max 12
40 P 10 4158
| supp(t)|<m | supp(t)|<m

For a given sparsity parametgf as defined inZ9), we define the following condition, which was
originally defined inZhou et al.(2009, motivated byBickel et al.(2009). It is clear that wherm
andk, become smallerRE (s, ko, Xo) condition becomes easier to hold with becomes corre-
spondingly smaller.

Definition 5 (Restricted eigenvalue conditionRE(sg, ko, >0)). For some integett < so < p/2
and a positive numbéy, the following condition holds for alh # 0,

1 HEé/2UH2
:= min min >0 (31)
K (s0, ko, X JoC{Lp}, ’
(50, 50, o) ]OEIEJTSS(?} ”U‘]g 1Sko”v(’0H1 lvsll;

where we assumg ;; = 1,Vj =1,...,p.

In the context of Gaussian graphical modeling, where we ainfyto estimate the graphical structure
Ly itself, (26) need not hold in general. Throughout the rest of the papdillupection D, we
assume thak, satisfies 81) for sy as in 8) and the sparse eigenvalpg,(s) > 0, wheres is
the maximum node degree @; Clearly we havepac(s) < s as we assum& j; = 1,Vj =
1,...,p. In the context of covariance estimation, we do assume #&thplds; in this case such
RE condition always holds o&, and pmax(m), pmin(m) are bounded by some constants for all
m < p. In this case, we continue to adopt parameters sudkl,g%,ax(s), andpmax(3se) for the
purpose of defining constants that are reasonable tightr wafeition 6). In general, one can
think of

Pmax(max(3s, 5)) < 1/c < oo and K?(sg, ko, Xg) < 1/k < oo,
for ¢, k as in €6) andsg as in 9).

Roughly speaking, for two variablek;, X; as in (1) such that their corresponding entry@y =
(Bo,i;) satisfies:f;; < A/Bo., whereh = \/21og(p)/n, we can not guarantee that j) € E,
when we aim to keepx s;, edges for node, i = 1, ..., p. For a givenOy, it is clear that as sample
sizen increases, we are able to select edges with smaller coeffigjg;. In fact it holds that

160.i7| < A/, Which is equivalent t¢ﬂj—] < Aoy, forall j> sh+ 14 ]Iigséﬂ, (32)
wherely, is the indicator function, if we order the regression cogfits as follows:
1811 = 185]. = 81| = Bl > By,
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in view of (2), which is the same as if we order for ravaf O,
00,i1] > 00,i2]--- > 100:i-1] > 004,541l > 00,3 p]- (33)

This has been show irc@ndes and Tg2007); See alsazhou (20108).

A.1 Concentration bounds for the random design

We assumé:y, > 0 and it is understood to be the same quantity throughout @audsion. In
preparation for showing the oracle results of Lasso in Té@@5, we first state some concentration
bounds on the random desigh generated by1(), whereX, ;; = 1 for all i. First, we define for
somel < 0 < 1

FO) ={X:¥i=1,...,p, 1 -0 <|X;]l,/vn <1+86}, (34)

whereXy, ..., X, are the column vectors of thex p design matrixX, which in turn is generated
by (16). It is clear when all columns oK have an Euclidean norm close {6n, as guaranteed
by (34) for some0 < ¢ < 1 that is small, it makes sense to discuss the RE conditioneiridim
of (35) as formulated in Kickel et al, 2009. For the integell < sy < s as defined in48) and a
positive numbekg, RE(sy, ko, X) requires that the following holds for all = 0,

min [ Xvlly
owll, VIl

1

K(So,kro,X) Joc{l AAAAA p} H
‘J()‘<80

>

> 0, (35)

whereuv; represents the subvectorofc R? confined to a subset of {1,...,p}. We now define
the following eventk on a random desigiX’ generated byl(). which provides an upper bound on
K (so, ko, X) for a givenky > 0 when X satisfies Assumptio® F(sg, ko, X):

K (50, ko,>0) }

o (36)

R(@) = {X : RE(S(),ko,X) holds with 0 < K(SQ,k‘Q,X) <

Next, for some integemn < p/2 to be specified, we define the smallest and largestparse
eigenvalues o generated byl(6) to be:

. o . 2 2
Amin(m) u;éo;lrlnn—réparse HXv”z/(n ”U”z) and (37)
Amax(m) = max || Xvl|3/(n[|v]3). (38)

v#0;m—sparse
Finally, for simplicity, we also define the following evetfitrr £y > 0 and X as generated byL6),
M(0) :={X : (40) holdsVm < max(s, (ko + 1)so)}, for which (39)
- 9)\/Pmin(m) < \/Amin(m) < \/AmaX(m) < (1+0)V pmax(m). (40)

Formally, we consider the set of random designs that satlsgvents as defined, for sorfie< 6 <
1. Theorem6 shows concentration results that we need for the preserk, wurich follows from
Theorem 1.2 and 1.4 inhou (20109.
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Theorem6 Let0 < 6 < 1. Letpmin(s) > 0, wheres < p/2 is the maximum node-degree
in G. SupposeRE(sy,4, %) holds forsy < s as in(29), whereXy; = 1fori = 1,...,p.
Let f(m) = min (4mpmax(m)log(5ep/m), mlog p), wherem < p/2. Letd,«,¢ > 0 be some
absolute constants ard = (2+kq) K (so, ko, Xo), whereko > 0; Suppose the sample size satisfies

9ot

n > gz max (sz(so), logp) (42)

and fordet, := ming [¥o rr|, whereT' C {1,...,p}and|T| = s

18c a* 1
> 8;204 <5slog S5ep/s + slog\/ Pmax(s) — 3 log dets> . (42)

Then, for a random desigX as generated bylE), we have

P(X) :=P(R(0) N F(H) N M()) > 1— 3exp(—ch*n/a). (43)

Clearly we havepnax(s) < s. Thus a sample size of order= O(slog p) is sufficient for event
X to hold with probability as in43), which holds by (A1) as in Sectiod given thats < p. We
emphasize that we only need the lower boundv@s in @1) if we only aim to obtain 84) and 36);
(42) is required to bound sparse eigenvalues of ostes specified inJ9).

A.2 Definitions of other various events

Under (Al) as in Sectiof3, excluding eventY® as bounded in Theoreand event€,, ) to be
defined in this subsection, we can then proceed to tkea X N C, as a deterministic design in
regression and thresholding, for whig(6) N M(6) N F(0) holds withC,, We then make use of
eventX) in the MLE refitting stage for bounding the Frobenius norm. W&/ define two types of
correlations event§, and Xj.

Correlation bounds on X; and V;. In this section, we first bound the maximum correlation be-
tween pairs of random vectof¥;, X ), for all i, j wherei # j, each of which corresponds to a pair
of variables(V;, X;) as defined inZ) and @). Here we useX; andV;, for all 4, j, to denote both
random vectors and their corresponding variables.

Let us defineoy, := /Var(V;) > v > 0 as a shorthand. Lét'j’ = Vj/ov,,j =1,...,pbea
standard normal random variable. Let us now define fof,all~ 7,

1, ., 1,
Zjk = E<Vj>Xk> = Z;Ujﬂkm
1=

where foralli = 1,...,n U;J,xk,i,Vj, k # j are independent standard normal random variables.
For somez > 6, let event
Co:= {max| ikl < V14 ay/(2logp)/n wherea > 6} (44)
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Bounds on pairwise correlations in columns ofX. Let ¥, := (0¢;), where we denotey ;; :=
o2. Denote byA = X7 X /n — %. Consider for some consta@ > 4./5/3,

Xy = {m%x\Ajk\ < C3y/logmax{p,n}/n < 1/2} . (45)
J7

We first state Lemmad, which is used for bounding a type of correlation events sl regres-
sions; see proof of Theoreft®. It is also clear that eveidt, is equivalent to the event to be defined
in (46). Lemmay also justifies the choice 0¥, in nodewise regressions (cf. Theoré). We then
bound eventt; in Lemma8. Both proofs appear in Sectigh3.

Lemma 7 Suppose that < /43 Then with probability at least — 1/p?, we have

Vi £k, ‘%wj,m < oy VI Tay/Elogp)/n (46)

whereoy, = /Var(V;) anda > 6. Hence
P(C,) >1-1/p

Lemma 8 For a random designX as in (1) with 3¢ ;; = 1,Vj € {1,...,p}, and forp < en/403
whereCs > 4,/5/3, we have

P(Xp) > 1 — 1/ max{n,p}>.

We note that the upper bounds pin Lemma7 and8 clearly hold given (Al). For the rest of the
paper, we prove Theorefi0 in SectionB for nodewise regressions. We proceed to derive bounds
on selecting an edge sktin SectionC. We then derive various bounds on the maximum likelihood
estimator giverE in Theoreml4- 16in SectionD, where we also prove TheoreimNext, we prove
Lemma7 and8 in SectionA.3.

A.3 Proof of Lemma7 and 8

In this section, we prove Lemmaand8. We first state the following large inequality bound for
bounding products of correlated normal random variables.

Lemma 9 Zhou et al.(2008 Lemma 38)Given a set of identical independent random variables
Yi,...,.Y, ~Y, whereY = xqx9, with T1,To ~ N(O, 1) andoiy = P12 with p12 <1 being their
correlation coefficient. Let us now defige= 13" | V; = (X} Xo) = L 5" 2 ;20,. Let
Uiy = (1 —I-O'%Q)/Q. ForO <7 < Wy,

’I’LT2
P(\Q—E@w)gexp{_wi”iwéﬁ -
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Now by Lemmad with p;,, = 0,Vj,k = 1,...,p,j # k and using the fact th&Z;;, = 0, we show
Lemma?.

Proofof Lemma7. Now itis clear that we have at mgstp — 1) unique entriesZ;;, Vj # k.

By the union bound and by taking= C5/ 10% in (47) with o3, = 0, V5, k, we have

1—]P’<Vj7ék:, %(vj,Xw zAM,p> _P(Cy)

1 3021
P (max|zjk| > 02\/—‘)”) < (p® — p)exp (——2 ng>
ik n 10

3C21o 3C3 1
< Pexp (_217035p> —p Tt < =

IN

where \/2(1+a) > C, > 2,/10/3, wherea > 6. Note thatp < ¢"/4C3 guarantees that
Coy/™B2 < 1/2. W

In order to bound the probability of eveafy, we first state the following large inequality bound
for the non-diagonal entries &f,, which follows immediately from Lemm@by plugging ino? =
004 = 1,Vi = 1,...,p and using the fact that ;.| = |pjrojor| < 1,Vj # k, wherepjy, is the
correlation coefficient between variabl&s and Xy Let W), = (1 + a3 ;;)/2. Then

3nr? 3nr2
P(|A:Ll > < —_— 3> < — for 0 <7< U,;. 48
We now also state a large deviation bound forxﬁajistributionJohnstone{ZOO]):
2 2
-3 1
P &—1>7‘ < exp T yforo<r < -, (49)
n 16 2

Lemmas follows from (48) and @9) immediately.

Proof of Lemma8. Now it is clear that we have(p — 1)/2 unique non-diagonal entries

o0,jk. Vj # k andp diagonal entries. By the union bound and by taking= C’g\/w
in (49) and @8) with oy ;. < 1, we have

P((X)9) = P (n;%x\Ajk\ > @J@)

3C2 log max{p,n - 3C2 log max{p,n

< pexp<_ 5 g16 {r }>+p2pexp<_ 5 g20 {r }>
3C% log max{p,n} _3c§ 1

< 2 903 ) _ e

for C5 > 4,/5/3, where for the diagonal entries we ug®), and for the non-diagonal entries, we
use @8). Finally, p < e"/4C3 guarantees thats/ W <1/2. 1
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Appendix B. Bounds for nodewise regressions

In Theorem10 and Lemmall we let s} be as in 28) and 7 denote locations of the} largest
coefficients of3’ in absolute values. For the vectbt to be defined in TheoreriO, we let T}
denote thes), largest positions of’ in absolute values outside @f;; Let T3, = T¢ U T}. We
suppress the superscriptTy, 7 and thusl(, throughout this section for clarity.

Theorem 10 (Oracle inequalities of the nodewise regressiehLet0 < 6 < 1. Let pyin(s) > 0,
wheres < p/2 is the maximum node-degreeGh SupposeRE (s, 4, 3) holds withK (sg, 4, o)
for so < s as defined if(29), whereX ;; = 1 fori = 1,...,p. SUPPOS®max(max(s,3sg)) < oo.
The data is generated by (V... X i.i.d. ~ N,(0, %), wheren satisfieg41) and (42).

Consider the nodewise regressiong1i0), where for eachi, we regressX; onto the other variables
{Xy; k # i} following (2), whereV; ~ N(0, Var(V;)) is independent ok ;, Vj # 4 as in(3) and
Var(Vi) = 1/907“' Iﬁ ﬂ; = —907@'/907“‘.

Let 5, be an optimal solution t¢10) for eachi. Let\,, = doA = dj Aoy, Whered, is chosen such
thatdy > 2(1 + 6)v/1 + a holds for some. > 6, and clearlyd), > dy. Leth’ = i, — ﬁr}o. Then
simultaneously for all, onC, N X', whereX := R(6) N F(0) N M (), we have

| Binie = B']], < A\/%do 2D2 +2D? + 2, where
||hTOl ||2 < Dod())\\/ 86 and (50)
‘ h’?FOC . Hﬁiinit,TOC LS DydoAs (51)

where Dy, D, are defined in(88) and (90) respectively.

The choice ofd, will be justified in SectionE, where we also calculat®,, D, to be shown as
in (52). Suppose we choose for some constgnt 4v/2 anday = 7,

dO - CO(l + 9)2\/pmax(3)pmax(330)a
where we assume thaf,.x(max(s, 3sp)) < oo are reasonably bounded,then

5K2(s0,4,%0) 49K72(s9,4,%0)
Dy < /=2 andD; < ]
0= T 1=0)2 Y= T6(1— 60)2

(52)

Proof Consider each regression function O with X\; being the design matrix and; the
response vector, wherg.,; denotes columns ok’ excluding X;. It is clear that for\,, = doA, we
have fori = 1,...,panda > 6,

M = (do/ov,)oy A i= dhov, A > doray, > 2(1 + 0)M1 +aoy, = 2(1 + 0)Asap

such that §7) holds given thatry, < 1, Vi, where it is understood that:= oy;.
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Itis also clear that od, N X, eventZ, N X holds for each regression when we invoke Theo2&m
with Y := X; and X := X;, fori = 1,...,p. We can then invoke bounds for each individual
regression as in Theore®d, and conclude that the present theorem holds, noting#ffsat = d,

by definition. [ |

Appendix C. Bounds on thresholding

In this section, we first show LemmHl, following conditions in TheoremiO. We then show
Corollary 12, which proves Propositiof and the first statement of Theorelm

Lemma 11 SupposeRE (s, 4, %) holds forsy be as in(29) and pin(s) > 0, wheres < p/2 is

the maximum node-degreed SUpPOS@max (max(s,3sg)) < co. LetS’ = {j : j # i : |8} # 0}.

Letcy > 41/2 be some absolute constant. Suppesatisfieg41) and (42). Letsi,, be an optimal
solution to(10) with

An = do\ where do = ¢o(1 + 6)*\/ pmax(5) pmax (350);

Suppose for each regression, we apply the same thresh@daalbtain a subset’ as follows,
I'={j:j#i B = to=for}, and D" :={1,....i—Li+1....pp\I'

where fy := D4d, for some constanb, to be specified. Then we have on evgnt X,

II'l < sh(14Dy/Dg)and |I'USY| < s'+ (Dy/D,)s}y and (53)
185]l, < dory/shv/T+ (Do + D)2 (54)

whereD is understood to b@®* and Dy, D; are understood to be the same constants as in Theo-
rem10.

Proof Let T, := T¢ denote thes}, largest coefficients o8’ in absolute values. By(l), we have for

Jo = Dadp

1 . .

) ﬂ S Dldosé/(D4d0) S D186/D4 (55)
0

whereD; is understood to be the same constant that appeabd)inThus we have

T < |

ﬁiinit,Tg

|I'| = |I' N T§| + |[I' N Ty| < s(1+ Dy1/Dy).
Now the second inequality ir58) clearly holds given%5) and the following:
17U ST < S|+ 10 (SY)°] < 8 + 117 0 (T,

We now bouncﬂﬁiDH; following essentially the arguments asihou (20101). We have

i X X 2
185ll; = 85l + |[Biseo|

9 9
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, 2 2 ,
where the second term is bounded ‘#&}Oﬂm ‘2 < ‘ ell, < spA%at, by definition ofs, as in @8)
and @2); For the first term, we have by the triangle inequality,

1Brymmlly < 106" = Bt rorol|, + || (i) mono |,
< H(ﬁi_ﬂilﬁit)ToHQ"‘tO\/ ‘TOHD‘ < ”hTo”z‘i‘tO\/%
< Dodo)\\/% + D4d0)\\/% < (D(] + D4)d0/\\/%

where we invoked the bound divy, ||, as in €0) following Theorem10. Thus we haveg4). N

Recall®y = 251. Let ©y p denote the submatrix &b, indexed byD as in 1) with all other
positions set to be 0. Ldfj be the true edge set.

Corollary 12 Suppose all conditions in Lemma hold. Then on everd, N X, for 0 as in (23
and E as in(22), we have forSy ,, as in(30) and©y = (6,;;)

|E| < 2(1 + Dl/D4)SO7n where |E \ E0| < 2D1/D4S(]’n (56)
ucle — o],

< meMQ%%m%MM%MMM+wHDmmxﬁn

= /S0 (1+ (Do + D1)?)Ciagelo

whereC3,,, = min{max,—_ ;62 ;. (s0/So) | diag(©0)||7}, and Dy, D; are understood to be
the same constants as in Theor&th Clearly, for D, > Dq, we havg19).

Proof It is clear that by the OR rule irBf, which will allow eitherB;'. or EZ’ to be non-zero to turn
it on; and hence we could turn on at mast;| edges. These rule will allow us to keep more edges
that we would have reduced by the thresholding rule at eadh.n&/e have byH3)

’E‘ < Z 2(1+D1/D4)36:2(1+D1/D4)50,n,
i=1,...p

where(2D;/Dy4)S,», is an upper bound ofE' \ Ey| by (55). We now obtain a bound o|¢@07@||iﬁ
as follows:

IN

290” 18515 < (1 + (Do + Da)? do)‘2290m$0
i=1

Smm&@gﬁ%mmwm@M%ﬂﬂ%+Mﬁﬁv

2
1©0,n17
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Remark 13 Recall we assume thatax{p, Sy ,} = o(n/log(p)) in Proposition2, which guaran-
tees that, = Q(plog p) holds as required by Theoreb® and Lemmad.1in the worst case scenario.
Note that ifs, is small, then the second term ;.. will provide a tighter bound.

Appendix D. Bounds on MLE refitting
To facilitate technical discussions, we need to introdum@esmore notation. Lef% , denote the
set ofp x p symmetric positive definite matrices:
St ={0 e RP*?|© - 0}.
Let us define a subspaé®, corresponding to an edge $6tc {(i,j) : 4,7 =1,...,p,i # j}:
St = {©cRP*P|fy,; =0 forall i +# j suchthati,j) ¢ E}
andS, = {0:0eS87 nSL}. (58)

Recall the maximum likelihood estimag,, as in 69) minimizes over all® € S, the empirical
risk as in expressior2é). Thus, we write

@

n(E) = arg @Hélg‘f; R,(©) = arg eesnirrlwsg {tr(@gn) —log 6]} (59)

which gives the “best” refitted sparse estimator given asgpsubset of edgds that we obtain from
the nodewise regressions and thresholding. We note thaistireator $9) remains to be a convex
optimization problem, as the constraint set is the intéisethe positive definite cons? | and the
linear subspacé?,. Itis not hard to see that the estimat6g) is equivalent to 13).

Theorem 14 Consider data generating random variables as in expresgl@) and assume that
(A1), (26), and (27) hold. Let€ be some event such tHa{&) > 1 — d/p? for a small constand.
Suppose on eve#t

1. We obtain an edge sét such that its siz¢E| = lin (Sp »,, p) is a linear function inSy ,, and
p, wheresSy ,, is as defined ir{30);

2. And foréo as in(23) and for some constarttyizsto be specified, we have

1©0l15 := || = 0 < Chias\/250.n log(p)/n < ¢/32. (60)

Let(:)n(E) be as defined if69). Suppose the sample size satisfiestor> 4,/5/3,

106 < 32
n >

RN

Then on evenf N Xy, we have foM = (9/(2k?)) - (C5 + 32/(31c?))

Hé"(E) — GOHF < (M + 1) max {\/(p—i— 2|E|)log(n)/n, Chias\/2S0.n log(p)/n} . (62)

2
) max { (p + 2|E|) log(n), CgaSonlogp} . (61)
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We note that although Theorei is meant for proving Theorerh, we state it as an independent
result; For example, one can indeed ték&om Corollary12, where we haveE| < ¢S ,, for some
constantc for D4 = D;. In view of (57), we aim to recoved, by O, (E) as defined ing9). In
SectionD.2, we will focus in Theorermi4 on bounding fodV” suitably chosen,

681~ = 0r (W[l S0 o8t

By the triangle inequality, we conclude that

[6u8) - @], < [6.(8) - &+ B0~ €], = 00 (w0t S0, ok} )

We now state bounds for the convergence rate on Frobenius ofothe covariance matrix and for
KL divergence. We note that constants have not been optimigroofs of Theoreni5 and 16
appear in Sectio.3 andD.4 respectively.

Theorem 15 Suppose all conditions, events, and boundgirand||©¢ p|| . in Theoreml4 hold.
LetO, (E) be as defined i69). Suppose the sample size satisfiesfor> 4,/5/3 and Cpias, M
as defined in Theorefi

106 32 \°
n > @ ( s + 31—Q2> max {(p + 2|E|)log(n), Cgias250,n logp} . (63)
Then on evenf N Xy, we havepmin (0, (E)) > ¢/2 > 0 and forS,(E) = (0,(E)) !,
= 2(M +1 + 2|E|)log(n 250.n 10
[S(e) — 50| < 2L+ D aXW<p [EDlog(n) ., [25%, g@)} (64)
¢ n n
Theorem 16 Suppose all conditions, events, and boundg©pand [|©¢p|| . = H(:)o — GOHF

in Theorem14 hold. Let(:)n(E) be as defined if59). Suppose the sample size satisfig®)
for C35 > 4./5/3 and Cpias, M as defined in Theorem4. Then on evenf N Xj, we have for
R(©,(F)) — R(6g) >0,

R((:)n(E)) — R(©p) < M(C5+ 1/8) max {(p + 2|E|)log(n)/n, C’b,aSQSOnlog /n} (65)

D.1 Proof of Theorem1

Clearly the sample requirements as4i) (42) are satisfied for somé > 0 that is appropriately
chosen, givendl). In view of Corollary12, we have ort := X' N C,: for Cyia as in (L8)

|E| < 2(1 + %)SO,TL < 4SO,n for D, > Dy and
4

[©opllp = Héo - @oH < Chiasy/ 250, 10g(p)/n < ¢/32 where
2 50 2 | 2 2
Clas = min {Zr_nlax i 5 |rd1ag<eo>up} (1 + (D + Dy)?)
= Cgiang(l + (DO + D4)2) (66)
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Clearly the last inequality in60) hold so long asn > 322C{,250., log(p)/c?, which holds
given (61). Plugging in|E| in (62), we have orf N Ay,

|8n(E) = 0|, < (0 + 1) max {\/<p +4(1 + Dl/f4)so,n) log(n) Cbias\/@}

Now if we takeD, > Dy, then we havel(9) on event£; and moreover o0& N Xy,

|6n(E) 60, < (M +1)max {\/ (p+850,0) log(n) /n, Chiasy/ 250, 10g(p) /n}

< W\/(p + So,n) log(n)/n

whereW < 2(M + 1) max{Caqiagdor/1 + (Do + D4)%,2}. Similarly, we get the bound on

‘ f)n — Y - with Theorem15, and the bound on risk following Theoreh®. Thus all statements
in Theoreml hold. ®

Remark 17 Suppose eveist N A holds. Now suppose that we takle = 1, that is, if we take the
threshold to be exactly the penalty parametgr

to == d(]/\ = )\n

Then we have on evefitby (56) |E| < 2(1 + D1)Sp,, and |E \ Ey| < 2D1.5, and on event on
EN A, for Ct/)ias = Cdiang 1+ (D(] + 1)2

(:)n(E) — 0g|| < M max (p+4(1 + D1)So.n) log(n)7 ol M
F n bias n

It is not hard to see that we achieve essential the same rasta#esd in Theorem, with perhaps
slightly more edges included .

D.2 Proof of Theorem14

Suppose everf holds throughout this proof. We first obtain the bound on spet of Qq: It is
clear that by 26) and ©0), we have ort,

(-Pmin(éO) > Somin(@O) - Hé(] - ®0H2 > Somin(@O) - HQO,DHF > 31§/32> (67)
~ ~ c 1
(:Dmax(GO) < (Pmax(GO) + HGO - @0H2 S (pmax(GO) + HGO,D”F < 5 + E (68)

Throughout this proof, we IeEy = (0¢;) := O5*. In view of (67), defineX := (Oy)~!. We use
0, := 0,(F) as a shorthand.

Given@, € S7, N 8% as guaranteed ir6(), let us define a new convex set:

Un(©0) == (87, NS —0y={B—-6y|BeS’ NS} cSh
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which is a translation of the original convex s&f, N S},. Let 0 be a matrix with all entries
being zero. Thus it is clear thaf,(0y) > 0 given that®, € SL N Sg. Define forR,, as in
expressionZ4),

Q(O) = R.(0)— R,(60) = tr(08,) —log |0 — tr(©pS,,) + log ||

~ ((@ —60)(5,, — i:o)) ~ (log |©| — log|©p]) + tr ((@ - éo)io) .
For an appropriately chosef) and a large enough/ > 0, let
T, = {A € Un(éo)7 ||AHF = Mrn}> and (69)

M, = {A€U.(B0),|Aly < Mry,}. (70)

It is clear that botHI, andT, U II,, are convex. It is also clear thate II,,. Throughout this

section, we let
+ 2|E) 1 125051
7, = IMax {\/(p | nD 0g(n) , Chias 750’ - ng} . (71)

Define forA € Un((:)o),

G(A) = Q(O0 + A) = tr(A(S, — %)) — (log O + Al —log|Bo]) + tr(A%g)  (72)
Itis clear thatG(A) is a convex function oi/,,(©y) andG(0) = Q(6y) = 0.
Now, ©,, minimizesQ(0), or equivalentlyA = ©,, — ©, minimizesG(A). Hence by definition,

G(A) < G(0)=0

Note thatT,, is non-empty, while clearl9 € 11,,. Indeed, consideB, := (1+e)éo, wheree > 0; it

is clear thatB, — ©g € S¥, N S% andHB6 — éOHF = |e (:)OHF = Mr, for |e| = Mr,/ ‘(:)OHF.
Note also ifA € T, thenA;; = 0V(i,j : i # j) ¢ E; Thus we have\ € S, and
[1A[lg < p+2[E[ < p+21in(Som,p). (73)

We now show the following two propositions. Propositibhfollows from standard results.

Proposition 18 Let B be ap x p matrix. If B = 0 andB + D > 0, thenB + vD > 0 for all
v e [0,1].

Proposition 19 Under (26), we have for allA € T,, such that|A||, = Mr, for r, as in(71),
©p + vA = 0,Vv € an open intervall D [0, 1] on event.

Proof In view of Propositionil8, it is sufficient to show tha® + (1+e)A, ©o —eA = 0 for some
e > 0. Indeed, by definition of\ € T,,, we havepni,(0g + A) = 0 on eventE; thus

@min(©0 + (1 +£)A) Pmin(G0 + A) — ¢ Al >0

>
andemin(©0 — A) > omin(©0) — e | A, > 31¢/32 — e || All, > 0
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for € > 0 that is sufficiently small. [ |

Thus we have thdbg |6, + vA| is infinitely differentiable on the open interval> [0, 1] of v. This
allows us to use the Taylor’s formula with integral remaintibeobtain the following:

Lemma 20 On even€ N &y, G(A) > 0forall A € T,

Proof Let us used as a shorthand for
1 ~ ~
vecAT </ (1—0)(0g+vA) '@ (0 + UA)_ldv> vecA,
0

where® is the Kronecker product (it = (wi;)mxn, P = (bke)pxq, theNW &P = (w;; P)mpxnq):
andvecA € RP’ is A, xp vectorized. Now, the Taylor expansion gives forallc T,

~ ~ d ~ ! d? ~
log|©¢ + Al —log |0y = %log|@o—|—vA||v:0A—|—/0 (1—U)Wlog|@o+vA|dv

= tr(SoA) — A,
wheretr(30A) = tr((© — ©9)%y). Hence for allA € T,
G(A) = A+ tr (A(§n - io)) — A+t (A(§n - 20)) —tr (A(io - 20)) (74)

where we first boundr(A(flo — X)) as follows: by 60) and €7), we have on everf

[traGo—zo))| = [(a, (S0 - %0))| < l1Alg o - o,
€0
< [Allg ~ E
(:Dmin(@O)SOmin(@O)
32Chias\/250., log p/n 327,
) < .
< JAll . <18l 355 (79)

Now, conditioned on evenk,, by Lemma8 and ©1)

njl_%x 1Sk — 00 jk| < C3v/log(n)/n =: 6,

and thus with probabilityt — - we have‘tr(A(gn - EO))‘ < 4, |Al;; hence by Cauchy-Schwartz
and (73), we have on everf N A},

i (AG,~50)) = .18l > 60140 Al

> =0 V/p+2E||Allp > —Caryn [|A] (76)

Finally, we boundA. First we note that for € T,,, we have on everff,

V

1All, <Ay = Mr, < (77)

T
16k’
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HIGH-DIMENSIONAL COVARIANCE ESTIMATION

2
given 61): n > (- 51)? <C’3 + 5 2> max { (p + 2|E|) log(n), CZ,25.»1ogp}. Now we have
by (68) and @7) following Rothman et al(2009 (see Page 502, proof of Theorem 1 therein): on
eventg,

Aoz i/ (2 (pml®0+ 1015))

k2
> 1815/ (2 + 5 + 1) > 1A (78)

Now on event N Ay, for all A € T,,, we have by 14),(78), (76), and (/5),

~ ) 2/<;2

327y,
G(A) > (Al

31c?

2k2 1 32r
= A% = n n
| ”F< NS <C?’ 3192>>
2k2 1 32
- 1815 (%5 - 5 (0t o))

hence we havé/(A) > 0 for M large enough, in particulabl = (9/(2k2)) (C3 + 32/(31¢?))
suffices. [ |

= Gyra [|Allp = 1Al

We next state Propositiabil, which follows exactly that of Claim 12 ofhou et al.(2008).

Proposition 21 Suppose evet holds. IfG(A) > 0,VA € T,, thenG(A) > 0 forall A in
W, = {A: A€ Upn(B0), |All p > Mr,}

for r,, as in(71); Hence ifG(A) > 0 for all A € T, thenG(A) > 0 forall A € T,, UW,,.

Note that for®,, € 87, N &%, we haveA = ©,, — O, € U,(Oy). By Proposition21 and the fact
thatG(A) < G(0) = 0 on evente, we have the following: on evest, if G(A) > 0,VA € T, then
|A|lp < Mry, given thatA € U,,(6q) \ (T,, UW,,). Therefore

P (121 = Mr,)

A
=
™
(¢}

&) (1&]1r 2 Mruf€)
£)- (=P (JAllr < Mrol€))
1-P (é(A) > 0,VA ¢ ']l‘n\S))

(
(1 =P (X))
sNE)<P(EY) +P(AY)

IA A

a=T=

™ ™
+ + + + +
| R "B N =
—~~ /(:q\ — —~

I
=~
™
o

c n 1 c+1
p?  max{p,n}? = p?

IN

We thus establish that the theorem holis.
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D.3 Frobenius norm for the covariance matrix

We use the bound O‘V‘“@n(E) - GOHF as developed in Theorefr; in addition, we strengthen the
bound onM ., in (77) in (80). Before we proceed, we note the following bound on bia@m—l.

Remark 22 Clearly we have on eve#t, by (75)

1©0,pll & - 32Chias\/250.1 log p/n (79)

Pmin(©0)Pmin(©0) ~ 31c?

oo s, <

Proof of Theoreml5. Suppose everdt N A, holds. Now suppose

6 9 32 \? )
w3 (e o) (Gt g ) max {(p+ 21ED log(n). CaSo oz}

which clearly holds giveng3). Then in addition to the bound ir77), on event N &p, we have
Mr, < 7c/16, (80)

for r,, as in (/1). Then, by Theorem4, for the same\l as therein, on everdt N Xy, we have

H(:)n(E) — @()HF < (M + 1) max {\/(p + 2|E|)log(n)/n, Chias\/2S0.n log(p)/n}

given that sample bound ir6]) is clearly satisfied. We now proceed to bouH@n — EOHF
given (62). First note that by&0), we have on everf N X, for M > 7

Puin(®n(E) = ¢min(0) = [0n = O0 | > pmin(©0) — [0 = ©0 |
> c— (M+1)r, >c/2.

Now clearly on evenf N X}, (64) holds by 62) and

| |8n(2) ~ 0|,
e = i (Bn(E))omin(©0

in(E) -

) < 922 H(:)"(E) B QOHF

D.4 Risk consistency

We now derive the bound on risk consistency. Before provimgoFeml6, we first state two lemmas
given the following decomposition of our loss in terms of ttsk as defined inX7):
0 < R(6,(E)) — R(©g) = (R(On(E)) — R(60)) + (R(69) — R(©y)) (81)

where clearlyR(6,,(E)) > R(©,) by definition. It is clear tha®, € S, for S, as defined in%8),
and thusi,, (6¢) > R,(0,(E)) by definition of®,,(E) = argminecg, R,(O).

We now bound the two terms on the RHS 81}, where clearlyR(6,) > R(Oy).
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Lemma 23 On event, we have folChjas, O, (:)0 as in Theoreni4,

B 250, lo
0 < R(Bo) ~ R(O0) < (32/(31))* s 87

for r,, as in(71), where the last inequality holds given thiat > 9/2(C5 + 32/(31¢?)).

< (32/(31¢)) - r2/2 < Mr2/8

Lemma 24 Underé& N Ay, we have for, as in(71) and M, C5 as in Theoreni4

R(6,(E)) — R(6g) < MC3r2.

Proof of Theoreml6. We have orf N Ay, for r,, is asin {1)
R(64(E)) — R(6o) = (R(O4(E)) — R(6y)) + (R(0) ~ R(Ov)) < Mry(Cs +1/8)
as desired, using LemnZ8and24. &
Proof of Lemma23. For simplicity, we us&\q as a shorthand for the rest of our proof:
Ag := Oy p = O — Oy.

We useB as a shorthand for
1
vecAg? (/ (1 —v)(Bp +vA0) "t ® (O + UAO)_ldv> vecAq,
0

where® is the Kronecker product. First, we have f?)gs, Oy =0

R(©g) — R(6y) = tr(0g%g) — log|Oo| — tr(09%0) + log |0
= tr((éo — @0)20) — <log ’(:)0‘ — log ’@0’) = E > 0

where B = 0 holds when|Ag|| = 0, and in the last equation, we bound the difference between
two log | - | terms using the Taylor's formula with integral remaindelideing that in proof of
Theoreml4; Indeed, it is clear that o6, we have

O +vAp >0 for v e (—1,2) D[0,1]

given thatymin (O9) > cand||Ag|l, < ||Aollp < ¢/32 by (60). Thuslog |©g + vAy| is infinitely
differentiable on the open interval> [0, 1] of v. Now, the Taylor expansion gives
d ! d?
log |09 + Ag| —log |0y = 7 log |09 + vAp||v=00 + / (1- U)W log |©¢ + vAg|dv
0
= tr(ZOAO) — E

wheretr($0Ag) = tr((6y — ©0)X) by symmetry. We now obtain an upper bound Bn> 0.
Clearly, we have on evet, Lemma23 holds given that

. 1
B < || Aol|3 - ¢max </O (1 —2)(0g + vAg) '@ (6 + UAQ)_ld’U>
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where||Ag||5 < C2.2S0., log(p)/n and

Pmax (/01(1 —0)(Qg +vAg) L @ (O + ’UA())_ldv>

1 1
< / (1-— v)gp?mx(@o + UAO)_ldv < sup gorznax(@o + UAO)_l / (1—wv)dv
0 ve[0,1] 0

1 1 1

= sup = —

2 yef0,1] Pain(O0 + 1) 2inf,co1) ¥2,n(O0 + vAg)
1 1

2 (o (©0) — [Bolly)? ~ 2(31e/32)°

where clearly for alb € [0, 1], we havep?, (09 + vAg) > (pmin(©0) — [[Aolly)? > (31¢/32)%,
givenmin(Og) > cand|Agll, < [|©0,p|l» < ¢/32 by (60).

Proofof Lemma24. SupposeR(6,,(E)) — R(6y) < 0, then we are done.

Otherwise, assumE((:)n(E)) — R(©g) > 0 throughout the rest of the proof. Define
A = 6,(E) — 0y,
which by Theoreni4, we have on ever N &), and forM as defined therein,

5], = .t 8, < 0.

We have by definitior,,(6,,(E)) < R,(6y), and hence

0< R(O,(E) — R(6g) = R(O4(E)) — Rn(6,(E)) + Rn(6,(E)) — R(6)
< R(On(E)) — Bn(04(E)) + Rn(6g) — R(6y)
= tr(6,(E)(Z0 — Sn)) — tr(©o(X0 — Sn))
= tr((On(E) — 60)(Z0 — Sn)) = tr((A)(o — 5n))

Now, conditioned on evem),, by Lemma8

nﬁx ’S\njk — 09,k < C3y/log(n)/n =6,

and thus or€ N &, (with probability at leasP (£) — W), we have by Cauchy-Schwartz,
o (A6 —20)) | < 6u[&], <oy f[|&] [|&], < buvir2ET ],
< MrnC’g\/log(n)/n\/p +2|E| < MC’grfL

whereHﬁHO < p + 2| E| by definition, and-, is as defined in71). W
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Appendix E. Oracle inequalities for the Lasso

In this section, we consider recoveripge R? in the following linear model:
Y =XB+e, (82)

where X follows (1) ande ~ N(0,0%1,). Recall given),, the Lasso estimator fo§ € R? is
defined as:

~ 1
— in—||Y — X8| + \, 83
3 argmﬁm%ll Bl + AllBll, (83)

which corresponds to the regression functionlié) Py lettingy” := X; and X := X \; whereX.,;
denotes columns ok withouti. Define

p

Zmin(ﬁf, Mo?) < soA%0%, where A = \/2log p/n. (84)

i=1
We now state Theorer5, which may be of independent interests; here we derive &etigiound
for the Lasso estimator in terms ©f convergence rate than thattinckel et al.(2009 under slightly
different RE conditions, see discussions below. Our boulegend on thactual sparsitys, as de-
fined in 84) rather thars = | supp(3)| as inBickel et al.(2009 (cf. Theorem 7.2). A similar result
has been shown irihou (2010 for deterministic design matrices that satisfy the RE oo on
X, whereA .« (2s) as defined in38) is assumed to be bounded. We now bound the correlation
between the noise and covariatesXofor X € &', where we also define a constant, , which is
used throughout the rest of this paper. Boe F(0) as defined in34), let

XT
n

where), ., = 0v/1+ ay/(2logp)/n, wherea > 0; we have (cf. Lemma6)

< (14 0)Asap, Where X € F(6), foro < 6 < 1}7 (85)

[e.e]

P(7,) > 1 — (y/mlogpp®) ™' (86)

In fact, for such a bound to hold, we only ne&’é\/]% < 1+ 6,Vj to hold in 7(#). The proof
appears irzhou(20109.

Theorem 25 (Oracle inequalities of the LassoyYhou (20109 LetY = X3 + ¢, for € being
i.id. N(0,0%) and let X follow (1). Letsy be as in(84) and T, denote locations of the
largest coefficients of in absolute values. Suppose thRaFE (s, 4,>) holds with K (sg, 4, %)
and ppin(s) > 0. Fix somel > 6 > 0. Let Gt be an optimal solution t83) with

A =doAo > 2(1 +0) X ap (87)
wherea > 1 anddy > 2(1 + 6)v/1 + a. Leth = [inir — S, Define

X = R(0) N F(O) N M(6).
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Suppose that satisfieg41), and(42) for m = s. Then ornZ, N X, we have

1Binit — Blls < Anv/S0\/2DE +2D2 + 2 := No\/sodo\/2D3 + 2D + 2,
HhTOc Dl)\nSQ = Dldo)\O'SQ,

IN

1

whereD, and D, are defined if{88) to (90) respectively, an® (X N 7,) > 1-3exp(—ch?n/at)—
(v Togpp™)~".

Let T3 denote the largest positions of in absolute values outside @f; Let Ty, := To UTy. The
proof of Theoren®5 yields the following bounds o/’ N 7;: || At,, ||, < DodoAo/50 Where

Dy = max {dB’ \/5 (2(1 + 9)K<SO74’ EO) pmax(s - 30) + 3K2(30747 EO)) } ’ (88)

0 (1—0)dy (1—6)2
- 3(1 + 9) pmax(s - 80) 2(1 + 9)4pmax(330)pmax(8 - 50)
e ) o @) (= 0Ppuas0) 00 ©Y
B 4(1+0)?pmax(s — s0) [ (14 0)\/pmax(s — s0) 3K (s0,4,%0) ?
Dy = max{ 2 , ( o + 21— 0) > }(90)

We note that implicit in these constants, we have used theertration bounds foA,ax(3s0),
Amax (s — sp) andAnin (2s0) as derived in Theorer®, given that 40) holds form < max(s, (ko +
1)sp), where we také:, > 3. In general, these maximum sparse eigenvalues as defined afib
increase withs, ands; Taking this issue into consideration, we fix fgr> 4/2, \,, = do\o where

do > co(1+ 9)2\/pmax(s — 50)Pmax(350) > 2(1 +0)V1 + a,

where the second inequality holds foe= 7 as desired, givepmax(350), Pmax(s — so) > 1.

Thus we have fopmax(350) > Pmax(250) = Pmin(250)

3 2
Dido < co(1+0)(1 = 0)\/pmax(350) v/ Pmin (250) i (1 = 0)2pmin(250)
3 pmin(QS(]) 2

co(1 = 0)2\/pmax(350) pmin(250)  €5(1 = 0)2pmin(250)
2(3co + 2) K2 (s0,4, X0) - TV2K?(s0,4,%0)
- (1 - 0)2 - 8(1 —6)2
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which holds given thgt,,..(3s0) > 1, andl < ﬁ < V2K (s0, ko, £o), and thusm <

2 as shown in Lemma7; Hence

Dy < max {l)/do7 (4 + 3\/§C0)\/pmax(8 - 80)pmax(380)(1 + 9)2K2(807 4, EO) } 7

do(1— 0)2
7\/§K2(80,4, 20)
= 2(1 — 0)2

B A1+ 0)2pman(s — 50) [ (14 0)/pmmn(s —50) 3K (s50,4,%0) )"
Dy = max{ dg ,< d + 2(1—6) )}

and

6 10\ 49K (50,4, %)
-~ _ <
(4(1 o) " 4> K (s0,4,%0) = —r—gr

where for bothD;, we have used the fact that

2(1 4 60)?pmax(s — s0) 2 _ 2
dg (14 0)?pmax(3s0) ~ g1+ 0)pmin(250)
4K2?(s0,4,%0) - K?(s0,4,%0)
A(1+0)2 -~ 8 '

Appendix F. Misc bounds

Lemma 26 For fixed designX with max; || X;[|2 < (1 + 6)y/n, where0 < 6 < 1, we have for7,
as defined ir{85), wherea > 0, P (7,¢) < (v/7 log pp®) L.

Proof Define random variables?; = 2 3% | ¢, X; ;. Note thatmax <<, |Y;| = [| X €/n[|. We
haveE(Y;) = 0 andVar ((Y;)) = || X;[l502/n? < (1 + 0)c?/n. Lete; = 1 + 6. Obviously,Y;
has its tail probability dominated by that &f~ N (0, 9 ):

2c10 —nt?
PY:| >t) <P(|Z] >t) < .
(1 J’ >t) <P(|Z|>t) < St exp <2C%02>

We can now apply the union bound to obtain:

c1o —nt?
F (m ¥l = t) S P P (2(;202)
nt? t\/T
= exp|— + log logp>>
< <2(:% 2 fcla

By choosingt = cj0+/1 + ay/2logp/n, the right-hand side is bounded Iby/7 Tog pp®)~" for
a > 0. [ |
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Lemma 27 (Zhou(20109) Suppose thaRE(sg, ko, >¢) holds forky > 0, then form = (ky+1)so,

(m) > ! and clearly
- (m :

fmin a \/2—|—]{7(2]K(30,k‘0,20)

. 1

if EO,ii = 1,V’i, thenl > pmin(230) > for ko > 1.

V2K (s0, ko, o)
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