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Abstract

Undirected graphs are often used to describe high dimensional distributions. Under sparsity condi-
tions, the graph can be estimated usingℓ1-penalization methods. We propose and study the follow-
ing method. We combine a multiple regression approach with ideas of thresholding and refitting:
first we infer a sparse undirected graphical model structurevia thresholding of each among many
ℓ1-norm penalized regression functions; we then estimate thecovariance matrix and its inverse us-
ing the maximum likelihood estimator. We show under suitable conditions that this approach yields
consistent estimation in terms of graphical structure and fast convergence rates with respect to the
Frobenius norm for the covariance matrix and its inverse. Wealso derive an explicit bound for the
Kullback Leibler divergence.
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1. Introduction

There have been a lot of recent activities for estimation of high-dimensional covariance and inverse
covariance matrices where the dimensionp of the matrix may greatly exceed the sample sizen.
High-dimensional covariance estimation can be classified into two main categories, one which relies
on a natural ordering among the variablesWu and Pourahmadi(2003); Bickel and Levina(2004);
Huang et al.(2006); Furrer and Bengtsson(2007); Bickel and Levina(2008); Levina et al.(2008)
and one where no natural ordering is given and estimators arepermutation invariant with respect
to indexing the variablesYuan and Lin(2007); Friedman et al.(2007); d’Aspremont et al.(2008);
Banerjee et al.(2008); Rothman et al.(2008). We focus here on the latter class with permutation
invariant estimation and we aim for an estimator which is accurate for both the covariance matrixΣ

and its inverse, the precision matrixΣ−1. A popular approach for obtaining a permutation invariant
estimator which is sparse in the estimated precision matrixΣ̂−1 is given by theℓ1-norm regularized
maximum-likelihood estimation, also known as the GLassoYuan and Lin(2007); Friedman et al.
(2007); Banerjee et al.(2008). The GLasso approach is simple to use, at least when relyingon pub-
licly available software such as theglasso package inR. Further improvements have been reported
when using some SCAD-type penalized maximum-likelihood estimatorLam and Fan(2009) or an
adaptive GLasso procedureFan et al.(2009), which can be thought of as a two-stage procedure. It is
well-known from linear regression that such two- or multi-stage methods effectively address some
bias problems which arise fromℓ1-penalizationZou (2006); Candès and Tao(2007); Meinshausen
(2007); Zou and Li(2008); Bühlmann and Meier(2008); Zhou(2009, 2010b).

In this paper we develop a new method for estimating graphical structure and parameters for multi-
variate Gaussian distributions using a multi-step procedure, which we call Gelato (Graphestimation
with Lasso and Thresholding). Based on anℓ1-norm regularization and thresholding method in a
first stage, we infer a sparse undirected graphical model, i.e. an estimated Gaussian conditional
independence graph, and we then perform unpenalized maximum likelihood estimation (MLE) for
the covarianceΣ and its inverseΣ−1 based on the estimated graph. We make the following theo-
retical contributions: (i) Our method allows us to select a graphical structure which is sparse. In
some sense we select only the important edges even though there may be many non-zero edges in
the graph. (ii) Secondly, we evaluate the quality of the graph we have selected by showing consis-
tency and establishing a rate of convergence in Frobenius norm of the estimated inverse covariance
matrix; under sparsity constraints, the latter is of lower order than the corresponding results for the
GLassoRothman et al.(2008) and for the SCAD-type estimatorLam and Fan(2009). (iii) We show
predictive risk consistency and provide a rate of convergence of the estimated covariance matrix.
(iv) Lastly, we show general results for the MLE, where onlyapproximategraph structures are given
as input. Here, we explicitly analyze the performance of themaximum likelihood estimator as de-
fined in (13) in all three metrics as just mentioned. Besides these theoretical advantages, we found
empirically that our graph based method performs better in general, and sometimes substantially
better than the GLasso, while we never found it clearly worse. Finally, our algorithm is simple and
is comparable to the GLasso both in terms of computational time and implementation complexity.
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There are a few key motivations and consequences for proposing such an approach based on graph-
ical modeling. We will theoretically show that there are cases where our graph based method can
accurately estimate conditional independencies among variables, i.e. the zeroes ofΣ−1, in situations
where GLasso fails. The fact that GLasso easily fails to estimate the zeroes ofΣ−1 has been recog-
nized byMeinshausen(2008) and it has been discussed in more details inRavikumar et al.(2008).
Closer relations to existing work are primarily regarding our first stage of estimating the structure of
the graph. We follow the nodewise regression approach fromMeinshausen and Bühlmann(2006)
but we make use of recent results for variable selection in linear models assuming the much weaker
restricted eigenvalue conditionBickel et al.(2009); Zhou (2010b) instead of the restrictive neigh-
borhood stability conditionMeinshausen and Bühlmann(2006) or the equivalent irrepresentable
condition Zhao and Yu(2006). In some sense, the novelty of our theory extending beyondZhou
(2010b) is the analysis for covariance and inverse covariance estimation and for risk consistency
based on an estimated sparse graph as we mentioned above. Ourregression and thresholding results
build upon analysis of the thresholded Lasso estimator as studied inZhou(2010b). Throughout our
analysis, the sample complexity is one of the key focus point, which builds upon results inZhou
(2010a). Once the zeros are found, a constrained maximum likelihood estimator of the covariance
can be computed, which was shown inChaudhuri et al.(2007); it was unclear what the proper-
ties of such a procedure would be. Our theory answers such questions. As a two-stage method,
our approach is also related to the adaptive LassoZou (2006) which has been analyzed for high-
dimensional scenarios inHuang et al.(2008); Zhou et al.(2009); van de Geer et al.(2010). Another
relation can be made to the method byRütimann and Bühlmann(2009) for covariance and inverse
covariance estimation based on a directed acyclic graph. This relation has only methodological
character: the techniques and algorithms used inRütimann and Bühlmann(2009) are very different
and from a practical point of view, their approach has much higher degree of complexity in terms
of computation and implementation, since estimation of an equivalence class of directed acyclic
graphs is difficult and cumbersome.

Notation. We use the following notation. Given a graphG = (V,E0), whereV = {1, . . . , p} is the
set of vertices andE0 is the set of undirected edges. we usesi to denote the degree for nodei, that
is, the number of edges inE0 connecting to nodei. For an edge setE, we let |E| denote its size.
We useΘ0 = Σ−1

0 andΣ0 to refer to the true precision and covariance matrices respectively from
now on. We denote the number of non-zero elements ofΘ by supp(Θ). For any matrixW = (wij),
let |W | denote the determinant ofW , tr(W ) the trace ofW . Let ϕmax(W ) andϕmin(W ) be the
largest and smallest eigenvalues, respectively. We writediag(W ) for a diagonal matrix with the

same diagonal asW . The matrix Frobenius norm is given by‖W‖F =
√∑

i

∑
j w2

ij. The operator

norm‖W‖2
2 is given byϕmax(WW T ). We write| · |1 for theℓ1 norm of a matrix vectorized, i.e., for

a matrix|W |1 = ‖vecW‖1 =
∑

i

∑
j |wij |, and sometimes write‖W‖0 for the number of non-zero

entries in the matrix. For an index setT and a matrixW = [wij ], write WT ≡ (wijI((i, j) ∈ T )),
whereI(·) is the indicator function.
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2. The model and the method

We assume a multivariate Gaussian model

X = (X1, . . . ,Xp) ∼ Np(0,Σ0), where Σ0,ii = 1. (1)

The data is generated byX(1), . . . ,X(n) i.i.d. ∼ Np(0,Σ0). Requiring the mean vector and all
variances being equal to zero and one respectively is not a real restriction and in practice, we can
easily center and scale the data. We denote the concentration matrix byΘ0 = Σ−1

0 .

Since we will use a nodewise regression procedure, as described below in Section2.1, we consider
a regression formulation of the model. Consider many regressions, where we regress one variable
against all others:

Xi =
∑

j 6=i

βi
jXj + Vi (i = 1, . . . , p), where (2)

Vi ∼ N (0, σ2
Vi

) independent of{Xj ; j 6= i} (i = 1, . . . , p). (3)

There are explicit relations between the regression coefficients, error variances and the concentration
matrixΘ0 = (θ0,ij):

βi
j = −θ0,ij/θ0,ii, Var(Vi) := σ2

Vi
= 1/θ0,ii (i, j = 1, . . . , p). (4)

Furthermore, it is well known that for Gaussian distributions, conditional independence is encoded
in Θ0, and due to (4), also in the regression coefficients:

Xi is conditionally dependent ofXj given{Xk; k ∈ {1, . . . , p} \ {i, j}}
⇐⇒ θ0,ij 6= 0 ⇐⇒ βj

i 6= 0 andβi
j 6= 0. (5)

For the second equivalence, we assume thatVar(Vi) = 1/θ0,ii > 0 andVar(Vj) = 1/θ0,jj > 0.
Conditional (in-)dependencies can be conveniently encoded by an undirected graph, the conditional
independence graph which we denote byG = (V,E0). The set of vertices isV = {1, . . . , p} and
the set of undirected edgesE0 ⊆ V × V is defined as follows:

there is an undirected edge between nodesi andj

⇐⇒ θ0,ij 6= 0 ⇐⇒ βj
i 6= 0 andβi

j 6= 0. (6)

Note that on the right hand side of the second equivalence, wecould replace the word ”and” by
”or”. For the second equivalence, we assumeVar(Vi),Var(Vj) > 0 following the remark after (5).

We now define the sparsity of the concentration matrixΘ0 or the conditional independence graph.
The definition is different than simply counting the non-zero elements ofΘ0, for which we have
supp(Θ0) = p + 2|E0|. We consider instead the number of elements which are sufficiently large.
For eachi, define the numbersi

0,n as the smallest integer such that the following holds:

p∑

j=1,j 6=i

min{θ2
0,ij , λ

2θ0,ii} ≤ si
0,nλ2θ0,ii, where λ =

√
2 log(p)/n, (7)
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whereessential sparsitysi
0,n at row i describes the number of “sufficiently large” non-diagonal

elementsθ0,ij relative to a given(n, p) pair andθ0,ii, i = 1, . . . , p. The valueS0,n in (8) is summing
essential sparsityacross all rows ofΘ0,

S0,n :=

p∑

i=1

si
0,n. (8)

Due to the expression ofλ, the value ofS0,n depends onp andn. For example, if all non-zero
non-diagonal elementsθ0,ij of the ith row are larger in absolute value thanλ

√
θ0,ii, the valuesi

0,n

coincides with the node degreesi. However, if some (many) of the elements|θ0,ij| are non-zero
but small,si

0,n is (much) smaller than its node degreesi; As a consequence, if some (many) of
|θ0,ij|,∀i, j, i 6= j are non-zero but small, the value ofS0,n is also (much) smaller than2|E0|, which
is the “classical” sparsity for the matrix(Θ0 − diag(Θ0)). See SectionA for more discussions.

2.1 The estimation procedure

The estimation ofΘ0 andΣ0 = Θ−1
0 is pursued in two stages. We first estimate the undirected

graph with edge setE0 as in (6) and we then use the maximum likelihood estimator based on
the estimateÊn, that is, the non-zero elements ofΘ̂n correspond to the estimated edges inÊn.
Inferring the edge setE0 can be based the following approach as proposed and theoretically justified
in Meinshausen and Bühlmann(2006): performp regressions using the Lasso to obtainp vectors of
regression coefficientŝβ1, . . . , β̂p where for eachi, β̂i = {β̂i

j ; j ∈ {1, . . . , p} \ i}; Then estimate
the edge set by the “OR” rule,

estimate an edge between nodesi andj ⇐⇒ β̂i
j 6= 0 or β̂j

i 6= 0. (9)

Nodewise regressions for inferring the graph.In the present work, we use the Lasso in com-
bination with thresholdingZhou(2010b). Consider the Lasso for each of the nodewise regressions

βi
init = argminβi

n∑

r=1

(X
(r)
i −

∑

j 6=i

βi
jX

(r)
j )2 + λn

∑

j 6=i

|βi
j | for i = 1, . . . , p, (10)

whereλn > 0 is the same regularization parameter for all regressions. Since the Lasso typically es-
timates too many components with non-zero estimated regression coefficients, we use thresholding
to get rid of variables with small regression coefficients from solutions of (10):

β̂i
j(λn, τ) = βi

j,init(λn)I(|βi
j,init(λn)| > τ), (11)

whereτ > 0 is a thresholding parameter. We obtain the corresponding estimated edge set as defined
by (9) using the estimator in (11) and we use the notation

Ên(λn, τ). (12)

We note that the estimator depends on two tuning parametersλn andτ .
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Maximum likelihood estimation based on graphs.Given a conditional independence graph
with edge setE, we estimate the concentration matrix by maximum likelihood:

Θ̂n(E) = argminΘ∈Mp,E

(
tr(ΘŜn) − log |Θ|

)
, where

Mp,E = {Θ ∈ R
p×p; Θ ≻ 0 andθ0,ij = 0 for all (i, j) 6∈ E, where i 6= j} (13)

defines the constrained set for positive definiteΘ andŜn = n−1
∑n

r=1 X(r)(X(r))T is the sample
covariance estimator (using that the mean vector is zero). The estimator in (13) is the maximum
likelihood estimator with constraints to zero-values corresponding to the non-edgesEc:

Ec = {(i, j) : i, j = 1, . . . , p, i 6= j, (i, j) 6∈ E}. (14)

If the edge setE is sparse having relatively few edges only, the estimator in(13) is already suffi-
ciently regularized by the constraints and hence, no additional penalization is used at this stage. Our
final estimator for the concentration matrix is the combination of (12) and (13):

Θ̂n = Θ̂n(Ên(λn, τ)). (15)

Choosing the regularization parameters.We propose to select the parameterλn via cross-
validation to minimize the squared test set error among allp regressions:

λ̂n = argminλ

p∑

i=1

(CV-score(λ) of ith regression) ,

where CV-score(λ) of ith regression is with respect to the squared error prediction loss. Sequentially
proceeding, we then selectτ by cross-validating the multivariate Gaussian log-likelihood, from (13).
Regarding the type of cross-validation, we usually use the 10-fold scheme. Due to the sequential
nature of choosing the regularization parameters, the number of candidate estimators is given by
the number of candidate values forλ plus the number of candidate value forτ . In Section4, we
describe the grids of candidate values in more details. We note that for our theoretical results, we
do not analyze the implications of our method using estimated λ̂n andτ̂ .

3. Theoretical results

In this section, we present in Theorem1 convergence rates for estimating the precision and the
covariance matrices with respect to the Frobenius norm; in addition, we show a risk consistency
result for an oracle risk to be defined in (17). More importantly, we show the model we select is
sufficiently sparse while at the same time, the bias term we introduce via sparse approximation is
sufficiently bounded as given explicitly in Proposition2. These results again illustrate the classical
bias and variance tradeoff. Our analyses are non-asymptotic in nature; however, we first formulate
our results from an asymptotic point of view for simplicity.To do so, we consider a triangular array
of data generating random variables

X(1), . . . ,X(n) i.i.d. ∼ Np(0,Σ0), n = 1, 2, . . . (16)
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whereΣ0 = Σ0,n andp = pn change withn. We make the following assumptions. LetΘ0 := Σ−1
0 .

(A0) The size of the neighborhood for each nodei ∈ V is upper bounded by an integers < p/2.

(A1) The dimension and number of sufficiently strong non-zero edgesS0,n as in (8) satisfy: di-
mensionp grows withn following p ≍ nc for some constant0 < c < 1 and

p + S0,n = o(n/ log(n)) (n → ∞).

(A2) The minimal and maximal eigenvalues of the true covariance matrixΣ0 are bounded: for
some constantsMupp ≥ Mlow > 0, we have

ϕmin(Σ0) ≥ Mlow > 0 and ϕmax(Σ0) ≤ Mupp ≤ ∞.

Moreover, throughout our analysis, we assume the following. There existsv2 > 0 such that
for all i, andVi as defined in (3): Var(Vi) = 1/θ0,ii ≥ v2.

For more discussions on these conditions, see SectionA. Before we proceed, we need some defini-
tions. Define forΘ ≻ 0

R(Θ) = tr(ΘΣ0) − log |Θ|, (17)

where minimizing (17) without constraints givesΘ0. Given (8), (7), andΘ0, define

C2
diag := min{ max

i=1,...p
θ2
0,ii, max

i=1,...,p

(
si
0,n/S0,n

)
· ‖diag(Θ0)‖2

F }. (18)

We now state the main results of this paper. We defer the specification on various tuning parameters,
namely,λn, τ to Section3.2.

Theorem 1 Consider data generating random variables as in (16) and assume that (A0), (A1), and
(A2) hold. Then, with probability at least1− d/p2, for some small constantd > 2, we obtain under
appropriately chosenλn andτ , an edge set̂En as in (12), such that

|Ên| ≤ 4S0,n, where |Ên \ E0| ≤ 2S0,n; (19)

and forΘ̂n andΣ̂n = (Θ̂n)−1 as defined in(15) the following holds,

‖Θ̂n − Θ0‖F = OP

(√
(p + S0,n) log(n)/n

)
,

‖Σ̂n − Σ0‖F = OP

(√
(p + S0,n) log(n)/n

)
,

R(Θ̂n) − R(Θ0) = OP ((p + S0,n) log(n)/n)

where the contants hidden in theOP () notation depend onτ , Mlow,Mupp, Cdiag as in (18), and
constants concerning sparse and restrictive eigenvalues of Σ0 (cf. Section3.2andB).
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The predictive risk can be interpreted as follows. LetX ∼ N (0,Σ0) with fΣ0 denoting its den-
sity. Let fbΣn

be the density forN (0, Σ̂n) andDKL (Σ0‖Σ̂n) denotes the Kullback Leibler (KL)

divergence fromN (0,Σ0) to N (0, Σ̂n). Now, we have forΣ, Σ̂n ≻ 0,

R(Θ̂n) − R(Θ0) := 2E0

[
log fΣ0(X) − log fbΣn

(X)
]

:= 2DKL (Σ0‖Σ̂n) ≥ 0.

In Section3.2, we provide an outline for achieving Theorem1. The conditions that we use are indeed
similar to those inRothman et al.(2008), with (A1) being much more relaxed whenS0,n ≪ |E0|.
We note that the bounded neighborhood constraint (A0) is required only for regression analysis (cf.
Theorem10) and for bounding the bias due to sparse approximation as in Proposition2. We believe
it can be relaxed when we do not aim to recover the graph structure. SeeZhou (2010b) for more
discussions on this point. Actual conditions and non-asymptotic results that are involved in the
Gelato estimation appear in SectionsB, C, andD respectively.

Theorem1 can be interpreted as follows. First, the cardinality of theestimated edge set exceedsS0,n

at most by a factor 4, whereS0,n as in (8) is the number of sufficiently strong edges in the model,
while the number of false positives is bounded by2S0,n. Note that the factors4 and2 can be replaced
by some other constants, while achieving the same bounds on Frobenius norm (cf. SectionD.1). We
emphasize that we achieve these two goals by sparse model selection, where only important edges
are selected even though there are many more non-zero edges in E0, under conditions that are in
some sense much weaker than (A2); For example, (A2) can be replaced by conditions on sparse and
restrictive eigenvalues ofΣ0, much in the setting ofCandès and Tao(2007); Meinshausen and Yu
(2009); Bickel et al.(2009) for estimating regression coefficients except that we now impose such
conditions onΣ0 instead of the (regression) design matrix. Second, for the Frobenius norm and the
risk to converge to zero, a too large value ofp is not allowed and hence, a real high-dimensional
scenario wherep ≫ n is excluded. Hence (A1) is brought in only for this purpose. However, this
restriction comes from the nature of the Frobenius norm and when considering e.g. the operator
norm, such restrictions typically can be relaxed, seeRothman et al.(2008). The convergence rate
with respect to the Frobenius norm should be compared to the rate OP (

√
(p + |E0|) log(n)/n)

which is the rate inRothman et al.(2008) for the GLasso and for SCADLam and Fan(2009). In
the scenario where|E0| ≫ S0,n, i.e. there are many weak edges, the rate in Theorem1 is better than
the one established for GLassoRothman et al.(2008) or for the SCAD-type estimatorLam and Fan
(2009); hence we require a smaller sample size in order to yield an accurate estimate ofΘ0. We
note that convergence rates for the estimated covariance matrix and for predictive risk depend on
the rate in Frobenius norm of the estimated inverse covariance matrix. Finally, it is also of interest
to understand the bias of the estimator caused by using the estimated edge set̂En instead of the true
edge setE0. This is the content of Proposition2. For a givenÊn, denote by

Θ̃0 = diag(Θ0) + (Θ0) bEn
= diag(Θ0) + Θ0, bEn∩E0

,

where the second equality holds sinceΘ0,Ec
0

= 0. Note that the quantitỹΘ0 is identical toΘ0 on
Ên and on the diagonal, and it equals zero onÊc

n as in (14). Hence, the quantityΘ0,D := Θ̃0 − Θ0

measures the bias caused by a potentially wrong edge setÊn; note thatΘ̃0 = Θ0 if Ên = E0.
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Proposition 2 Consider data generating random variables as in expression(16). Assume that (A0)
and (A2) hold and thatmax{p, S0,n} = o(n/ log(p))(n → ∞). Then we have for choices onλn, τ

as in Theorem1 andÊn in (12),

‖Θ0,D‖F := ‖Θ̃0 − Θ0‖F = OP

(√
S0,n log(p)/n

)
.

We note that we achieve essentially the same rate for‖(Θ̃0)
−1 − Σ0‖F ; see Remark22. We give

an account on how results in Proposition2 are obtained in Section3.2, with its non-asymptotic
statement appearing in Corollary12. Note that the sample size ofn = Ω (max(p, S0,n) log n) as in
Proposition2 is less stringent than that implicitly specified in (A1), where we have specified a lower
bound on the sample size to ben = Ω ((p + S0,n) log n). As to be shown in our analysis, the lower
bound onn is slightly different for each Frobenius norm bound to hold from a non-asymptotic point
of view (cf. Theorem14 and15).

3.1 Discussions and connections to previous work

It is interesting that the accuracy in terms of
∥∥∥Θ̂n − Θ0

∥∥∥
F

is not depending too strongly on the

property to recover the true underlying edge setE0 using (13). Regarding the latter, suppose we
obtain with high probability the screening property

E ⊇ E0, (20)

when assuming that all non-zero regression coefficients|βi
j | are sufficiently large (E might be an

estimate and hence random). Although we do not intend to makeprecise the exact conditions
and choices of tuning parameters in regression and thresholding in order to achieve (20), we state
Theorem3, in case (20) holds with the following condition: the number of false positives is bounded
as |E \ E0| ≍ p + S. For simplicity, we state an asymptotic bound on the rate of convergence in
Frobenius norm of the estimated̂Θn.

Theorem 3 Consider data generating random variables as in expression(16) and assume that
(A1) and (A2) hold, where we replaceS0,n with S := |E0| =

∑p
i=1 si. Suppose on some event

E , such thatP (E) ≥ 1 − d/p2 for a small constantd, we obtain an edge setE such that (20)
holds and|E \ E0| = O(S + p). Let Θ̂n(E) be the minimizer as defined in(13). Then, we have

‖Θ̂n(E) − Θ0‖F = OP

(√
(p + S) log(n)/n

)
.

It is clear that this bound corresponds to exactly that ofRothman et al.(2008) for the GLasso esti-
mation under appropriate choice of the penalty parameter. We omit the proof as it is more or less a
simplified version of Theorem14, which proves the stronger bounds as stated in Theorem1, when
E satisfies the sparsity conditions as in Theorem1 and the bias condition in Proposition2. We note
that the maximum node-degree bound in (A0) is not needed for Theorem3, nor for Theorem14-
16 to hold. We now make some connections to previous work. First, we note that to obtain with
high probability the exact edge recovery,E = E0, we need again sufficiently large non-zero edge

9
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weights and some restricted eigenvalue conditions on the covariance matrix as defined in SectionA
even for the multi-stage procedure. An earlier example is shown in Zhou et al.(2009), where the
second stage estimator̂β corresponding to (11) is obtained with nodewise regressions using adap-
tive LassoZou (2006) rather than thresholding as in the present work in order to recover the edge
setE0 with high probability. Clearly, given an accuratêEn, under (A1) and (A2) one can then
apply Theorem3 to accurately estimatêΘn. On the other hand, it is known that GLasso necessarily
needs more restrictive conditions onΣ0 than the nodewise regression approach with the Lasso, as
discussed inMeinshausen(2007) andRavikumar et al.(2008).

Furthermore, we believe it is easy to show that the nodewise regression approach with Lasso and
thresholding (Gelato) works under the less restrictive assumptions onΣ0 and with a smaller sample
size than the analogue without the thresholding operation in order to achievenearly exact recovery
of the support in the sense thatÊn ⊇ E0 andmaxi |Ên,i \ E0,i| is small, which is to be understood
as: the number of extra estimated edges at each nodei is bounded by a small constant even when
node degreesi grows sublinearly withn for eachi. This is shown essentially inZhou(2010b) for
single regression, in view of Theorem25 in the present work. Given such properties ofÊn, we can
again apply Theorem3 to obtainΘ̂n under (A1) and (A2). In comparison to GLasso, Gelato requires
weaker assumptions onΣ0 in order to achieve the best sparsity and bias tradeoff as illustrated in
Theorem1 and Proposition2 when many signals are weak, and Theorem3 when all signals inE0

are strong.

3.2 An outline for Theorem 1

Let s0 = maxi=1,...,p si
0,n. We note that although sparse eigenvaluesρmax(s), ρmax(3s0) and re-

stricted eigenvalue forΣ0 (cf. SectionA) are parameters that are unknown, we only need them to
appear in the lower bounds ford0, D4, and hence also that forλn andt0 that appear below. We sim-
plify our notation in this section to keep it consistent withour theoretical non-asymptotic analysis
to appear toward the end of this paper.

Regression.We choose for somec0 ≥ 4
√

2, 0 < θ < 1, andλ =
√

log(p)/n,

λn = d0λ, where d0 ≥ c0(1 + θ)2
√

ρmax(s)ρmax(3s0).

Let βi
init , i = 1, . . . , p be the optimal solutions to (10) with λn as chosen above. We first prove an

oracle result on nodewise regressions from Section2.1 in Theorem10.

Thresholding. We choose for some constantsD1,D4 to be defined in Theorem10,

t0 = f0λ := D4d0λ whereD4 ≥ D1

whereD1 depends on restrictive eigenvalue ofΣ0; Apply (11) with τ = t0 andβi
init , i = 1, . . . , p

for thresholding our initial regression coefficients. Let

Di = {j : j 6= i,
∣∣βi

j,init

∣∣ < t0 = f0λ},

10
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where bounds onDi, i = 1, . . . , p are given in Lemma11. In view of (9), we let

D = {(i, j) : i 6= j : (i, j) ∈ Di ∩ Dj}. (21)

Selecting edge setE. Recall for a pair(i, j) we take theOR ruleas in (9) to decide if it is to be
included in the edge setE: for D as defined in (21), define

E := {(i, j) : i, j = 1, . . . , p, i 6= j, (i, j) 6∈ D}. (22)

to be the subset of pairs of non-identical vertices ofG which do not appear inD; Let

Θ̃0 = diag(Θ0) + Θ0,E0∩E (23)

for E as in (22), which is identical toΘ0 on all diagonal entries and entries indexed byE0 ∩ E, with
the rest being set to zero. As shown in the proof of Corollary12, by thresholding, we have identified
a sparse subsetof edgesE of size at most4S0,n, such that the corresponding bias‖Θ0,D‖F :=

‖Θ̃0 − Θ0‖F is relatively small, i.e., as bounded in Proposition2.

Refitting. In view of Proposition2, we aim to recover̃Θ0 given a sparse subsetE; toward this goal,
we use (13) to obtain the final estimator̂Θn andΣ̂n = (Θ̂n)−1. We give a more detailed account
of this procedure in SectionD, with a focus on elaborating the bias and variance tradeoff.We show
the rate of convergence in Frobenius norm for the estimatedΘ̂n andΣ̂n in Theorem14 and15, and
the bound for Kullback Leibler divergence in Theorem16 respectively.

3.3 Discussion on covariance estimation based on maximum likelihood

The maximum likelihood estimate minimizes over allΘ ≻ 0,

R̂n(Θ) = tr(ΘŜn) − log |Θ| (24)

whereŜn is the sample covariance matrix. MinimizinĝRn(Θ) without constraints giveŝΣn = Ŝn.
We now would like to minimize (24) under the constraints that some pre-defined subsetD of edges
are set to zero. Then the follow relationships hold regarding Θ̂n(E) defined in (13) and its inverse
Σ̂n, andŜn: for E as defined in (22),

Θ̂n,ij = 0, ∀(i, j) ∈ D and

Σ̂n,ij = Ŝn,ij, ∀(i, j) ∈ E ∪ {(i, i), i = 1, . . . , p}.

Hence the entries in the covariance matrixΣ̂n for the chosen set of edges inE and the diagonal
entries are set to their corresponding values inŜn. Indeed, we can derive the above relationships via
the Lagrange form, where we add Lagrange constantsγjk for edges inD,

ℓC(Θ) = log |Θ| − tr(ŜnΘ) −
∑

(j,k)∈D
γjkθ0,jk. (25)

11
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Now the gradient equation of (25) is:

Θ−1 − Ŝn − Γ = 0,

whereΓ is a matrix of Lagrange parameters such thatγjk 6= 0 for all (j, k) ∈ D andγjk = 0

otherwise. Throughout this paper, we assume that graphG = (V,E0) is connected. Otherwise, the
MLE problem can potentially be decomposed into a number of independent problems, for which
we solve independently for each connected component. This will be one of the directions for our
future work.

4. Numerical results

We note that the notation in this section is necessarily different from the rest of the paper to make
things simple. In this section we compare the empirical performance of our estimation method with
the GLasso for simulated and real data. The GLasso is defined as:

Θ̂GLasso = argmin
Θ ≻0

(tr(ŜnΘ) − log |Θ| + ρ
∑

i<j

|θij |)

whereŜn is the empirical covariance matrix and the minimization is over positive definite matri-
ces. For computation of the Gelato, we used the R-packages glmnet Friedman et al.(2010) and
glassoFriedman et al.(2007).

4.1 Simulation study

In our simulation study, we look at three different models.

• An AR(1)-Block model. In this model the covariance matrix isblock-diagonal with equal-
sized AR(1)-blocks of the formΣBlock = {r|i−j|}i,j .

• The random concentration matrix model considered inRothman et al.(2008). In this model,
the concentration matrix isΘ = B + δI where each off-diagonal entry in B is generated
independently and equal to 0 or 0.5 with probability1 − π or π, respectively. All diagonal
entries ofB are zero, andδ is chosen such that the condition number ofΘ is p.

• The exponential decay model considered inFan et al.(2009). In this model we consider a
case where no element of the concentration matrix is exactlyzero. The elements ofΘ are
given byθij = exp(−2|i − j|) equals essentially zero when the difference|i − j| is large.

We compare the two estimators for each model withp = 300 andn = 40, 80, 320. For each model
we sample dataX(1), . . . ,X(n) i.i.d. ∼ N (0,Σ). We use two different performance measures.
The Frobenius norm of the estimation error‖Σ̂ − Σ‖F and‖Θ̂ − Θ‖F , and the Kullback-Leibler
divergence betweenN (0,Σ) andN (0, Σ̂):

2DKL (Σ‖Σ̂) = tr
(
ΣΘ̂
)
− log |ΣΘ̂| − p := R(Θ̂) − R(Σ−1)

12
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for R as defined in (17). For the two estimation methods we have various tuning parameters, namely
λ, τ andρ. Due to the computational complexity we specify the two parameters of our Gelato
method sequentially. That is, we derive the optimal value ofthe penalty parameterλ by 10-fold
cross-validation with respect to the test set squared errorfor all the nodewise regressions. After
fixing λ = λCV we obtain the optimal thresholdτ again by 10-fold cross-validation but with respect
to the negative Gaussian log-likelihood. For the parameterρ of the GLasso estimator we also use a
10-fold cross-validation with respect to the negative Gaussian log-likelihood. The grids of candidate
values for the cross-validations are given as follows:

λr = Ar

√
log p

n
r = 1, . . . , 10 with τr = 0.75 · λr

ρr = Br

√
log p

n
r = 1, . . . , 10

whereAr, Br ∈ {0.01, 0.05, 0.1, 0.3, 0.5, 1, 2, 4, 8, 16}.
The two different performance measures are evaluated for the estimators based on the sample
X(1), . . . ,X(n) with optimal tuning parametersλ, τ andρ for each model from above. All results
are based on 50 independent simulation runs.

4.1.1 THE AR(1)-BLOCK MODEL

We consider two different covariance matrices. The first oneis a simple auto-regressive process
of order one with trivial block size equal top = 300, denoted byΣ(1)

AR. This is also known as a

Toeplitz matrix. That is, we haveΣ(1)
AR;i,j = r|i−j| ∀ i, j ∈ {1, ..., p}. The second matrixΣ(2)

AR is a
block-diagonal matrix with AR(1) blocks of equal block size30×30, and hence the block-diagonal
of Σ

(2)
AR equalsΣBlock;i,j = r|i−j|, i, j ∈ {1, . . . , 30}. For both modelsΣ(1)

AR andΣ
(2)
AR we choose

r = 0.9. The results of the simulation are shown in Figure1 and2.

The figures show a substantial performance gain of our methodcompared to the GLasso in both
considered covariance models. This result speaks for our method, especially because AR(1)-block
models are very simple.

4.1.2 THE RANDOM PRECISION MATRIX MODEL

For this model we also consider two different matrices, which differ in sparsity. For the sparser
matrix Θ(3) we set the probabilityπ to 0.1. That is , we have an off diagonal entry inΘ(3) of 0.5
with probability π = 0.1 and an entry of 0 with probability0.9. In the case of the second matrix
Θ(4) we setπ to 0.5 which provides us with a denser concentration matrix. The simulation results
for the two performance measures are given in Figure3 and4.

From Figures3 and4 we see that Gelato keeps up with the GLasso in both the sparse and the dense
simulation settings. It performs better than the GLasso with respect to‖Θ̂−Θ‖F and the Kullback
Leibler divergence but is inferior for the Frobenius norm ofΣ̂ − Σ.

13
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(a) Σ
(1)
AR with n = 40 (b) Σ

(1)
AR with n = 80 (c) Σ

(1)
AR with n = 320

(d) Σ
(1)
AR with n = 40 (e) Σ

(1)
AR with n = 80 (f) Σ

(1)
AR with n = 320

(g) Σ
(1)
AR with n = 40 (h) Σ

(1)
AR with n = 80 (i) Σ

(1)
AR with n = 320

Figure 1: Plots forΣ(1)
AR. The triangles (green) stand for the GLasso and the circles (red) for our

Gelato method with a representative value ofτ . The horizontal lines show the perfor-
mances of the two techniques for cross-validated tuning parametersλ, τ and ρ. The
dashed line stands for our Gelato method and the dotted one for the GLasso. Lambda/Rho
stands forλ or ρ, respectively.
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(a) Σ
(2)
AR with n = 40 (b) Σ

(2)
AR with n = 80 (c) Σ

(2)
AR with n = 320

(d) Σ
(2)
AR with n = 40 (e) Σ

(2)
AR with n = 80 (f) Σ

(2)
AR with n = 320

(g) Σ
(2)
AR with n = 40 (h) Σ

(2)
AR with n = 80 (i) Σ

(2)
AR with n = 320

Figure 2: Plots forΣ(2)
AR. The triangles (green) stand for the GLasso and the circles (red) for our

Gelato method with a representative value ofτ . The horizontal lines show the perfor-
mances of the two techniques for cross-validated tuning parametersλ, τ and ρ. The
dashed line stands for our Gelato method and the dotted one for the GLasso. Lambda/Rho
stands forλ or ρ, respectively.
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(a) Θ
(3) with n = 40 (b) Θ

(3) with n = 80 (c) Θ
(3) with n = 320

(d) Θ
(3) with n = 40 (e) Θ

(3) with n = 80 (f) Θ
(3) with n = 320

(g) Θ
(3) with n = 40 (h) Θ

(3) with n = 80 (i) Θ
(3) with n = 320

Figure 3: Plots forΘ(3). The triangles (green) stand for the GLasso and the circles (red) for our
Gelato method with a representative value ofτ . The horizontal lines show the perfor-
mances of the two techniques for cross-validated tuning parametersλ, τ and ρ. The
dashed line stands for our Gelato method and the dotted one for the GLasso. Lambda/Rho
stands forλ or ρ, respectively.
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(a) Θ
(4) with n = 40 (b) Θ

(4) with n = 80 (c) Θ
(4) with n = 320

(d) Θ
(4) with n = 40 (e) Θ

(4) with n = 80 (f) Θ
(4) with n = 320

(g) Θ
(4) with n = 40 (h) Θ

(4) with n = 80 (i) Θ
(4) with n = 320

Figure 4: Plots forΘ(4). The triangles (green) stand for the GLasso and the circles (red) for our
Gelato method with a representative value ofτ . The horizontal lines show the perfor-
mances of the two techniques for cross-validated tuning parametersλ, τ and ρ. The
dashed line stands for our Gelato method and the dotted one for the GLasso. Lambda/Rho
stands forλ or ρ, respectively.
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4.1.3 THE EXPONENTIAL DECAY MODEL

In this simulation setting we only have one version of the concentration matrixΘ(5). The entries of
Θ(5) are generated byΘ(5)

i,j = exp(−2|i − j|).

Figure5 shows the results of the simulation. We find that both methodsshow equal performances
in both the Frobenius norm and the Kullback Leibler divergence. This is not entirely surprising as
we expect Gelato to work best whenΘ is relatively sparse.

4.2 Application to real data

4.2.1 ISOPRENOID GENE PATHWAY INARABIDOBSIS THALIANA

In this example we compare the two estimators on the isoprenoid biosynthesis pathway data given
in Wille et al. (2004). Isoprenoids play various roles in plant and animal physiological processes
and as intermediates in the biological synthesis of other important molecules. In plants they serve
numerous biochemical functions in processes such as photosynthesis, regulation of growth and de-
velopment.
The data set consists ofp = 39 isoprenoid genes for which we haven = 118 gene expression pat-
terns under various experimental conditions. In order to compare the two techniques we compute
the negative log-likelihood via 10-fold cross-validationfor different values ofλ, τ andρ. In Figure
6 we plot the cross-validated negative log-likelihood against the logarithm of the average number of
non-zero entries (logarithm of theℓ0-norm) of the estimated concentration matrixΘ̂. The logarithm
of theℓ0-norm reflects the sparsity of the matrix̂Θ and therefore the figures show the performance
of the estimators for different levels of sparsity. The plots do not allow for a clear conclusion. The
GLasso performs slightly better when allowing for a rather dense fit. On the other hand, when
requiring a sparse fit, the Gelato performs better.

4.2.2 CLINICAL STATUS OF HUMAN BREAST CANCER

As a second example, we compare the two methods on the breast cancer dataset fromWest et al.
(2001). The tumor samples were selected from the Duke Breast Cancer SPORE tissue bank. The
data consists ofp = 7129 genes withn = 49 breast tumor samples. For the analysis we use the 100
variables with the largest sample variance. As before, we compute the negative log-likelihood via
10-fold cross-validation. Figure6 shows the results.

In this real data example the interpretation of the plots is similar as for the arabidopsis dataset. For
dense fits, GLasso is better while Gelato has an advantage when requiring a sparse fit.
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(a) Θ
(5) with n = 40 (b) Θ

(5) with n = 80 (c) Θ
(5) with n = 320

(d) Θ
(5) with n = 40 (e) Θ

(5) with n = 80 (f) Θ
(5) with n = 320

(g) Θ
(5) with n = 40 (h) Θ

(5) with n = 80 (i) Θ
(5) with n = 320

Figure 5: Plots forΘ(5). The triangles (green) stand for the GLasso and the circles (red) for our
Gelato method with a representative value ofτ . The horizontal lines show the perfor-
mances of the two techniques for cross-validated tuning parametersλ, τ and ρ. The
dashed line stands for our Gelato method and the dotted one for the GLasso. Lambda/Rho
stands forλ or ρ, respectively.
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(a) isoprenoid data (b) breast cancer data

Figure 6: Plots for the isporenoid data from arabidopsis thaliana (a) and the human breast cancer
data (b). 10-fold cross-validation of negative log-likelihood against the logarithm of the
average number of non-zero entries of the estimated concentration matrixΘ̂. The circles
stand for the GLasso and the Gelato is displayed for various values ofτ .

5. Conclusions

We propose and analyze the Gelato estimator. Its advantage is that it automatically yields a positive
definite covariance matrix and the Frobenius norm on its inverse has in some settings a better rate
of convergence than the GLasso or SCAD type estimators. Froma theoretical point of view, our
method is clearly gauged for bounding the Frobenius norm of the inverse covariance matrix. We also
derive bounds on the convergence rate for the estimated covariance matrix and on on the Kullback-
Leibler divergence. From a non-asymptotic point of view, our method has a clear advantage when
the sample size is small relative to the sparsityS = |E0|: for a given sample sizen, we bound the
variance in our re-estimation stage by excluding edges ofE0 with small weights from the selected
edge setÊn while ensuring that we do not introduce too much bias. Our Gelato method also
addresses the bias problem inherent in the GLasso estimatorsince we no longer shrink the entries
in the covariance matrix corresponding to the selected edgeset Ên in the maximum likelihood
estimate, as shown in Section 3.3.

Our experimental results show that when the graph is sparse,Gelato performs better (and sometimes
substantially better, for example for AR(1)-Block models)than the GLasso consistently in all per-
formance measures, and slightly worse only with respect to the Frobenius norm of the covariance
matrix when the truth is a dense graph. We also show experimentally how one can use cross-
validation for choosing the tuning parameters in regression and thresholding. Deriving theoretical
results on cross-validation is not within the scope of this paper.
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Appendix A. Theoretical analysis and proofs

In this section, we specify some preliminary definitions. First, note that when we discuss estimating
the parametersΣ0 andΘ0 = Σ−1

0 , we always assume that

ϕmax(Σ0) := 1/ϕmin(Θ0) ≤ 1/c < ∞ and1/ϕmax(Θ0) = ϕmin(Σ0) ≥ k > 0, (26)

where we assumek, c ≤ 1 so thatc ≤ 1 ≤ 1/k. (27)

It is clear that these conditions are exactly that of (A2) in Section3 with

Mupp := 1/c and Mlow := k,

where it is clear that forΣ0,ii = 1, i = 1, . . . , p, we have the sum ofp eigenvalues ofΣ0,∑p
i=1 ϕi(Σ0) = tr(Σ0) = p. Hence it will make sense to assume that (27) holds, since other-

wise, (26) implies thatϕmin(Σ0) = ϕmax(Σ0) = 1 which is unnecessarily restrictive.

We now define parameters relating to the key notion ofessential sparsitys0 as explored inCandès and Tao
(2007); Zhou (2009, 2010b) for regression. Denote the number of non-zero non-diagonal en-
tries in each row ofΘ0 by si. Let s = maxi=1,...,p si denote the highest node degree inG =

(V,E0). Consider nodewise regressions as in (2), where we are given vectors of parameters{βi
j , j =

1, . . . , p, j 6= i} for i = 1, . . . , p. With respect to the neighborhood of nodei for eachi, we define
si
0 ≤ si ≤ s as the smallest integer such that

p∑

j=1,j 6=i

min((βi
j)

2, λ2Var(Vi)) ≤ si
0λ

2Var(Vi), whereλ =
√

2 log p/n. (28)

Note that we drop subscriptn from si
0, which coincides withsi

0,n as defined in (7). We use the
following symbols as a shorthand throughout our proofs to simplify our notation.

Definition 4 (Bounded neighborhood parameters.) The size of the neighborhoodsi for each
nodei is upper bounded by an integers < p/2. For si

0 as in(28), define

s0 := max
i=1,...,p

si
0 ≤ s < p/2 and (29)

S0,n :=
∑

i=1,...,p

si
0 ≤ s0p, (30)

which coincides withS0,n as defined in(8).
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Next, we define the following parameters that are relevant tonodewise regressions for a random
designX. Recall the data is generated byX(1), . . . ,X(n) i.i.d. ∼ Np(0,Σ0), whereΣ0,ii = 1. For
an integerm < p, we definem-sparse eigenvaluesof Σ0 as follows:

√
ρmin(m) := min

t 6=0

| supp(t)|≤m

∥∥∥Σ1/2
0 t
∥∥∥

2

‖t‖2

,
√

ρmax(m) := max
t 6=0

| supp(t)|≤m

∥∥∥Σ1/2
0 t
∥∥∥

2

‖t‖2

.

For a given sparsity parameters0 as defined in (29), we define the following condition, which was
originally defined inZhou et al.(2009), motivated byBickel et al.(2009). It is clear that whens0

andk0 become smaller,RE(s0, k0,Σ0) condition becomes easier to hold withK becomes corre-
spondingly smaller.

Definition 5 (Restricted eigenvalue conditionRE(s0, k0,Σ0)). For some integer1 ≤ s0 ≤ p/2

and a positive numberk0, the following condition holds for allυ 6= 0,

1

K(s0, k0,Σ0)
:= min

J0⊆{1,...,p},

|J0|≤s0

min‚‚‚υJc
0

‚‚‚
1
≤k0‖υJ0‖1

∥∥∥Σ1/2
0 υ

∥∥∥
2

‖υJ0‖2

> 0, (31)

where we assumeΣ0,jj = 1,∀j = 1, . . . , p.

In the context of Gaussian graphical modeling, where we onlyaim to estimate the graphical structure
E0 itself, (26) need not hold in general. Throughout the rest of the paper uptill Section D, we
assume thatΣ0 satisfies (31) for s0 as in (28) and the sparse eigenvalueρmin(s) > 0, wheres is
the maximum node degree inG; Clearly we haveρmax(s) ≤ s as we assumeΣ0,jj = 1,∀j =

1, . . . , p. In the context of covariance estimation, we do assume that (26) holds; in this case such
RE condition always holds onΣ0, andρmax(m), ρmin(m) are bounded by some constants for all
m ≤ p. In this case, we continue to adopt parameters such asK, ρmax(s), andρmax(3s0) for the
purpose of defining constants that are reasonable tight under condition (26). In general, one can
think of

ρmax(max(3s0, s)) ≪ 1/c < ∞ and K2(s0, k0,Σ0) ≪ 1/k < ∞,

for c, k as in (26) ands0 as in (29).

Roughly speaking, for two variablesXi,Xj as in (1) such that their corresponding entry inΘ0 =

(θ0,ij) satisfies:θ0,ij < λ
√

θ0,ii, whereλ =
√

2 log(p)/n, we can not guarantee that(i, j) ∈ Ên

when we aim to keep≍ si
0 edges for nodei, i = 1, . . . , p. For a givenΘ0, it is clear that as sample

sizen increases, we are able to select edges with smaller coefficient θ0,ij . In fact it holds that

|θ0,ij| < λ
√

θ0,ii which is equivalent to|βi
j | < λσVi

, for all j ≥ si
0 + 1 + Ii≤si

0+1, (32)

whereI{·} is the indicator function, if we order the regression coefficients as follows:

|βi
1| ≥ |βi

2|... ≥ |βi
i−1| ≥ |βi

i+1|.... ≥ |βi
p|,
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in view of (2), which is the same as if we order for rowi of Θ0,

|θ0,i1| ≥ |θ0,i,2|... ≥ |θ0,i,i−1| ≥ |θ0,i,i+1|.... ≥ |θ0,i,p|. (33)

This has been show in (Candès and Tao, 2007); See alsoZhou(2010b).

A.1 Concentration bounds for the random design

We assumek0 > 0 and it is understood to be the same quantity throughout our discussion. In
preparation for showing the oracle results of Lasso in Theorem25, we first state some concentration
bounds on the random designX generated by (16), whereΣ0,ii = 1 for all i. First, we define for
some0 < θ < 1

F(θ) :=
{
X : ∀j = 1, . . . , p, 1 − θ ≤ ‖Xj‖2/

√
n ≤ 1 + θ

}
, (34)

whereX1, . . . ,Xp are the column vectors of then × p design matrixX, which in turn is generated
by (16). It is clear when all columns ofX have an Euclidean norm close to

√
n, as guaranteed

by (34) for some0 < θ < 1 that is small, it makes sense to discuss the RE condition in the form
of (35) as formulated in (Bickel et al., 2009). For the integer1 ≤ s0 ≤ s as defined in (28) and a
positive numberk0, RE(s0, k0,X) requires that the following holds for allυ 6= 0,

1

K(s0, k0,X)

△
= min

J0⊂{1,...,p},

|J0|≤s0

min‚‚‚υJc
0

‚‚‚
1
≤k0‖υJ0‖1

‖Xυ‖2√
n ‖υJ0‖2

> 0, (35)

whereυJ represents the subvector ofυ ∈ R
p confined to a subsetJ of {1, . . . , p}. We now define

the following eventR on a random designX generated by (16). which provides an upper bound on
K(s0, k0,X) for a givenk0 > 0 whenX satisfies AssumptionRE(s0, k0,X):

R(θ) :=

{
X : RE(s0, k0,X) holds with 0 < K(s0, k0,X) ≤ K(s0, k0,Σ0)

1 − θ

}
. (36)

Next, for some integerm < p/2 to be specified, we define the smallest and largestm-sparse
eigenvalues ofX generated by (16) to be:

Λmin(m) := min
υ 6=0;m−sparse

‖Xυ‖2
2/(n ‖υ‖2

2) and (37)

Λmax(m) := max
υ 6=0;m−sparse

‖Xυ‖2
2/(n ‖υ‖2

2). (38)

Finally, for simplicity, we also define the following event:for k0 > 0 andX as generated by (16),

M(θ) := {X : (40) holds∀m ≤ max(s, (k0 + 1)s0)} , for which (39)

0 < (1 − θ)
√

ρmin(m) ≤
√

Λmin(m) ≤
√

Λmax(m) ≤ (1 + θ)
√

ρmax(m). (40)

Formally, we consider the set of random designs that satisfyall events as defined, for some0 < θ <

1. Theorem6 shows concentration results that we need for the present work, which follows from
Theorem 1.2 and 1.4 inZhou(2010a).
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Theorem 6 Let 0 < θ < 1. Let ρmin(s) > 0, wheres < p/2 is the maximum node-degree
in G. SupposeRE(s0, 4,Σ0) holds for s0 ≤ s as in (29), whereΣ0,ii = 1 for i = 1, . . . , p.
Let f(m) = min (4mρmax(m) log(5ep/m),m log p), wherem < p/2. Let c′, α, c̄ > 0 be some
absolute constants and̄C = (2+k0)K(s0, k0,Σ0), wherek0 > 0; Suppose the sample size satisfies

n >
9c′α4

θ2
max

(
C̄2f(s0), log p

)
(41)

and fordets := minT |Σ0,TT |, whereT ⊂ {1, . . . , p} and |T | = s

n >
18c′α4

θ2

(
5s log 5ep/s + s log

√
ρmax(s) −

1

2
log dets

)
. (42)

Then, for a random designX as generated by (16), we have

P (X ) := P (R(θ) ∩ F(θ) ∩M(θ)) ≥ 1 − 3 exp(−c̄θ2n/α4). (43)

Clearly we haveρmax(s) ≤ s. Thus a sample size of ordern = O(s log p) is sufficient for event
X to hold with probability as in (43), which holds by (A1) as in Section3 given thats < p. We
emphasize that we only need the lower bound onn as in (41) if we only aim to obtain (34) and (36);
(42) is required to bound sparse eigenvalues of orders as specified in (39).

A.2 Definitions of other various events

Under (A1) as in Section3, excluding eventX c as bounded in Theorem6 and eventsCa,X0 to be
defined in this subsection, we can then proceed to treatX ∈ X ∩ Ca as a deterministic design in
regression and thresholding, for whichR(θ) ∩M(θ) ∩ F(θ) holds withCa, We then make use of
eventX0 in the MLE refitting stage for bounding the Frobenius norm. Wenow define two types of
correlations eventsCa andX0.

Correlation bounds on Xj and Vi. In this section, we first bound the maximum correlation be-
tween pairs of random vectors(Vi,Xj), for all i, j wherei 6= j, each of which corresponds to a pair
of variables(Vi,Xj) as defined in (2) and (3). Here we useXj andVi, for all i, j, to denote both
random vectors and their corresponding variables.

Let us defineσVj
:=
√

Var(Vj) ≥ v > 0 as a shorthand. LetV ′
j := Vj/σVj

, j = 1, . . . , p be a
standard normal random variable. Let us now define for allj, k 6= j,

Zjk =
1

n
〈V ′

j ,Xk 〉 =
1

n

n∑

i=1

v′j,ixk,i,

where for alli = 1, . . . , n v′j,i, xk,i,∀j, k 6= j are independent standard normal random variables.
For somea ≥ 6, let event

Ca :=

{
max
j,k

|Zjk| <
√

1 + a
√

(2 log p)/n wherea ≥ 6

}
. (44)
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Bounds on pairwise correlations in columns ofX. Let Σ0 := (σ0,ij), where we denoteσ0,ii :=

σ2
i . Denote by∆ = XT X/n − Σ0. Consider for some constantC3 > 4

√
5/3,

X0 :=

{
max
j,k

|∆jk| < C3

√
log max{p, n}/n < 1/2

}
. (45)

We first state Lemma7, which is used for bounding a type of correlation events across all regres-
sions; see proof of Theorem10. It is also clear that eventCa is equivalent to the event to be defined
in (46). Lemma7 also justifies the choice ofλn in nodewise regressions (cf. Theorem10). We then
bound eventX0 in Lemma8. Both proofs appear in SectionA.3.

Lemma 7 Suppose thatp < en/4C2
2 . Then with probability at least1 − 1/p2, we have

∀j 6= k,

∣∣∣∣
1

n
〈Vj ,Xk 〉

∣∣∣∣ ≤ σVj

√
1 + a

√
(2 log p)/n (46)

whereσVj
=
√

Var(Vj) anda ≥ 6. Hence

P (Ca) ≥ 1 − 1/p2.

Lemma 8 For a random designX as in (1) with Σ0,jj = 1,∀j ∈ {1, . . . , p}, and forp < en/4C2
3 ,

whereC3 > 4
√

5/3, we have

P (X0) ≥ 1 − 1/max{n, p}2.

We note that the upper bounds onp in Lemma7 and8 clearly hold given (A1). For the rest of the
paper, we prove Theorem10 in SectionB for nodewise regressions. We proceed to derive bounds
on selecting an edge setE in SectionC. We then derive various bounds on the maximum likelihood
estimator givenE in Theorem14- 16 in SectionD, where we also prove Theorem1. Next, we prove
Lemma7 and8 in SectionA.3.

A.3 Proof of Lemma 7 and 8

In this section, we prove Lemma7 and8. We first state the following large inequality bound for
bounding products of correlated normal random variables.

Lemma 9 Zhou et al.(2008, Lemma 38)Given a set of identical independent random variables
Y1, . . . , Yn ∼ Y , whereY = x1x2, with x1, x2 ∼ N(0, 1) andσ12 = ρ12 with ρ12 ≤ 1 being their
correlation coefficient. Let us now defineQ = 1

n

∑n
i=1 Yi =: 1

n〈X1,X2 〉 = 1
n

∑n
i=1 x1,ix2,i. Let

Ψ12 = (1 + σ2
12)/2. For 0 ≤ τ ≤ Ψ12,

P (|Q − EQ| > τ) ≤ exp

{
− 3nτ2

10(1 + σ2
12)

}
(47)
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Now by Lemma9 with ρjk = 0,∀j, k = 1, . . . , p, j 6= k and using the fact thatEZjk = 0, we show
Lemma7.

Proof of Lemma7. Now it is clear that we have at mostp(p − 1) unique entriesZjk,∀j 6= k.

By the union bound and by takingτ = C2

√
log p

n in (47) with σjk = 0,∀j, k, we have

1 − P

(
∀j 6= k,

∣∣∣∣
1

n
〈Vj ,Xk 〉

∣∣∣∣ ≥ λσ,a,p

)
= P (Ca)

≤ P

(
max

jk
|Zjk| ≥ C2

√
log p

n

)
≤ (p2 − p) exp

(
−3C2

2 log p

10

)

≤ p2 exp

(
−3C2

2 log p

10

)
= p−

3C2
2

10
+2 <

1

p2

where
√

2(1 + a) ≥ C2 > 2
√

10/3, wherea ≥ 6. Note thatp < en/4C2
2 guarantees that

C2

√
log p

n < 1/2.

In order to bound the probability of eventX0, we first state the following large inequality bound
for the non-diagonal entries ofΣ0, which follows immediately from Lemma9 by plugging inσ2

i =

σ0,ii = 1,∀i = 1, . . . , p and using the fact that|σ0,jk| = |ρjkσjσk| ≤ 1,∀j 6= k, whereρjk is the
correlation coefficient between variablesXj andXk. Let Ψjk = (1 + σ2

0,jk)/2. Then

P (|∆jk| > τ) ≤ exp

{
− 3nτ2

10(1 + σ2
0,jk)

}
≤ exp

{
−3nτ2

20

}
for 0 ≤ τ ≤ Ψjk. (48)

We now also state a large deviation bound for theχ2
n distributionJohnstone(2001):

P

(
χ2

n

n
− 1 > τ

)
≤ exp

(−3nτ2

16

)
, for 0 ≤ τ ≤ 1

2
. (49)

Lemma8 follows from (48) and (49) immediately.

Proof of Lemma8. Now it is clear that we havep(p − 1)/2 unique non-diagonal entries

σ0,jk,∀j 6= k andp diagonal entries. By the union bound and by takingτ = C3

√
log max{p,n}

n

in (49) and (48) with σ0,jk ≤ 1, we have

P ((X0)
c) = P

(
max

jk
|∆jk| ≥ C3

√
log max{p, n}

n

)

≤ p exp

(
−3C2

3 log max{p, n}
16

)
+

p2 − p

2
exp

(
−3C2

3 log max{p, n}
20

)

≤ p2 exp

(
−3C2

3 log max{p, n}
20

)
= (max{p, n})−

3C2
3

20
+2 <

1

(max{p, n})2

for C3 > 4
√

5/3, where for the diagonal entries we use (49), and for the non-diagonal entries, we

use (48). Finally, p < en/4C2
3 guarantees thatC3

√
log max{p,n}

n < 1/2.
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Appendix B. Bounds for nodewise regressions

In Theorem10 and Lemma11 we let si
0 be as in (28) andT i

0 denote locations of thesi
0 largest

coefficients ofβi in absolute values. For the vectorhi to be defined in Theorem10, we let T i
1

denote thesi
0 largest positions ofhi in absolute values outside ofT i

0; Let T i
01 := T i

0 ∪ T i
1. We

suppress the superscript inT i
0, T

i
1 and thusT i

01 throughout this section for clarity.

Theorem 10 (Oracle inequalities of the nodewise regressions) Let0 < θ < 1. Letρmin(s) > 0,
wheres < p/2 is the maximum node-degree inG. SupposeRE(s0, 4,Σ0) holds withK(s0, 4,Σ0)

for s0 ≤ s as defined in(29), whereΣ0,ii = 1 for i = 1, . . . , p. Supposeρmax(max(s, 3s0)) < ∞.
The data is generated byX(1), . . . ,X(n) i.i.d. ∼ Np(0,Σ0), wheren satisfies(41) and (42).

Consider the nodewise regressions in(10), where for eachi, we regressXi onto the other variables
{Xk; k 6= i} following (2), whereVi ∼ N(0,Var(Vi)) is independent ofXj ,∀j 6= i as in(3) and

Var(Vi) = 1/θ0,ii iff βi
j = −θ0,ij/θ0,ii.

Letβi
init be an optimal solution to(10) for eachi. Letλn = d0λ = di

0λσVi
whered0 is chosen such

that d0 ≥ 2(1 + θ)
√

1 + a holds for somea ≥ 6, and clearlydi
0 ≥ d0. Lethi = βi

init − βi
T0

. Then
simultaneously for alli, onCa ∩ X , whereX := R(θ) ∩ F(θ) ∩M(θ), we have

∥∥βi
init − βi

∥∥
2

≤ λ
√

si
0d0

√
2D2

0 + 2D2
1 + 2, where

‖hT01‖2 ≤ D0d0λ
√

si
0 and (50)

∥∥∥hi
T c
0

∥∥∥
1

=
∥∥∥βi

init,T c
0

∥∥∥
1

≤ D1d0λsi
0 (51)

whereD0,D1 are defined in(88) and (90) respectively.

The choice ofd0 will be justified in SectionE, where we also calculateD0,D1 to be shown as
in (52). Suppose we choose for some constantc0 ≥ 4

√
2 anda0 = 7,

d0 = c0(1 + θ)2
√

ρmax(s)ρmax(3s0),

where we assume thatρmax(max(s, 3s0)) < ∞ are reasonably bounded,then

D0 ≤ 5K2(s0, 4,Σ0)

(1 − θ)2
andD1 ≤ 49K2(s0, 4,Σ0)

16(1 − θ)2
. (52)

Proof Consider each regression function in (10) with X·\i being the design matrix andXi the
response vector, whereX·\i denotes columns ofX excludingXi. It is clear that forλn = d0λ, we
have fori = 1, . . . , p anda ≥ 6,

λn = (d0/σVi
)σVi

λ := di
0σVi

λ ≥ d0λσVi
≥ 2(1 + θ)λ

√
1 + aσVi

= 2(1 + θ)λσ,a,p

such that (87) holds given thatσVi
≤ 1,∀i, where it is understood thatσ := σVi

.
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It is also clear that onCa ∩X , eventTa ∩X holds for each regression when we invoke Theorem25,
with Y := Xi andX := X·\i, for i = 1, . . . , p. We can then invoke bounds for each individual
regression as in Theorem25, and conclude that the present theorem holds, noting thatdi

0σVi
= d0

by definition.

Appendix C. Bounds on thresholding

In this section, we first show Lemma11, following conditions in Theorem10. We then show
Corollary12, which proves Proposition2 and the first statement of Theorem1.

Lemma 11 SupposeRE(s0, 4,Σ0) holds fors0 be as in(29) andρmin(s) > 0, wheres < p/2 is
the maximum node-degree inG. Supposeρmax(max(s, 3s0)) < ∞. LetSi = {j : j 6= i : |βi

j 6= 0}.
Letc0 ≥ 4

√
2 be some absolute constant. Supposen satisfies(41) and (42). Letβi

init be an optimal
solution to(10) with

λn = d0λ where d0 = c0(1 + θ)2
√

ρmax(s)ρmax(3s0);

Suppose for each regression, we apply the same threshold rule to obtain a subsetIi as follows,

Ii = {j : j 6= i,
∣∣βi

j,init

∣∣ ≥ t0 = f0λ}, and Di := {1, . . . , i − 1, i + 1, . . . , p} \ Ii

wheref0 := D4d0 for some constantD4 to be specified. Then we have on eventCa ∩ X ,

|Ii| ≤ si
0(1 + D1/D4) and |Ii ∪ Si| ≤ si + (D1/D4)s

i
0 and (53)

∥∥βi
D
∥∥

2
≤ d0λ

√
si
0

√
1 + (D0 + D4)2 (54)

whereD is understood to beDi andD0,D1 are understood to be the same constants as in Theo-
rem10.

Proof Let T0 := T i
0 denote thesi

0 largest coefficients ofβi in absolute values. By (51), we have for
f0 = D4d0

|Ii ∩ T c
0 | ≤

∥∥∥βi
init,T c

0

∥∥∥
1

1

f0λ
≤ D1d0s

i
0/(D4d0) ≤ D1s

i
0/D4 (55)

whereD1 is understood to be the same constant that appears in (51). Thus we have
∣∣Ii
∣∣ = |Ii ∩ T c

0 | + |Ii ∩ T0| ≤ si
0(1 + D1/D4).

Now the second inequality in (53) clearly holds given (55) and the following:

|Ii ∪ Si| ≤ |Si| + |Ii ∩ (Si)c| ≤ si + |Ii ∩ (T i
0)

c|.

We now bound
∥∥βi

D
∥∥2

2
following essentially the arguments as inZhou(2010b). We have

∥∥βi
D
∥∥2

2
=

∥∥βi
T0∩D

∥∥2

2
+
∥∥∥βi

T c
0∩D

∥∥∥
2

2
,
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where the second term is bounded as:
∥∥∥βi

T c
0∩D

∥∥∥
2

2
≤
∥∥∥βi

T c
0

∥∥∥
2

2
≤ si

0λ
2σ2

Vi
by definition ofsi

0 as in (28)

and (32); For the first term, we have by the triangle inequality,

∥∥βi
T0∩D

∥∥
2

≤
∥∥(βi − βi

init)T0∩D
∥∥

2
+
∥∥(βi

init)T0∩D
∥∥

2

≤
∥∥(βi − βi

init)T0

∥∥
2
+ t0

√
|T0 ∩ D| ≤ ‖hT0‖2 + t0

√
si
0

≤ D0d0λ
√

si
0 + D4d0λ

√
si
0 ≤ (D0 + D4)d0λ

√
si
0

where we invoked the bound on‖hT0‖2 as in (50) following Theorem10. Thus we have (54).

RecallΘ0 = Σ−1
0 . Let Θ0,D denote the submatrix ofΘ0 indexed byD as in (21) with all other

positions set to be 0. LetE0 be the true edge set.

Corollary 12 Suppose all conditions in Lemma11 hold. Then on eventCa ∩ X , for Θ̃0 as in (23)
andE as in(22), we have forS0,n as in(30) andΘ0 = (θ0,ij)

|E| ≤ 2(1 + D1/D4)S0,n where |E \ E0| ≤ 2D1/D4S0,n (56)

‖Θ0,D‖F :=
∥∥∥Θ̃0 − Θ0

∥∥∥
F

≤
√

min{S0,n( max
i=1,...p

θ2
0,ii), s0 ‖diag(Θ0)‖2

F}
√

(1 + (D0 + D4)2)d0λ (57)

:=
√

S0,n (1 + (D0 + D4)2)Cdiagd0λ

whereC2
diag := min{maxi=1,...p θ2

0,ii, (s0/S0,n) ‖diag(Θ0)‖2
F}, andD0,D1 are understood to be

the same constants as in Theorem10. Clearly, forD4 ≥ D1, we have(19).

Proof It is clear that by the OR rule in (9), which will allow eitherβ̂i
j or β̂j

i to be non-zero to turn
it on; and hence we could turn on at most2|Ii| edges. These rule will allow us to keep more edges
that we would have reduced by the thresholding rule at each node. We have by (53)

|E| ≤
∑

i=1,...p

2(1 + D1/D4)s
i
0 = 2 (1 + D1/D4)S0,n,

where(2D1/D4)S0,n is an upper bound on|E \ E0| by (55). We now obtain a bound on‖Θ0,D‖2
F

as follows:

‖Θ0,D‖2
F ≤

p∑

i=1

θ2
0,ii

∥∥βi
D
∥∥2

2
≤ (1 + (D0 + D4)

2)d2
0λ

2
p∑

i=1

θ2
0,iis

i
0

≤ min{S0,n( max
i=1,...p

θ2
0,ii), s0 ‖diag(Θ0)‖2

F }(1 + (D0 + D4)
2)d2

0λ
2

29
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Remark 13 Recall we assume thatmax{p, S0,n} = o(n/ log(p)) in Proposition2, which guaran-
tees thatn = Ω(p log p) holds as required by Theorem10and Lemma11in the worst case scenario.
Note that ifs0 is small, then the second term inCdiag will provide a tighter bound.

Appendix D. Bounds on MLE refitting

To facilitate technical discussions, we need to introduce some more notation. LetSp
++ denote the

set ofp × p symmetric positive definite matrices:

Sp
++ = {Θ ∈ R

p×p|Θ ≻ 0}.

Let us define a subspaceSp
E corresponding to an edge setE ⊂ {(i, j) : i, j = 1, . . . , p, i 6= j}:

Sp
E := {Θ ∈ R

p×p|θ0,ij = 0 for all i 6= j such that(i, j) 6∈ E}
and Sn = {Θ : Θ ∈ Sp

++ ∩ Sp
E}. (58)

Recall the maximum likelihood estimatêΘn as in (59) minimizes over allΘ ∈ Sn the empirical
risk as in expression (24). Thus, we write

Θ̂n(E) := arg min
Θ∈Sn

R̂n(Θ) = arg min
Θ∈Sp

++∩Sp
E

{
tr(ΘŜn) − log |Θ|

}
(59)

which gives the “best” refitted sparse estimator given a sparse subset of edgesE that we obtain from
the nodewise regressions and thresholding. We note that theestimator (59) remains to be a convex
optimization problem, as the constraint set is the intersection the positive definite coneSp

++ and the
linear subspaceSp

E. It is not hard to see that the estimator (59) is equivalent to (13).

Theorem 14 Consider data generating random variables as in expression(16) and assume that
(A1), (26), and (27) hold. LetE be some event such thatP (E) ≥ 1 − d/p2 for a small constantd.
Suppose on eventE :

1. We obtain an edge setE such that its size|E| = lin (S0,n, p) is a linear function inS0,n and
p, whereS0,n is as defined in(30);

2. And forΘ̃0 as in(23) and for some constantCbias to be specified, we have

‖Θ0,D‖F :=
∥∥∥Θ̃0 − Θ0

∥∥∥
F
≤ Cbias

√
2S0,n log(p)/n < c/32. (60)

Let Θ̂n(E) be as defined in(59). Suppose the sample size satisfies forC3 ≥ 4
√

5/3,

n >
106

k2

(
C3 +

32

31c2

)2

max
{
(p + 2|E|) log(n), C2

bias2S0,n log p
}

. (61)

Then on eventE ∩ X0, we have forM = (9/(2k2)) ·
(
C3 + 32/(31c2)

)

∥∥∥Θ̂n(E) − Θ0

∥∥∥
F
≤ (M + 1)max

{√
(p + 2|E|) log(n)/n, Cbias

√
2S0,n log(p)/n

}
. (62)
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We note that although Theorem14 is meant for proving Theorem1, we state it as an independent
result; For example, one can indeed takeE from Corollary12, where we have|E| ≤ cS0,n for some
constantc for D4 ≍ D1. In view of (57), we aim to recover̃Θ0 by Θ̂n(E) as defined in (59). In
SectionD.2, we will focus in Theorem14on bounding forW suitably chosen,

∥∥∥Θ̂n(E) − Θ̃0

∥∥∥
F

= OP

(
W
√

(p + S0,n) log(n)/n

)
.

By the triangle inequality, we conclude that
∥∥∥Θ̂n(E) − Θ0

∥∥∥
F
≤
∥∥∥Θ̂n(E) − Θ̃0

∥∥∥
F

+
∥∥∥Θ̃0 − Θ0

∥∥∥
F

= OP

(
W
√

(p + S0,n) log(n)/n

)
.

We now state bounds for the convergence rate on Frobenius norm of the covariance matrix and for
KL divergence. We note that constants have not been optimized. Proofs of Theorem15 and16
appear in SectionD.3 andD.4 respectively.

Theorem 15 Suppose all conditions, events, and bounds on|E| and‖Θ0,D‖F in Theorem14 hold.
Let Θ̂n(E) be as defined in(59). Suppose the sample size satisfies forC3 ≥ 4

√
5/3 andCbias,M

as defined in Theorem14

n >
106

c2k4

(
C3 +

32

31c2

)2

max
{
(p + 2|E|) log(n), C2

bias2S0,n log p
}

. (63)

Then on eventE ∩ X0, we haveϕmin(Θ̂n(E)) > c/2 > 0 and forΣ̂n(E) = (Θ̂n(E))−1,

∥∥∥Σ̂n(E) − Σ0

∥∥∥
F
≤ 2(M + 1)

c2
max

{√
(p + 2|E|) log(n)

n
, Cbias

√
2S0,n log(p)

n

}
. (64)

Theorem 16 Suppose all conditions, events, and bounds on|E| and ‖Θ0,D‖F :=
∥∥∥Θ̃0 − Θ0

∥∥∥
F

in Theorem14 hold. Let Θ̂n(E) be as defined in(59). Suppose the sample size satisfies(61)
for C3 ≥ 4

√
5/3 and Cbias,M as defined in Theorem14. Then on eventE ∩ X0, we have for

R(Θ̂n(E)) − R(Θ0) ≥ 0,

R(Θ̂n(E)) − R(Θ0) ≤ M(C3 + 1/8)max
{
(p + 2|E|) log(n)/n, C2

bias2S0,n log(p)/n
}

. (65)

D.1 Proof of Theorem1

Clearly the sample requirements as in (41), (42) are satisfied for someθ > 0 that is appropriately
chosen, given (61). In view of Corollary12, we have onE := X ∩ Ca: for Cdiag as in (18)

|E| ≤ 2(1 +
D1

D4
)S0,n ≤ 4S0,n for D4 ≥ D1 and

‖Θ0,D‖F :=
∥∥∥Θ̃0 − Θ0

∥∥∥
F
≤ Cbias

√
2S0,n log(p)/n ≤ c/32 where

C2
bias := min

{
max

i=1,...p
θ2
0,ii,

s0

S0,n
‖diag(Θ0)‖2

F

}
d2
0(1 + (D0 + D4)

2)

= C2
diagd

2
0(1 + (D0 + D4)

2) (66)

31
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Clearly the last inequality in (60) hold so long asn > 322C2
bias2S0,n log(p)/c2, which holds

given (61). Plugging in|E| in (62), we have onE ∩ X0,

∥∥∥Θ̂n(E) − Θ0

∥∥∥
F
≤ (M + 1)max

{√
(p + 4(1 + D1/D4)S0,n) log(n)

n
, Cbias

√
2S0,n log p

n

}

Now if we takeD4 ≥ D1, then we have (19) on eventE ; and moreover onE ∩ X0,

∥∥∥Θ̂n(E) − Θ0

∥∥∥
F

≤ (M + 1)max

{√
(p + 8S0,n) log(n)/n, Cbias

√
2S0,n log(p)/n

}

≤ W
√

(p + S0,n) log(n)/n

whereW ≤
√

2(M + 1)max{Cdiagd0

√
1 + (D0 + D4)2, 2}. Similarly, we get the bound on∥∥∥Σ̂n − Σ0

∥∥∥
F

with Theorem15, and the bound on risk following Theorem16. Thus all statements

in Theorem1 hold.

Remark 17 Suppose eventE ∩ X0 holds. Now suppose that we takeD4 = 1, that is, if we take the
threshold to be exactly the penalty parameterλn:

t0 = d0λ := λn.

Then we have on eventE by (56) |E| ≤ 2(1 + D1)S0,n and |E \ E0| ≤ 2D1S0,n and on event on
E ∩ X0, for C ′

bias := Cdiagd0

√
1 + (D0 + 1)2

∥∥∥Θ̂n(E) − Θ0

∥∥∥
F
≤ M max

{√
(p + 4(1 + D1)S0,n) log(n)

n
, C ′

bias

√
2S0,n log p

n

}

It is not hard to see that we achieve essential the same rate asstated in Theorem1, with perhaps
slightly more edges included inE.

D.2 Proof of Theorem14

Suppose eventE holds throughout this proof. We first obtain the bound on spectrum of Θ̃0: It is
clear that by (26) and (60), we have onE ,

ϕmin(Θ̃0) ≥ ϕmin(Θ0) −
∥∥∥Θ̃0 − Θ0

∥∥∥
2
≥ ϕmin(Θ0) − ‖Θ0,D‖F > 31c/32, (67)

ϕmax(Θ̃0) < ϕmax(Θ0) +
∥∥∥Θ̃0 − Θ0

∥∥∥
2
≤ ϕmax(Θ0) + ‖Θ0,D‖F <

c

32
+

1

k
. (68)

Throughout this proof, we letΣ0 = (σ0,ij) := Θ−1
0 . In view of (67), defineΣ̃0 := (Θ̃0)

−1. We use
Θ̂n := Θ̂n(E) as a shorthand.

GivenΘ̃0 ∈ Sp
++ ∩ Sp

E as guaranteed in (67), let us define a new convex set:

Un(Θ̃0) := (Sp
++ ∩ Sp

E) − Θ̃0 = {B − Θ̃0|B ∈ Sp
++ ∩ Sp

E} ⊂ Sp
E
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which is a translation of the original convex setSp
++ ∩ Sp

E . Let 0 be a matrix with all entries
being zero. Thus it is clear thatUn(Θ̃0) ∋ 0 given thatΘ̃0 ∈ Sp

++ ∩ Sp
E . Define forR̂n as in

expression (24),

Q̃(Θ) := R̂n(Θ) − R̂n(Θ̃0) = tr(ΘŜn) − log |Θ| − tr(Θ̃0Ŝn) + log |Θ̃0|
= tr

(
(Θ − Θ̃0)(Ŝn − Σ̃0)

)
− (log |Θ| − log |Θ̃0|) + tr

(
(Θ − Θ̃0)Σ̃0

)
.

For an appropriately chosenrn and a large enoughM > 0, let

Tn = {∆ ∈ Un(Θ̃0), ‖∆‖F = Mrn}, and (69)

Πn = {∆ ∈ Un(Θ̃0), ‖∆‖F < Mrn}. (70)

It is clear that bothΠn andTn ∪ Πn are convex. It is also clear that0 ∈ Πn. Throughout this
section, we let

rn = max

{√
(p + 2|E|) log(n)

n
,Cbias

√
2S0,n log p

n

}
. (71)

Define for∆ ∈ Un(Θ̃0),

G̃(∆) := Q̃(Θ̃0 + ∆) = tr(∆(Ŝn − Σ̃0)) − (log |Θ̃0 + ∆| − log |Θ̃0|) + tr(∆Σ̃0) (72)

It is clear thatG̃(∆) is a convex function onUn(Θ̃0) andG̃(0) = Q̃(Θ̃0) = 0.

Now, Θ̂n minimizesQ̃(Θ), or equivalently∆̂ = Θ̂n − Θ̃0 minimizesG̃(∆). Hence by definition,

G̃(∆̂) ≤ G̃(0) = 0

Note thatTn is non-empty, while clearly0 ∈ Πn. Indeed, considerBǫ := (1+ǫ)Θ̃0, whereǫ > 0; it

is clear thatBǫ − Θ̃0 ∈ Sp
++ ∩ Sp

E and
∥∥∥Bǫ − Θ̃0

∥∥∥
F

= |ǫ|
∥∥∥Θ̃0

∥∥∥
F

= Mrn for |ǫ| = Mrn/
∥∥∥Θ̃0

∥∥∥
F

.

Note also if∆ ∈ Tn, then∆ij = 0∀(i, j : i 6= j) /∈ E; Thus we have∆ ∈ Sp
E and

‖∆‖0 ≤ p + 2|E| ≤ p + 2 lin (S0,n, p). (73)

We now show the following two propositions. Proposition18 follows from standard results.

Proposition 18 Let B be ap × p matrix. If B ≻ 0 and B + D ≻ 0, thenB + vD ≻ 0 for all
v ∈ [0, 1].

Proposition 19 Under (26), we have for all∆ ∈ Tn such that‖∆‖F = Mrn for rn as in (71),
Θ̃0 + v∆ ≻ 0,∀v ∈ an open intervalI ⊃ [0, 1] on eventE .

Proof In view of Proposition18, it is sufficient to show that̃Θ0 +(1+ ε)∆, Θ̃0 − ε∆ ≻ 0 for some
ε > 0. Indeed, by definition of∆ ∈ Tn, we haveϕmin(Θ̃0 + ∆) ≻ 0 on eventE ; thus

ϕmin(Θ̃0 + (1 + ε)∆) ≥ ϕmin(Θ̃0 + ∆) − ε ‖∆‖2 > 0

andϕmin(Θ̃0 − ε∆) ≥ ϕmin(Θ̃0) − ε ‖∆‖2 > 31c/32 − ε ‖∆‖2 > 0
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for ε > 0 that is sufficiently small.

Thus we have thatlog |Θ̃0 +v∆| is infinitely differentiable on the open intervalI ⊃ [0, 1] of v. This
allows us to use the Taylor’s formula with integral remainder to obtain the following:

Lemma 20 On eventE ∩ X0, G̃(∆) > 0 for all ∆ ∈ Tn.

Proof Let us useÃ as a shorthand for

vec∆T

(∫ 1

0
(1 − v)(Θ̃0 + v∆)−1 ⊗ (Θ̃0 + v∆)−1dv

)
vec∆,

where⊗ is the Kronecker product (ifW = (wij)m×n, P = (bkℓ)p×q, thenW⊗P = (wijP )mp×nq),
andvec∆ ∈ R

p2
is ∆p×p vectorized. Now, the Taylor expansion gives for all∆ ∈ Tn,

log |Θ̃0 + ∆| − log |Θ̃0| =
d

dv
log |Θ̃0 + v∆||v=0∆ +

∫ 1

0
(1 − v)

d2

dv2
log |Θ̃0 + v∆|dv

= tr(Σ̃0∆) − Ã,

wheretr(Σ̃0∆) = tr((Θ − Θ̃0)Σ̃0). Hence for all∆ ∈ Tn,

G̃(∆) = Ã + tr
(
∆(Ŝn − Σ̃0)

)
= Ã + tr

(
∆(Ŝn − Σ0)

)
− tr

(
∆(Σ̃0 − Σ0)

)
(74)

where we first boundtr(∆(Σ̃0 − Σ0)) as follows: by (60) and (67), we have on eventE
∣∣∣tr(∆(Σ̃0 − Σ0))

∣∣∣ =
∣∣∣〈∆, (Σ̃0 − Σ0) 〉

∣∣∣ ≤ ‖∆‖F

∥∥∥Σ̃0 − Σ0

∥∥∥
F

≤ ‖∆‖F

‖Θ0,D‖F

ϕmin(Θ̃0)ϕmin(Θ0)

< ‖∆‖F

32Cbias
√

2S0,n log p/n

31c2
≤ ‖∆‖F

32rn

31c2
. (75)

Now, conditioned on eventX0, by Lemma8 and (61)

max
j,k

|Ŝn,jk − σ0,jk| ≤ C3

√
log(n)/n =: δn

and thus with probability1− 1
n2 we have

∣∣∣tr
(
∆(Ŝn − Σ0)

)∣∣∣ ≤ δn |∆|1; hence by Cauchy-Schwartz
and (73), we have on eventE ∩ X0,

tr
(
∆(Ŝn − Σ0)

)
≥ −δn |∆|1 ≥ −δn

√
‖∆‖0 ‖∆‖F

≥ −δn

√
p + 2|E| ‖∆‖F ≥ −C3rn ‖∆‖F . (76)

Finally, we boundÃ. First we note that for∆ ∈ Tn, we have on eventE ,

‖∆‖2 ≤ ‖∆‖F = Mrn <
7

16k
, (77)
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given (61): n > (16
7 · 9

2k )2
(
C3 + 32

31c2

)2
max

{
(p + 2|E|) log(n), C2

bias2S0,n log p
}

. Now we have
by (68) and (27) following Rothman et al.(2008) (see Page 502, proof of Theorem 1 therein): on
eventE ,

Ã ≥ ‖∆‖2
F /

(
2
(
ϕmax(Θ̃0) + ‖∆‖2

)2
)

≥ ‖∆‖2
F /

(
2(

1

k
+

c

32
+

7

16k
)2
)

> ‖∆‖2
F

2k2

9
(78)

Now on eventE ∩ X0, for all ∆ ∈ Tn, we have by (74),(78), (76), and (75),

G̃(∆) > ‖∆‖2
F

2k2

9
− C3rn ‖∆‖F − ‖∆‖F

32rn

31c2

= ‖∆‖2
F

(
2k2

9
− 1

‖∆‖F

(
C3rn +

32rn

31c2

))

= ‖∆‖2
F

(
2k2

9
− 1

M

(
C3 +

32

31c2

))

hence we havẽG(∆) > 0 for M large enough, in particularM = (9/(2k2))
(
C3 + 32/(31c2)

)

suffices.

We next state Proposition21, which follows exactly that of Claim 12 ofZhou et al.(2008).

Proposition 21 Suppose eventE holds. IfG̃(∆) > 0,∀∆ ∈ Tn, thenG̃(∆) > 0 for all ∆ in

Wn = {∆ : ∆ ∈ Un(Θ̃0), ‖∆‖F > Mrn}

for rn as in(71); Hence ifG̃(∆) > 0 for all ∆ ∈ Tn, thenG̃(∆) > 0 for all ∆ ∈ Tn ∪ Wn.

Note that forΘ̂n ∈ Sp
++ ∩ Sp

E , we have∆̂ = Θ̂n − Θ̃0 ∈ Un(Θ̃0). By Proposition21 and the fact
thatG̃(∆̂) ≤ G̃(0) = 0 on eventE , we have the following: on eventE , if G̃(∆) > 0,∀∆ ∈ Tn then
‖∆̂‖F < Mrn, given that∆̂ ∈ Un(Θ̃0) \ (Tn ∪ Wn). Therefore

P

(
‖∆̂‖F ≥ Mrn

)
≤ P (Ec) + P (E) · P

(
‖∆̂‖F ≥ Mrn|E

)

= P (Ec) + P (E) · (1 − P

(
‖∆̂‖F < Mrn|E

)
)

≤ P (Ec) + P (E) · (1 − P

(
G̃(∆) > 0,∀∆ ∈ Tn|E

)
)

≤ P (Ec) + P (E) · (1 − P (X0|E))

= P (Ec) + P (X c
0 ∩ E) ≤ P (Ec) + P (X c

0 )

≤ c

p2
+

1

max{p, n}2
≤ c + 1

p2
.

We thus establish that the theorem holds.
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D.3 Frobenius norm for the covariance matrix

We use the bound on
∥∥∥Θ̂n(E) − Θ0

∥∥∥
F

as developed in Theorem14; in addition, we strengthen the

bound onMrn in (77) in (80). Before we proceed, we note the following bound on bias of(Θ̃0)
−1.

Remark 22 Clearly we have on eventE , by (75)
∥∥∥(Θ̃0)

−1 − Σ0

∥∥∥
F

≤ ‖Θ0,D‖F

ϕmin(Θ̃0)ϕmin(Θ0)
≤ 32Cbias

√
2S0,n log p/n

31c2
(79)

Proof of Theorem15. Suppose eventE ∩ X0 holds. Now suppose

n > (
16

7c
· 9

2k2 )2
(

C3 +
32

31c2

)2

max
{
(p + 2|E|) log(n), C2

bias2S0,n log p
}

which clearly holds given (63). Then in addition to the bound in (77), on eventE ∩ X0, we have

Mrn < 7c/16, (80)

for rn as in (71). Then, by Theorem14, for the sameM as therein, on eventE ∩ X0, we have
∥∥∥Θ̂n(E) − Θ0

∥∥∥
F
≤ (M + 1)max

{√
(p + 2|E|) log(n)/n, Cbias

√
2S0,n log(p)/n

}

given that sample bound in (61) is clearly satisfied. We now proceed to bound
∥∥∥Σ̂n − Σ0

∥∥∥
F

given (62). First note that by (80), we have on eventE ∩ X0 for M > 7

ϕmin(Θ̂n(E)) ≥ ϕmin(Θ0) −
∥∥∥Θ̂n − Θ0

∥∥∥
2
≥ ϕmin(Θ0) −

∥∥∥Θ̂n − Θ0

∥∥∥
F

≥ c − (M + 1)rn > c/2.

Now clearly on eventE ∩ X0, (64) holds by (62) and

∥∥∥Σ̂n(E) − Σ0

∥∥∥
F

≤

∥∥∥Θ̂n(E) − Θ0

∥∥∥
F

ϕmin(Θ̂n(E))ϕmin(Θ0)
<

2

c2

∥∥∥Θ̂n(E) − Θ0

∥∥∥
F

D.4 Risk consistency

We now derive the bound on risk consistency. Before proving Theorem16, we first state two lemmas
given the following decomposition of our loss in terms of therisk as defined in (17):

0 ≤ R(Θ̂n(E)) − R(Θ0) = (R(Θ̂n(E)) − R(Θ̃0)) + (R(Θ̃0) − R(Θ0)) (81)

where clearlyR(Θ̂n(E)) ≥ R(Θ0) by definition. It is clear that̃Θ0 ∈ Sn for Sn as defined in (58),
and thusR̂n(Θ̃0) ≥ R̂n(Θ̂n(E)) by definition ofΘ̂n(E) = arg minΘ∈Sn R̂n(Θ).

We now bound the two terms on the RHS of (81), where clearlyR(Θ̃0) ≥ R(Θ0).
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Lemma 23 On eventE , we have forCbias,Θ0, Θ̃0 as in Theorem14,

0 ≤ R(Θ̃0) − R(Θ0) ≤ (32/(31c))2C2
bias

2S0,n log p

2n
≤ (32/(31c))2 · r2

n/2 ≤ Mr2
n/8

for rn as in(71), where the last inequality holds given thatM ≥ 9/2(C3 + 32/(31c2)).

Lemma 24 UnderE ∩ X0, we have forrn as in(71) andM,C3 as in Theorem14

R(Θ̂n(E)) − R(Θ̃0) ≤ MC3r
2
n.

Proof of Theorem16. We have onE ∩ X0, for rn is as in (71)

R(Θ̂n(E)) − R(Θ0) = (R(Θ̂n(E)) − R(Θ̃0)) + (R(Θ̃0) − R(Θ0)) ≤ Mr2
n(C3 + 1/8)

as desired, using Lemma23and24.

Proof of Lemma23. For simplicity, we use∆0 as a shorthand for the rest of our proof:

∆0 := Θ0,D = Θ̃0 − Θ0.

We useB̃ as a shorthand for

vec∆0
T

(∫ 1

0
(1 − v)(Θ0 + v∆0)

−1 ⊗ (Θ0 + v∆0)
−1dv

)
vec∆0,

where⊗ is the Kronecker product. First, we have forΘ̃0,Θ0 ≻ 0

R(Θ̃0) − R(Θ0) = tr(Θ̃0Σ0) − log |Θ̃0| − tr(Θ0Σ0) + log |Θ0|
= tr((Θ̃0 − Θ0)Σ0) −

(
log |Θ̃0| − log |Θ0|

)
:= B̃ ≥ 0

whereB̃ = 0 holds when‖∆0‖F = 0, and in the last equation, we bound the difference between
two log | · | terms using the Taylor’s formula with integral remainder following that in proof of
Theorem14; Indeed, it is clear that onE , we have

Θ0 + v∆0 ≻ 0 for v ∈ (−1, 2) ⊃ [0, 1]

given thatϕmin(Θ0) ≥ c and‖∆0‖2 ≤ ‖∆0‖F ≤ c/32 by (60). Thuslog |Θ0 + v∆0| is infinitely
differentiable on the open intervalI ⊃ [0, 1] of v. Now, the Taylor expansion gives

log |Θ0 + ∆0| − log |Θ0| =
d

dv
log |Θ0 + v∆0||v=0∆0 +

∫ 1

0
(1 − v)

d2

dv2
log |Θ0 + v∆0|dv

= tr(Σ0∆0) − B̃

wheretr(Σ0∆0) = tr((Θ̃0 − Θ0)Σ0) by symmetry. We now obtain an upper bound onB̃ ≥ 0.
Clearly, we have on eventE , Lemma23holds given that

B̃ ≤ ‖∆0‖2
F · ϕmax

(∫ 1

0
(1 − v)(Θ0 + v∆0)

−1 ⊗ (Θ0 + v∆0)
−1dv

)
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where‖∆0‖2
F ≤ C2

bias2S0,n log(p)/n and

ϕmax

(∫ 1

0
(1 − v)(Θ0 + v∆0)

−1 ⊗ (Θ0 + v∆0)
−1dv

)

≤
∫ 1

0
(1 − v)ϕ2

max(Θ0 + v∆0)
−1dv ≤ sup

v∈[0,1]
ϕ2

max(Θ0 + v∆0)
−1

∫ 1

0
(1 − v)dv

=
1

2
sup

v∈[0,1]

1

ϕ2
min(Θ0 + v∆0)

=
1

2 infv∈[0,1] ϕ
2
min(Θ0 + v∆0)

≤ 1

2 (ϕmin(Θ0) − ‖∆0‖2)
2 ≤ 1

2 (31c/32)2

where clearly for allv ∈ [0, 1], we haveϕ2
min(Θ0 + v∆0) ≥ (ϕmin(Θ0) − ‖∆0‖2)

2 ≥ (31c/32)2,
givenϕmin(Θ0) ≥ c and‖∆0‖2 ≤ ‖Θ0,D‖F ≤ c/32 by (60).

Proof of Lemma24. SupposeR(Θ̂n(E)) − R(Θ̃0) < 0, then we are done.

Otherwise, assumeR(Θ̂n(E)) − R(Θ̃0) ≥ 0 throughout the rest of the proof. Define

∆̂ := Θ̂n(E) − Θ̃0,

which by Theorem14, we have on eventE ∩ X0, and forM as defined therein,
∥∥∥∆̂
∥∥∥

F
:=
∥∥∥Θ̂n(E) − Θ̃0

∥∥∥
F
≤ Mrn.

We have by definition̂Rn(Θ̂n(E)) ≤ R̂n(Θ̃0), and hence

0 ≤ R(Θ̂n(E)) − R(Θ̃0) = R(Θ̂n(E)) − R̂n(Θ̂n(E)) + R̂n(Θ̂n(E)) − R(Θ̃0)

≤ R(Θ̂n(E)) − R̂n(Θ̂n(E)) + R̂n(Θ̃0) − R(Θ̃0)

= tr(Θ̂n(E)(Σ0 − Ŝn)) − tr(Θ̃0(Σ0 − Ŝn))

= tr((Θ̂n(E) − Θ̃0)(Σ0 − Ŝn)) = tr((∆̂)(Σ0 − Ŝn))

Now, conditioned on eventX0, by Lemma8

max
j,k

|Ŝn,jk − σ0,jk| ≤ C3

√
log(n)/n := δn

and thus onE ∩ X0 (with probability at leastP (E) − 1
max{p,n}2 ), we have by Cauchy-Schwartz,

∣∣∣tr
(
∆̂(Ŝn − Σ0)

)∣∣∣ ≤ δn

∣∣∣∆̂
∣∣∣
1
≤ δn

√∥∥∥∆̂
∥∥∥

0

∥∥∥∆̂
∥∥∥

F
≤ δn

√
p + 2|E|

∥∥∥∆̂
∥∥∥

F

≤ MrnC3

√
log(n)/n

√
p + 2|E| ≤ MC3r

2
n

where
∥∥∥∆̂
∥∥∥

0
≤ p + 2|E| by definition, andrn is as defined in (71).
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Appendix E. Oracle inequalities for the Lasso

In this section, we consider recoveringβ ∈ R
p in the following linear model:

Y = Xβ + ǫ, (82)

whereX follows (1) and ǫ ∼ N(0, σ2In). Recall givenλn, the Lasso estimator forβ ∈ R
p is

defined as:

β̂ = arg min
β

1

2n
‖Y − Xβ‖2

2 + λn‖β‖1, (83)

which corresponds to the regression function in (10) by lettingY := Xi andX := X·\i whereX·\i
denotes columns ofX without i. Define

p∑

i=1

min(β2
i , λ2σ2) ≤ s0λ

2σ2, where λ =
√

2 log p/n. (84)

We now state Theorem25, which may be of independent interests; here we derive a tighter bound
for the Lasso estimator in terms ofℓ2 convergence rate than that inBickel et al.(2009) under slightly
different RE conditions, see discussions below. Our boundsdepend on theactualsparsitys0 as de-
fined in (84) rather thans = | supp(β)| as inBickel et al.(2009) (cf. Theorem 7.2). A similar result
has been shown inZhou(2010b) for deterministic design matrices that satisfy the RE condition on
X, whereΛmax(2s) as defined in (38) is assumed to be bounded. We now bound the correlation
between the noise and covariates ofX for X ∈ X , where we also define a constantλσ,a,p which is
used throughout the rest of this paper. ForX ∈ F(θ) as defined in (34), let

Ta :=

{
ǫ :

∥∥∥∥
XT ǫ

n

∥∥∥∥
∞

≤ (1 + θ)λσ,a,p, where X ∈ F(θ), for 0 < θ < 1

}
, (85)

whereλσ,a,p = σ
√

1 + a
√

(2 log p)/n, wherea ≥ 0; we have (cf. Lemma26)

P (Ta) ≥ 1 − (
√

π log ppa)−1; (86)

In fact, for such a bound to hold, we only need
‖Xj‖2√

n
≤ 1 + θ,∀j to hold inF(θ). The proof

appears inZhou(2010a).

Theorem 25 (Oracle inequalities of the Lasso)Zhou (2010a) Let Y = Xβ + ǫ, for ǫ being
i.i.d. N(0, σ2) and let X follow (1). Let s0 be as in(84) and T0 denote locations of thes0

largest coefficients ofβ in absolute values. Suppose thatRE(s0, 4,Σ0) holds withK(s0, 4,Σ0)

andρmin(s) > 0. Fix some1 > θ > 0. Letβinit be an optimal solution to(83) with

λn = d0λσ ≥ 2(1 + θ)λσ,a,p (87)

wherea ≥ 1 andd0 ≥ 2(1 + θ)
√

1 + a. Leth = βinit − βT0 . Define

X := R(θ) ∩ F(θ) ∩M(θ).
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Suppose thatn satisfies(41), and(42) for m = s. Then onTa ∩ X , we have

‖βinit − β‖2 ≤ λn
√

s0

√
2D2

0 + 2D2
1 + 2 := λσ

√
s0d0

√
2D2

0 + 2D2
1 + 2,

∥∥hT c
0

∥∥
1

≤ D1λns0 := D1d0λσs0,

whereD0 andD1 are defined in(88) to (90) respectively, andP (X ∩ Ta) ≥ 1−3 exp(−c̄θ2n/α4)−
(
√

π log ppa)−1.

Let T1 denote thes0 largest positions ofh in absolute values outside ofT0; Let T01 := T0 ∪T1. The
proof of Theorem25 yields the following bounds onX ∩ Ta: ‖hT01‖2 ≤ D0d0λσ

√
s0 where

D0 = max

{
D

d0
,
√

2

(
2(1 + θ)

K(s0, 4,Σ0)
√

ρmax(s − s0)

(1 − θ)d0
+

3K2(s0, 4,Σ0)

(1 − θ)2

)}
, (88)

whereD =
3(1 + θ)

√
ρmax(s − s0)

(1 − θ)
√

ρmin(2s0)
+

2(1 + θ)4ρmax(3s0)ρmax(s − s0)

d0(1 − θ)2ρmin(2s0)
, and (89)

D1 = max





4(1 + θ)2ρmax(s − s0)

d2
0

,

(
(1 + θ)

√
ρmax(s − s0)

d0
+

3K(s0, 4,Σ0)

2(1 − θ)

)2


 .(90)

We note that implicit in these constants, we have used the concentration bounds forΛmax(3s0),
Λmax(s− s0) andΛmin(2s0) as derived in Theorem6, given that (40) holds form ≤ max(s, (k0 +

1)s0), where we takek0 > 3. In general, these maximum sparse eigenvalues as defined above will
increase withs0 ands; Taking this issue into consideration, we fix forc0 ≥ 4

√
2, λn = d0λσ where

d0 ≥ c0(1 + θ)2
√

ρmax(s − s0)ρmax(3s0) ≥ 2(1 + θ)
√

1 + a,

where the second inequality holds fora = 7 as desired, givenρmax(3s0), ρmax(s − s0) ≥ 1.

Thus we have forρmax(3s0) ≥ ρmax(2s0) ≥ ρmin(2s0)

D/d0 ≤ 3

c0(1 + θ)(1 − θ)
√

ρmax(3s0)
√

ρmin(2s0)
+

2

c2
0(1 − θ)2ρmin(2s0)

≤ 3
√

ρmin(2s0)

c0(1 − θ)2
√

ρmax(3s0)ρmin(2s0)
+

2

c2
0(1 − θ)2ρmin(2s0)

≤ 2(3c0 + 2)K2(s0, 4,Σ0)

c2
0(1 − θ)2

≤ 7
√

2K2(s0, 4,Σ0)

8(1 − θ)2
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which holds given thatρmax(3s0) ≥ 1, and1 ≤ 1√
ρmin(2s0)

≤
√

2K(s0, k0,Σ0), and thus 1
K2(s0,k0,Σ0) ≤

2 as shown in Lemma27; Hence

D0 ≤ max

{
D/d0,

(4 + 3
√

2c0)
√

ρmax(s − s0)ρmax(3s0)(1 + θ)2K2(s0, 4,Σ0)

d0(1 − θ)2

}
,

≤ 7
√

2K2(s0, 4,Σ0)

2(1 − θ)2
and

D1 = max





4(1 + θ)2ρmax(s − s0)

d2
0

,

(
(1 + θ)

√
ρmax(s − s0)

d0
+

3K(s0, 4,Σ0)

2(1 − θ)

)2




≤
(

6

4(1 − θ)
+

1

4

)2

K2(s0, 4,Σ0) ≤
49K2(s0, 4,Σ0)

16(1 − θ)2
,

where for bothD1, we have used the fact that

2(1 + θ)2ρmax(s − s0)

d2
0

=
2

c2
0(1 + θ)2ρmax(3s0)

≤ 2

c2
0(1 + θ)2ρmin(2s0)

≤ 4K2(s0, 4,Σ0)

c2
0(1 + θ)2

≤ K2(s0, 4,Σ0)

8
.

Appendix F. Misc bounds

Lemma 26 For fixed designX with maxj ‖Xj‖2 ≤ (1 + θ)
√

n, where0 < θ < 1, we have forTa

as defined in(85), wherea > 0, P (T c
a ) ≤ (

√
π log ppa)−1.

Proof Define random variables:Yj = 1
n

∑n
i=1 ǫiXi,j. Note thatmax1≤j≤p |Yj | = ‖XT ǫ/n‖∞. We

haveE(Yj) = 0 andVar ((Yj)) = ‖Xj‖2
2 σ2/n2 ≤ (1 + θ)σ2/n. Let c1 = 1 + θ. Obviously,Yj

has its tail probability dominated by that ofZ ∼ N(0,
c21σ2

n ):

P (|Yj | ≥ t) ≤ P (|Z| ≥ t) ≤ 2c1σ√
2πnt

exp

(−nt2

2c2
1σ

2
ǫ

)
.

We can now apply the union bound to obtain:

P

(
max
1≤j≤p

|Yj| ≥ t

)
≤ p

c1σ√
nt

exp

(−nt2

2c2
1σ

2

)

= exp

(
−
(

nt2

2c2
1σ

2
+ log

t
√

πn√
2c1σ

− log p

))
.

By choosingt = c1σ
√

1 + a
√

2 log p/n, the right-hand side is bounded by(
√

π log ppa)−1 for
a ≥ 0.
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Lemma 27 (Zhou(2010a)) Suppose thatRE(s0, k0,Σ0) holds fork0 > 0, then form = (k0+1)s0,

√
ρmin(m) ≥ 1√

2 + k2
0K(s0, k0,Σ0)

; and clearly

if Σ0,ii = 1,∀i, then1 ≥
√

ρmin(2s0) ≥ 1√
2K(s0, k0,Σ0)

for k0 ≥ 1.
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