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Abstract

Background: DNA microarray technologies have made it possible to simultaneously measure expression levels
of thousands of genes. In recent years, graphical models have become increasingly popular for generating and
evaluating hypotheses on genetic control mechanisms and network topologies based on these expression profiles.
When applied to a large number of genes, however, several limitations of graphical models come to the fore.

Methods: To overcome these limitations, we propose a novel graphical gaussian modeling (GGM) approach in
which modeling is carried out in small subnetworks with three genes only. These subnetworks are then combined
for inference on the complete network. We present two versions of our method, a frequentist approach and a
likelihood approach based on latent random graphs, and find that both versions outperform the standard graphical
gaussian modeling in a simulation study.

Results: As a main application, we employ our method to infer a gene network for isoprenoid biosynthesis in
Arabidopsis thaliana. We detect modules of closely connected genes and candidate genes for a possible crosstalk
between both isoprenoid pathways. The discovered structures are further validated with the help of domain
knowledge by identifying genes of downstream pathways that fit well in this network.

Background

Graphical models [1, 2] form a probabilistic tool to
analyze and visualize conditional relationships be-
tween random variables. Random variables are rep-
resented by vertices of a graph and conditional de-

pendencies between them are encoded by edges. The
structure of the conditional relationships among ran-
dom variables can be exhaustively explored with the
help of the so-called Markov properties [1, 2].

When applied to gene expression data in order to
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infer genetic regulatory networks, the vertices stand
for genes whose conditional dependence patterns are
examined based on their expression profiles. Graph-
ical modeling of genetic networks can be carried out
with directed and undirected edges, with discretized
and continuous data. Over the last few years, graph-
ical models, in particular Bayesian networks, have
become increasingly popular in reverse engineering
of genetic regulatory networks [3–6].

Graphical models are powerful for a small num-
ber of genes. As the number of genes increases,
however, reliable estimates of conditional depen-
dencies require many more observations than are
usually available in gene expression profiling. Fur-
thermore, since the number of models grows super-
exponentially with the number of genes only a small
subset of models can be tested [6]. Most importantly,
a large number of genes often entails a large num-
ber of spurious edges in the model [7]. The inter-
pretation of the graph within a conditional indepen-
dence framework is then rendered difficult [8]. Even
a search for local dependence structures and subnet-
works with high statistical support [3] provides no
guarantee against the detection of numerous spuri-
ous features.

Some of the aforementioned problems may be
circumvented by restricting the number of possible
models or edges [6, 9] or by exploiting prior knowl-
edge on the network structure. So far, however, this
prior knowledge is difficult to obtain.

As an alternative approach for modeling genetic
networks with many genes, we propose not to con-
dition on all genes at a time. Instead, we apply
graphical modeling only to small subnetworks with
three genes to explore the dependence between two
of the genes conditional on the third one. These
subnetworks are then combined for inference on the
complete network. This modified graphical modeling
approach makes it possible to include many genes in
the network while studying dependence patterns in
a more complex and exhaustive way than with only
pairwise correlation-based relationships.

For an independent validation of our method, we
compare our modified GGM approach with the con-
ventional graphical modeling in a simulation study.
We show at the end of the Result section that our
approach outperforms the standard method in sim-
ulation settings with many genes and few observa-
tions. For a further evaluation with real data, we
apply our approach to the galactose utilization data
from [10] to detect galactose regulated genes in Sac-

charomyces cerevisiae.

The main aim of this methodological work, how-
ever, was to elucidate the regulatory network of the
two isoprenoid biosynthesis pathways in Arabidopsis
thaliana (reviewed in [11]). The bigger part of this
paper is therefore devoted to the inference and bio-
logical interpretation of a genetic regulatory network
of these two pathways. To motivate our novel mod-
eling strategy, we first describe the problems that we
encountered with standard GGMs before presenting
the results of our modified GGM approach.

Results

Isoprenoids serve numerous biochemical functions in
plants, e.g. as components of membranes (sterols),
as photosynthetic pigments (carotenoids and chloro-
phylls) or as hormones (gibberellins). Isoprenoids
are synthesized through condensation of the 5 car-
bon intermediates isopentenyl diphosphate (IPP)
and dimethylallyl diphosphate (DMAPP). In higher
plants, two distinct pathways for the formation of
IPP and DMAPP exist, one in the cytosol and
the other in the chloroplast. The cytosolic path-
way, often described as mevalonate or MVA path-
way, starts from acetyl-Coa to form IPP via sev-
eral steps including the intermediate mevalonate
(MVA). In contrast, the plastidial (non-mevalonate
or MEP) pathway involves condensation of pyruvate
and glyceraldehyde-3-phosphate via several interme-
diates to form IPP and DMAPP. Whereas the MVA
pathway is responsible for the synthesis of sterols,
sesquiterpenes, and the side chain of ubiqinone, the
MEP pathway is employed for the synthesis of iso-
prenes, carotenoids, and the side chains of chloro-
phyll and plastoquinone. Although both pathways
operate independently under normal conditions, in-
teraction between them has been repeatedly re-
ported [12,13]. Reduced flux through the MVA path-
way after treatment with lovastatin can be partially
compensated for by the MEP pathway. However, in-
hibition of the MEP pathway in seedlings leads to re-
duced levels in carotenoids and chlorophylls indicat-
ing a predominantly unidirectional transport of iso-
prenoid intermediates from the chloroplast to the cy-
tosol [12,14], although some reports indicate that an
import of isoprenoid intermediates into the chloro-
plast also takes place [15–17].
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Application of standard GGM to isoprenoid path-
ways in Arabidopsis thaliana

In order to gain better insight into the crosstalk be-
tween both pathways on the transcriptional level,
gene expression patterns were monitored under var-
ious experimental conditions using 118 GeneChip r©

(Affymetrix) microarrays. For the construction of
the genetic regulatory network, we focused on 40
genes, 16 of which were assigned to the cytosolic
pathway, 19 to the plastidal pathway and 5 encode
proteins located in the mitochondrion. These 40
genes comprise not only genes of known function but
also genes whose encoded proteins exhibited high
homology to proteins of known functions. For ref-
erence, we adopt the notation from [18] (see Table
1).

The genetic interaction network among these
genes was first constructed employing graphical
gaussian modeling with backward selection under
the Bayesian Information Criterion (BIC) [19]. This
was carried out with the MIM 3.1 program [20] (see
the Method section for further details). The ob-
tained network had 178 (out of 780) edges - too many
to single out biologically relevant structures. There-
fore, bootstrap resampling was applied to determine
the statistical confidence of the edges in the model
(Figure 1b). For the bootstrap edge probabilities,
only a cutoff level as high as 0.8 led to a reason-
ably low number of selected edges (31 edges, Fig-
ure 2). However, a comparison between bootstrap
edge probabilities and the pairwise correlation coef-
ficients suggested that for such a high cutoff level,
many true edges may be missed. For example, the
gene AACT2 appears to be completely independent
from all genes in the model although it is strongly
correlated to MK, MPDC1 and FPPS2.

The just described phenomenon was already ob-
served in a simulation study of [21] and may be
related to the surprisingly frequent appearance of
edges with a low absolute pairwise correlation coef-
ficient but a high bootstrap estimate (Figure 1c).
Although there is no concise explanation for this
pattern, one conjecture would be that the simultane-
ous conditioning on many variables introduces many
spurious edges with little absolute pairwise correla-
tion but high absolute partial correlation into the
model. Our modification for GGMs is to improve
upon this drawback.

Application of our modified GGM approaches

As described in more detail in the method section,
our approach aims at modeling dependencies be-
tween two genes by taking the effect of other genes
separately into account. In the hope to identify
immediate co-regulation between genes, an edge is
drawn between two genes i and j when their pair-
wise correlation is not the effect of a third gene. Each
edge has therefore a clear interpretation.

We have developed two versions of our method, a
frequentist approach in which each edge is tested for
presence or absence, and a likelihood approach with
parameters θij which describe the probability for an
edge between i and j in a latent random graph. One
main benefit of the second version over full graphi-
cal models is that one can easily test on a large scale
how well additional genes can be incorporated into
the network. This allows to select additional can-
didate genes for the network in a fast and efficient
way.

We have applied and tested our modified GGM
approaches by constructing a regulatory network of
the 40 genes in the isoprenoid pathways in Arabidop-
sis thaliana and by attaching 795 additional genes
from 56 other metabolic pathways to it.

Figure 3 shows the network model obtained from
the frequentist modified GGM approach. Since we
find a module with strongly interconnected genes in
each of the two pathways, we split up the graph into
two subgraphs each displaying the subnetwork of
one module and its neighbors. Our finding provides
a further example that within a pathway, poten-
tially many consecutive or closely positioned genes
are jointly regulated [22].

In the MEP pathway, the genes DXR, MCT,
CMK, and MECPS are nearly fully connected (up-
per panel of Figure 3). From this group of genes,
there are a few edges to genes in the MVA pathway.
Among these genes, AACT1 and HMGR1 form can-
didates for a crosstalk between the MEP and the
MVA pathway because these genes have no further
connection to the MVA pathway. Their correlation
to DXR, MCT, CMK, MECPS is always negative.

Similarly, the genes AACT2, HMGS, HMGR2,
MK, MPDC1, FPPS1 and FPPS2 share many edges
in the MVA pathway (lower panel of Figure 3). The
subgroup AACT2, MK, MPDC1, FPPS2 is com-
pletely interconnected. From these genes, we find
edges to IPPI1 and GGPPS12 in the MEP pathway.
Whereas IPPI1 is positively correlated to AACT2,
MK, MPDC1 and FPPS2, GGPPS12 displays nega-
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tive correlation to the four genes.
In contrast to the conventional graphical model,

we could now identify the connection between
AACT2 and MK, MPDC1 and FPPS2. In general,
we found a better agreement between the absolute
pairwise correlation and the selected edges (frequen-
tist approach) or the probability parameters θ (la-
tent random graph approach). Figures 4a and b
show the selected edges and θ-values as a function
of the absolute pairwise correlation.

Attaching additional pathway genes to the net-
work

Following the construction of the isoprenoid genetic
network, 795 additional genes from 56 metabolic
pathways were incorporated. Among these were also
genes from downstream pathways of the two iso-
prenoid biosynthesis pathways such as phytosterol
biosynthesis, mono- and diterpene metabolism, por-
phyrin/chlorophyll metabolism, carotenoid biosyn-
thesis, plastoquinone biosynthesis etc. Using the
second version of our method, i.e. the latent ran-
dom graph approach, we compared θ-values for all
gene pairs in the network with and without attach-
ing these additional genes (Figure 4b and c). As
was expected, the parameters θ for the edge proba-
bilities decreased if additional genes were included in
the isoprenoid network (see Method section). If for
a gene pair i, j, θij dropped for more than 0.3 it was
assumed that the dependence between i and j could
be “explained” by some of the additional genes.

To find these genes out of all additionally tested
candidates k, GGMs with genes i, j and k were
formed. A gene k was considered to explain the de-
pendency between i and j when an edge between i
and j was not supported in the GGM, i.e. when the
null hypothesis ρij|k = 0 was accepted in the corre-
sponding likelihood ratio test. k was then taken to
“attach well” to the gene pair i, j.

Thus, for each gene pair i, j whose parameter
θij dropped for more than 0.3, we obtained a list of
well-attaching genes. Genes appearing significantly
frequently in these lists of well-attaching genes were
assumed to connect well to the complete genetic net-
work. We tested for significance by randomization:
For each gene pair i, j, a randomized list of well-
attaching genes was formed with the same size as
the original gene list. In order to explore which path-
ways attach significantly well to the MVA and MEP
pathway, the portion of genes from each of the 56

pathways was summed over all gene pairs i, j. These
sums were then compared for the originally attached
genes and the sums of randomly attached genes in
100 data sets.

Table 2 shows the pathways whose genes were
found to attach significantly frequently to the MVA
pathway, the MEP pathway or both pathways. In-
terestingly, from all 56 considered metabolic path-
ways, we find predominantly genes from downstream
pathways to fit well into the isoprenoid network.
These results suggest a close regulatory connection
between isoprenoid biosynthesis genes and groups
of downstream genes. On the one side, we find
strong connections between the MEP pathway and
the plastoquinone, the carotenoid and chlorophyll
pathways (experimentally supported by [11,12,23]).
On the other side, the plastoquinone and phytosterol
biosynthesis pathways appear to be closely related to
the genetic network of the MVA pathway.

On a metabolic level, our results are substan-
tiated by earlier labeling experiments using [113C]
glucose which revealed that sterols were formed
via the MVA pathway, while plastidic isoprenoids
(β-carotene, lutein, phytol and plastoquinone-9)
were synthesized using intermediates from the MEP
pathway [23]. Moreover, incorporation of [1-
13C]- and [2,3,4,5-13C4]1-deoxy-D-xylulose into β-
carotene, lutein and phytol indicated that the
carotenoid and chlorophyll biosynthesis pathways
proceed from intermediates obtained via the MEP
pathway [24].

In contrast, a close connection between the MVA
and the MEP pathways could not be detected. This
suggests that a crosstalk on the transcriptional level
may be restricted to single genes in both pathways.

In a further analysis step, we examined to
which gene pairs the 4 identified pathways (plasto-
quinone, carotenoid, chlorophyll, and phytosterols)
attached. Genes from the plastoquinone pathway
were predominantly linked to the genes DXR, MCT,
CMK, GGPPS11, GGPPS12, AACT1, HMGR1,
and FPPS1 supporting the hypothesis that the genes
AACT1 are HMGR1 are involved in a communica-
tion between the MEP and the MVA pathway.

Genes from the carotenoid pathway attached to
DXPS2, HDS, HDR, GGPPS11, DPPS2 and PPDS2
whereas the chlorophyll biosynthesis appears to be
related to DXPS2, DXPS3, DXR, CMK, MCT,
HDS, HDR, GGPPS11 and GGPPS12. Genes from
the phytosterol pathway attach to the genes FPPS1,
HMGS, DPPS2, PPDS1 and PPDS2.
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Incorporating 795 additional genes into the iso-
prenoid genetic network would not have been feasi-
ble with standard GGMs since the graphical model
would have to be newly fitted for each additional
gene. Also, hierarchical clustering would not have
been an appropriate tool for detecting the similari-
ties in the correlation patterns between the two iso-
prenoid metabolisms and their downstream path-
ways. Figure 5 shows the hierarchical clustering of
the 40 isoprenoid genes and 795 additional pathway
genes based on the distance measure 1− |σij | where
σij denotes the pairwise correlation between genes i
and j.

In the left respectively right column of the axis of
the heatmap, the positions of the mevalonate path-
way genes (labeled with “m”) respectively the posi-
tions of the non-mevalonate pathway genes (labeled
with “n”) are displayed. The symbols “+” represent
the positions of the genes from the downstream path-
ways identified in Table 2. From Figure 5 it can be
easily seen that there is no clear assignment between
genes of the isoprenoid biosynthesis and genes of the
downstream pathways in the hierarchical clustering.

Simulation study

For an independent comparison between the mod-
ified and the conventional GGM approaches, we
simulated gene expression data with 40 genes and
100 observations. This simulation framework corre-
sponds to the data for the isoprenoid biosynthesis
and is thought to be only exemplary at this point.
An extensive simulation study is currently under way
and will be presented elsewhere.

Following recent findings on the topology of
metabolic and protein networks [25, 26], we simu-
lated scale-free networks in which the fraction of
nodes with k edges decays as a power law ∝ k−γ .
For metabolic and protein networks, γ is usually esti-
mated to range between 2 and 3, which would result
in very sparse networks with fewer edges than nodes
in our simulation settings. In order to also allow for
denser networks, we generated 100 graphs each for
γ = 0.5, 1.5, and 2.5. With 40 nodes, these graphs
then comprised 88.3, 49.7 and 30.5 edges on aver-
age. For each edge, the conditional dependence of
the corresponding gene pairs was modeled with a la-
tent random variable in a structural equation model
as described by [27]. Further details are of techni-
cal nature and are omitted here. The use of latent
random variables enabled us to model partial cor-

relation coefficients according to the previously de-
fined network structure while ensuring positive def-
initeness of the complete partial correlation matrix.
This matrix was then transformed into a covariance
matrix Σ from which synthetic gene expression data
with 100 observations were sampled according to a
multivariate normal distribution N(0,Σ).

The performance of the graphical modeling ap-
proaches was monitored using the rate of true and
false positives in receiver operator characteristics
(ROC) curves (see [7] for a short introduction).
Since for the standard graphical model, bootstrap-
ping would have been to time consuming, we ranked
all edges according to their sequential removal in
the backward selection process. Figure 6a shows the
ROC curves for the graphical modeling with back-
ward selection and the modified graphical model-
ing approaches (frequentist and latent random graph
approach). We also included the ROC curve for
network inference with pairwise correlation coeffi-
cients. It can be seen that the modified GGM
approaches outperform the conventional graphical
modeling. Both, the frequentist and the latent
random graph method show a similar performance.
Also, it should be noted that a simple measure such
as the pairwise correlation can be quite powerful in
detecting conditional dependencies between genes.

ROC curves depict the true positive rate as a
function of the false negative rate. However, in our
setting where the false positive edges by far outnum-
ber the true positive ones, the proportion of true
positives among the selected edges is also of interest
(Figure 6b). Note that this proportion is the com-
plementary false discovery rate 1-FDR [28]. Figure
6b provides further evidence that the modified GGM
approaches have a better performance than the stan-
dard graphical gaussian modeling.

Application to galactose utilization in Saccha-
romyces cerevisiae
For further evaluation, we applied our approach to
the galactose utilization data set from [10] to detect
galactose regulated genes in Saccharomyces cere-
visiae. [10] used self-organizing maps to cluster 997
genes with significant expression changes in 20 sys-
tematic perturbation experiments of the galactose
pathway. From the 9 galactose genes under investi-
gation, two subgroups with 3 respectively 4 genes
were found in 2 of the 16 clusters. 9 of the 87
genes in these 2 clusters carried GAL4p binding sites
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and are thus candidates genes for regulation by the
transcription factor GAL4p. Among these candidate
genes, GCY1 and PCL10 are known to be targets of
GAL4p [29] and YMR318C has been implicated in
another binding site study [30].

After incorporating all yeast genes into our net-
work of the 9 galactose genes, 13 genes were found to
attach significantly well. Among these, GCY1 and
PCL10 were also detected. Furthermore, 3 out of
the remaining 11 candidate genes (MLF3, YEL057C,
YPL066W) had GAL4p binding sites. These genes
were also identified by [10]. This result shows once
more that with our approach, we are not only able to
model the dependence between genes but also find
genes whose expression profiles fit well to the original
genes in the model. In contrast to [10], we did not
have to rely on gene clusters with a high occurrence
of galactose genes to find these genes.

Conclusions
Analysis of gene expression patterns, for example
cluster analysis, often focuses on coexpression and
pairwise correlation between genes. Graphical mod-
els are based on a more sophisticated measure of
conditional dependence among genes. However, with
this measure, modeling is restricted to a small num-
ber of genes. With a larger set of genes, it is rather
difficult to interpret the model and to generate hy-
potheses on the regulation of genetic networks.

In our approaches, in the search for significant
co-regulation between two genes, all other genes in
the model are also taken into account. However, the
effect of these genes is examined separately, one gene
at a time. Due to this simplification, modeling can
include a larger number of genes. Also, each edge
has a clear interpretation representing a pair of sig-
nificantly correlated genes whose dependence cannot
be explained by a third gene in the model. Our fre-
quentist method carries resemblance to the first two
steps in the SGS and PC algorithm [27]. By restrict-
ing the modeling to subnetworks with three genes,
we avoid the statistically unreliable and computa-
tionally costly search for conditional independence
in large subsets as in the SGS algorithm. Also, we
avoid to remove edges in a stepwise fashion as in the
PC algorithm. Therefore, we do not run the risk of
mistakenly removing an edge at an early stage lead-
ing to improved stability in the modeling process.

For the isoprenoid biosynthesis pathways in Ara-

bidopsis thaliana, we constructed a genetic network
and identified candidate genes for a crosstalk be-
tween both pathways. Interestingly, both positive
and negative correlations were found between the
identified candidates genes and the corresponding
pathways. AACT1 and HMGR1, key genes of the
MVA pathway, were found to be negatively cor-
related to the module of connected genes in the
MEP pathway. This suggests that in the experi-
mental conditions tested, AACT1 and HMGR1 may
respond differently (than the MEP pathway genes)
to environmental conditions, or that they possess a
different organ-specific expression profile. In either
case, expression within both groups seems to be mu-
tually exclusive. On the other hand, a positive cor-
relation was identified between IPPI1 and members
of the MVA pathway, suggesting that this enzyme
controls the steady-state levels of IPP and DMAPP
in the plastid when a high transfer of intermediates
between plastid and cytosol take place.

Although we have considered only metabolic
genes in this analysis, the method can be extended
to identify genes encoding other types of proteins be-
longing to the same transcription module. In fact,
transcription factors and other regulator proteins, as
well as structural proteins such as transporters have
been shown to be often found in the same expression
module [22]. Our results suggest that the expression
of genes belonging to the chlorophyll and carotenoid
biosynthesis pathways is controlled by a module pos-
sibly including genes from the MEP pathway.

Vice versa, the expression of genes in the phy-
tosterol pathway appears to be influenced by genes
from the MVA pathway. For the downstream regu-
lation of plastoquinone biosynthesis, however, genes
from both pathways seem to be involved. This find-
ing stands in line with the dual localization of en-
zymes from the plastoquinone in either the plastid
or the cytosol. The regulation of this pathway may
therefore be dependent on processes happening on
the metabolic and regulatory level in both compart-
ments.

We have shown in a simulation study that for
gene expression data with many genes and few ob-
servations, the modified GGM approaches have a
better performance in recovering conditional depen-
dence structures than conventional graphical gaus-
sian modeling. However, a final evaluation of our in-
ferred network for the isoprenoid biosynthesis path-
ways in Arabidopsis thaliana can only be conducted
based on additional knowledge and biological exper-
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iments. At this stage, the use of domain knowledge
has provided some means for network validation.
Since genes from the respective downstream path-
ways were significantly more often attached to the
isoprenoid network than candidate genes from other
pathways, we are quite confident that our method
can grasp modularity in the dependence structure
within groups of genes and also between groups of
genes. Such modularity would have been difficult to
detect by standard graphical modeling or clustering.

Methods
Graphical gaussian models

Let q be the number of genes in the network, n be the
number of observations for each gene. The vector of
log scaled gene expression values, Y = (Y1, . . . , Yq) is
assumed to follow a multivariate normal distribution
N(µ,Σ) with mean µ = (µ1, . . . , µq) and covariance
matrix Σ. The partial correlation coefficients ρij|rest

which measure the correlation between genes i and
j conditional on all other genes in the model are cal-
culated as

ρij|rest =
−ωij√
ωiiωjj

,

where ωij , i, j = 1, . . . , q are the elements of the pre-
cision matrix Ω = Σ−1.

Using likelihood methods, each partial correla-
tion coefficients ρij|rest can be estimated and tested
against the null hypothesis ρij|rest = 0 [1]. An edge
between genes i and j is drawn if the null hypothesis
is rejected. Since the estimation of the partial corre-
lation coefficients involves matrix inversion, estima-
tors are very sensitive to the rank of the matrix. If
the model comprises many genes, estimates are only
reliable for a large number of observations.

Commonly, the modeling of the graph is carried
out in a stepwise backward manner starting from the
full model from which edges are removed consecu-
tively. The process stops when no further improve-
ment can be achieved by removal of an additional
edge. The final model is usually evaluated by boot-
strapping to exclude spurious edges in the model.

Modified GGM approaches

Let i, j be a pair of genes. The sample Pearson’s
correlation coefficient σij is the commonly used mea-
sure for coexpression. For examining possible effects
of other genes k on σij , we consider GGMs for all

triples of genes i, j, k with k 6= i, j. For each k, the
partial correlation coefficient ρij|k is computed and
compared to σij . If the expression level of k is inde-
pendent of i and j, the partial correlation coefficient
would not differ from σij . If on the other hand, the
correlation between i and j is caused by k since k
co-regulates both genes, one would expect ρij|k to
be close to 0. Here, we use the terminology, that k
“explains” the correlation between i and j.

In order to combine the different ρij|k values in
a biologically and statistically meaningful way, we
define an edge between i and j if ρij|k 6= 0 for all
remaining genes k. In particular, if there is at least
one k with ρij|k = 0, no edge between i and j is
drawn since the correlation between i and j may be
the effect of k. Our approach can be implemented as
a frequentist approach in which each edge is tested
for presence or absence or alternatively, as a likeli-
hood approach with parameters θij which describe
the probability for an edge between i and j in a la-
tent random graph.

Frequentist approach

For the gene pair i, j and all remaining genes k,
p-values pij|k are obtained from the likelihood ratio
test of the null hypothesis ρij|k = 0. In order to
combine the different p-values pij|k, we simply test
whether a third gene k exists that “explains” the
correlation between i and j. For this purpose, we
apply the following procedure:

1) For each pair i, j form the maximum p-value

pij,max = max{pij|k, k 6= i, j}.

2) Adjust each pij,max according to standard mul-
tiple testing procedures such as FDR [28].

3) If the adjusted pij,max-value is smaller than
0.05 draw an edge between the genes i and j,
otherwise omit it.

The correction for multiple testing in step 2 is car-
ried out with respect to the possible number of edges
q(q−1)

2 in the model. Implicitly, multiple testing over
all genes k is also involved in step 1. However, since
the maximum over all pij|k is considered, a multiple
testing correction is not necessary.
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Latent random graph approach
The frequentist approach has the disadvantage that
a connection between two genes i and j is either
considered to be present or absent. Also, it is not
taken into account whether an edge between i and
k respectively j and k is truly present when we test
for ρij|k = 0. In our second method, we introduce
a parameter θij as the probability for an edge be-
tween two genes i and j in a latent random graph
model. Let θ be the parameter vector of θij for all
1 ≤ i < j ≤ q and y = (y1, . . . , yn) be a sam-
ple of n observations. For estimating θ, we maxi-
mize the log-likelihood L(θ) = log Pθ(y) via the EM-
algorithm [31].

Let θt be a current estimate of θ. Further, let g
be the unobserved graph encoded as adjacency ma-
trix with gij ∈ {0, 1} depending on whether there is
an edge between gene i and j or not. In the E-step
of the EM-algorithm, the conditional expectation of
the complete data log-likelihood is determined with
respect to the conditional distribution p(g|y, θt),

Eθ(log Pθ(g, y)|y, θt) =
∑

g

log Pθ(g, y)p(g|y, θt).

(1)

By assuming independence between edges, equation
(1) becomes

Eθ(log Pθ(g, y)|y, θt) =
∑

g

log Pθ(g, y)
∏
i<j

p(gij |y, θt),

(2)

and further, after replacing

log Pθ(g, y) =
∑
i<j

gij log θij + (1− gij) log(1− θij),

and summing out equation (2) we find

Eθ(log Pθ(g)|y, θt) =∑
i<j

(
P (gij = 1|y, θt) log θij+

P (gij = 0|y, θt) log(1− θij)
)
.

(3)

P (gij = 1|y, θt) and P (gij = 0|y, θt) at the right side
of equation (3) are approximated by the statistical
evidence of edge i, j in GGMs with genes i, j and
k. Since we only want to estimate the effect of k on
the correlation between i and j, we distinguish only

the two cases whether k is a common neighbor of i
and j, e.g. gik = 1 and gjk = 1, or not. When k is a
common neighbor, we test ρij|k 6= 0 versus ρij|k = 0.
When k is not a common neighbor of i and j, we test
σij 6= 0 versus σij = 0 for the pairwise correlation
coefficients instead. Thus, we obtain

P (gij = 1|y, θt) ≈
∏

k 6=i,j

(
θt

ikθt
jk · P̂ (ρij|k 6= 0|y)+

(1− θt
ikθt

jk) · P̂ (σij 6= 0|y)
)
,

(4)

where P̂ (ρij|k 6= 0|y) and P̂ (σij 6= 0|y) are p-
values of the corresponding likelihood ratio tests.
After replacing (4) in equation (3), the M-step
of the EM-algorithm, that is the maximization of
Eθ(log Pθ(g)|y, θt) with respect to θ, leads to an it-
erative updating scheme θt → θt+1 with

θt+1
ij =

∏
k 6=i,j

(
θt

ikθt
jk · P (ρij|k 6= 0|y)+

(1− θt
ikθt

jk) · P (σij 6= 0|y)
)
.

(5)

In summary, we determine the probability parame-
ters θ as follows

1) For gene pairs i, j, compute P (ρij|k 6= 0) and
P (σij 6= 0) for all genes k 6= i, j.

2) Starting with θ0, apply iteratively equation (5)
until the error |θt+1 − θt| drops below a pre-
specified value, for example 10−6.

Our latent random graph approach also enables us
to fit a large number of additional genes into a con-
structed genetic network. In this case, for a gene
pair i, j in step 1 of the analysis, the partial corre-
lation coefficients ρij|k are not only computed and
tested for genes k in the model but also for the ad-
ditional candidate genes. However, the iteration in
step 2 is not extended to these candidate genes. In
other words, θij is only iteratively updated in equa-
tion (5) if both genes i, j are in the original model.
For candidate genes k, θik and θjk are kept fixed at a
pre-specified value, e.g. 1, and are not re-estimated
in the EM-iteration process.

This outline introduces a second level into the
modeling process. At the first level, the network
between the original genes is constructed. At the
second level, we test how additional candidate genes
influence the parameters θ. If these candidates have

8



an effect on the correlation between i and j, θij will
decrease. Thus, by comparing the original network
with the network inferred from allowing for addi-
tional genes in step 1, we can determine which can-
didate genes lower the θ-values and, accordingly, fit
well into the network.
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Figures
Figure 1
Bootstrapped GGM of the isoprenoid pathway. a) comparison between absolute pairwise correlation coef-
ficients and presence of edges (0 and 1 denote absent and present edges respectively), b) histogram of the
bootstrap edge probabilities, c) comparison between absolute pairwise correlation coefficients and bootstrap
edge probabilities for all 780 possible edges.
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Figure 2
Bootstrapped GGM of the isoprenoid pathway (cutoff 0.8). Dotted directed edges mark the metabolic
network and are not part of the GGM.
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Figure 3
Dependencies between genes of the isoprenoid pathways according to the frequentist modified GGM method.
Upper panel: subgraph of the gene module in the MEP pathway, lower panel: subgraph of the gene module
in the MVA pathway.
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Figure 4
Comparison of the absolute pairwise correlation coefficients and the modifide GGM approaches. a) selected
edges in the frequentist modified GGM approach (0 and 1 denote absent and present edges respectively), b)
θ-values in the latent random graph approach, c) θ-values after attaching 795 genes from other pathways.

● ● ●

●

●● ●●● ●● ● ●●● ●● ●●● ●●● ● ●● ●●● ●●●

●

●● ● ●●●● ● ●

●

●● ●●● ● ● ●

●

●

●

●● ●● ● ●●●● ● ●●● ●

●

●● ●●●● ●● ●● ● ●● ● ●● ●● ●● ● ●

●

● ●●● ●●●● ●●● ● ●●● ● ●

●

●

●

●●● ●● ●●● ●●● ●

●●

●

●

●●● ●

●

● ●● ● ●● ● ●● ● ●● ●● ●●

●

●●●●● ● ●●●●

●

● ●● ● ●● ●●● ●●● ●●●●● ●● ●● ●●

●

●● ● ●● ● ●●● ●●●● ● ●

●

●

●

●●● ●

●

● ●●● ●●● ●● ● ●●

●

●●● ●●●●●● ● ●● ●● ●● ●

●●●

●

●

●●● ●● ●●● ●● ●● ●

●

●●● ●● ●● ●●● ●● ● ● ●● ● ●

●

● ●●●● ●● ●●● ●●● ●● ●● ● ●● ● ● ● ●●● ● ●●● ●● ●●● ● ●● ●● ● ●● ● ●● ●●● ●● ●● ●●● ●● ●● ●●●● ●●

●●

●●● ● ●● ●●● ●●●● ●●● ● ●●● ●● ●●● ●●● ● ●●

● ●

●● ● ●● ● ●● ●●● ● ●●●● ●●● ● ●

●

●● ●●●● ●● ● ●●●●●●● ● ●●● ●● ● ● ● ●● ●● ● ●

●

● ●●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●●

●

● ●●● ●●●● ●● ● ● ●● ●●● ●● ●● ● ●

●

●●

●

●●●●● ● ●● ●● ●●● ●●● ●● ●●●●●●● ● ●●● ●● ● ●●● ●● ●●●● ●● ●● ●● ●●● ●● ●● ●●● ●●●● ●●●● ●● ●●● ●●● ● ●

●

● ● ●● ● ●●

●

●●● ● ●● ● ● ●●●● ● ●● ● ●●● ●●●● ●● ● ●● ●●● ●● ●● ●

●

●●● ●●●● ● ●●

●

●● ●● ●●●● ●●● ●● ●● ●● ●●● ● ●●● ● ●● ● ●● ●● ● ●●●● ●● ●●●●● ●● ●●● ●●● ●●● ●●● ● ●●●● ●●●● ●●● ●●● ● ●●●● ● ●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●●●●● ●●● ● ●● ●● ●● ● ●

●

● ●● ● ●● ● ●● ●● ●● ●

●●

● ●

●

● ●

●

●● ● ●●● ● ● ●●● ●●● ●●●● ●●● ● ●●

●

●

●

●●

●●

● ● ●●●● ●● ● ● ●● ●●●● ●●●● ●●● ●●●● ●●●●● ●● ● ●● ● ●●● ●●●● ●●● ●●●● ●●●● ● ● ●●● ●●●● ● ●●

●

●● ●●● ● ● ●●● ● ●●● ● ●● ●●● ● ●● ●● ● ● ●● ●●● ●● ●● ●●● ● ●● ●●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

|correlation|

ed
ge

s

a)

● ● ●

●

●
●

●

●

●

●

● ● ●●●

●

● ●●● ●●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ● ●●●● ●

●

●●

●

●

●

●

●

●●●

●

● ●● ● ●● ● ●●

●

●

●

●

●

●

●

●

●

●●

●

●●● ●●● ●

●

●● ●

●

●

●

●

●●●

●

● ●●● ●●●

●

●●

●

●

●

●

●

●

●

● ●● ●

●

● ●

●

● ● ●●

●

●

●

●

●

●●●●● ●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●● ●● ●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●●● ●●●

●

● ●

●

●

●

●

●

●

●

●

●●●● ●

●

● ●●

●

●

●

●●●

●

●

●

●● ●● ●●●

●

● ●● ●

●

●

●

●

●

● ●● ●●●

●

● ● ●

●

●

●

●

●

●

●

●

●● ●● ●●● ●●●

●

●

●

● ●

●

● ● ● ●

●

●● ● ●●● ●●

●

●

●

●

●

● ●● ●

●

● ●

●

● ●●●

●

●

●

●

●

●

● ●● ●●

●

●●●

●

●

●●

●

●

● ● ●●

●

●●

●

●●●

●

●

● ●
●

●●

●

●

●

●

● ●●● ● ●●

● ●

●

● ●

●

● ● ●● ●●●

●

●

●●●

●

●●

●

●

●

●● ●●●●
●

●

●

●

●●●●●● ● ●●●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●● ●●●

●

●● ●●

●

●●

●

●● ●●

●

●● ●●●

●

● ●●●

●

●●●

●

● ● ●

●

● ●●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●● ●●● ●● ●●●●●●● ● ●●● ●● ● ●●● ●● ●●●● ●● ●● ●●

●

●● ●● ●● ●●● ●●●● ●●●● ●● ●●● ●●● ● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ● ● ●●●● ● ●● ● ●●● ●●●● ●● ● ●● ●●● ●● ●● ●

●

●●● ●●●● ● ●●

●

●● ●● ●●●●

●

●● ●● ●● ●● ●●● ● ●●● ● ●● ● ●● ●● ● ●●●● ●● ●●●●● ●● ●●● ●●● ●●● ●●● ●

●

●●●

●

●●● ●●●

●

●● ●

●

●●● ● ●● ●●● ●● ●● ●● ●●● ●● ●● ●●

●

●● ●●●●● ●●● ● ●● ●●

●

● ●

●

●

●

●

● ● ●● ● ●● ●● ●● ●

●●

●

●

●

●

● ●

●● ●

●

●● ●

●

●

●

●

●

●●

●

●●●

●

●● ●

●

●

●

●

● ●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●● ●●●

●

●●●

●

●●●● ●● ●

●

●

●

●

●●

●

●●●

●

●●

●

●

●●

●

●●● ● ●

●

●● ●●●● ●

●

●

●

●● ●●● ● ● ●●● ●

●

●● ●

●

● ●●● ● ●● ●● ● ● ●●

●

●●

●

● ●● ●●● ●

●

● ●●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

|correlation|

θ

b)

● ● ●

●

●● ●●● ●● ● ●●● ●● ●●● ●●● ● ●●

●

●● ●●●

●

●● ● ●●●● ● ●

●

●

● ●●

●

●

●

●

●

●

●

●● ●● ● ●●●● ● ●●● ● ●

●

● ●●●●

●

● ●● ● ●● ● ●● ●● ●● ● ●

●

● ●●● ●●●● ●●● ● ●●● ● ●

●

●

●

●●●

●

● ●●● ●●● ●

●●

●

●

●

●●
●

●

● ●● ● ●● ●

●

● ● ●●

●

●

●

●

●

●●●●● ●

●

●●●

●

● ●● ● ●● ●●● ●●● ●●●●● ●● ●● ●

●

●

●● ● ●●

●

●

●● ●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●●● ●●● ●● ● ●●

●

●
●

● ●●●●●● ●

●

● ●●

●

●

●

●●●

●

●

●

●● ●● ●●● ●● ●● ●

●

●●● ●● ●● ●●● ●● ● ●
●

● ●

●

●

●

●

●●● ●● ●●● ●●● ●●

●

● ● ●● ● ● ● ●●● ● ●●● ●●

●

●

●

●

●

● ●● ●

●

● ●

●

● ●●●

●

●

●

● ●●● ●● ●●

●

●●●

●

●

●

●

●

●

● ● ●●

●

●●

●

●●● ●●● ● ●●● ●● ●●● ●●● ● ●●

●

●

●● ● ●● ● ●● ●●● ● ●●●● ●●● ● ●
●

●● ●●●● ●● ● ●●●●●●● ● ●●● ●● ● ● ●

●

● ●● ● ●

●

● ●●● ●●●

●

●● ●●

●

●● ●●● ●● ●●● ●●●

●

● ●●● ●●●●

●

● ● ● ●● ●●●

●

● ●● ● ●

●

●
●

●

●●●●● ● ●● ●●
●

●● ●●● ●● ●●●●●●● ● ●●● ●● ● ●●● ●● ●●●● ●● ●● ●●
●

●● ●● ●● ●●● ●●●● ●●●● ●● ●●● ●●● ● ●

●

● ●

●

● ●

●

●

●

●

●● ● ●● ● ● ●●●● ● ●● ● ●●● ●●●● ●● ● ●● ●●● ●● ●● ●

●

●●● ●●●● ● ●●

●

●● ●● ●●●●

●

●● ●● ●● ●● ●●● ● ●●● ● ●● ● ●● ●● ● ●●●● ●● ●●●●● ●● ●●● ●●● ●●● ●●● ●

●

●●● ●●●● ●●●

●

●● ● ●●●● ● ●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●●●●● ●●● ● ●● ●● ●● ● ●

●

● ●● ● ●● ● ●● ●● ●● ●

●

●
● ● ●●

●

●

●● ●
●

●● ● ● ●●● ●●● ●●●●
●

●● ● ●●

●

●

●

●
●

●
●

● ● ●●●● ●● ●

●

●●

●

●●● ●●●● ●●● ●●●● ●●●●● ●● ●

●

● ● ●●● ●●●●

●

●● ●●●● ●●●● ● ● ●●● ●●●● ● ●●

●

●● ●●● ● ● ●●● ● ●●● ● ●● ●●● ● ●● ●● ● ● ●● ●●● ●● ●● ●●● ●

●

● ●●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

|correlation|

θ

c)

Figure 5
Hierarchical clustering of 40 genes involved in the isoprenoid pathway and 795 genes from other pathways.
Positions of the genes from the MEV pathway (m) and the plastoquinone and phytosterol pathways (+) are
indicated in the left column of the axis on the right side. The positions of the genes from the MEP pathway
(n) and the plastoquinone, carotenoid and chlorophyll pathways (+) are indicated in right column of the
axis.
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Figure 6
Performance of different GGM approaches. a) ROC curves and b) proportion of true positive edges as a
function of the number of selected edges for the different graphical modeling strategies. Black line: the
standard GGM, red line: frequentist modified GGM approach, blue line: latent random graph modified
GGM approach, green line: pairwise correlation. Sparse networks with fewer edges as nodes (γ = 2.5)
are represented in the left column, networks with approximately as many edges as nodes (γ = 1.5) are
represented in the middle column, and networks with approximately twice as many edges as nodes (γ = 0.5)
are in the right column.
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Tables
Table 1
Genes coding for enzymes in the two isoprenoid pathways. Subcellular locations are pooled from experimental
data, the TargetP data base [32], and [18]: C - cytoplasm, ER - endoplasmic reticulum, M - mitochondrion,
P - chloroplast. Experimentally verified subcellular locations are marked with an asterisk(∗).

Name AGI number Subcellular location

AACT1 At5g47720 C
AACT2 At5g48230 C
CMK At2g26930 P

DPPS1 At2g23410 C/ER
DPPS2 At5g58770 M
DPPS3 At5g58780 ER
DXPS1 At3g21500 P
DXPS2 At4g15560 P∗

DXPS3 At5g11380 P
DXR At5g62790 P∗

FPPS1 At4g17190 C
FPPS2 At5g47770 C/M∗

GGPPS1 At1g49530 M∗

GGPPS2 At2g18620 P
GGPPS3 At2g18640 C/ER∗

GGPPS4 At2g23800 C/ER∗

GGPPS5 At3g14510 M
GGPPS6 At3g14530 P
GGPPS7 At3g14550 P∗

GGPPS8 At3g20160 C/ER
GGPPS9 At3g29430 M
GGPPS10 At3g32040 P
GGPPS11 At4g36810 P∗

GGPPS12 At4g38460 P
GPPS At2g34630 P∗

HDR At4g34350 P
HDS At5g60600 P∗

HMGR1 At1g76490 C/ER∗

HMGR2 At2g17370 C/ER∗

HMGS At4g11820 C
IPPI1 At3g02780 P
IPPI2 At5g16440 C
MCT At2g02500 P∗

MECPS At1g63970 P
MK At5g27450 C

MPDC1 At2g38700 C
MPDC2 At3g54250 C
PPDS1 At1g17050 P
PPDS2 At1g78510 P
UPPS1 At2g17570 M
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Table 2
Pathways whose genes attach significantly well to the isoprenoid pathways. Downstream pathways are
marked with an asterisk (∗). The calvin cycle is also metabolically linked to the isoprenoid pathways.

both isoprenoid pathways MEP pathway MVA pathway
plastoquinone∗ plastoquinone∗ plastoquinone∗

carotenoid∗ carotenoid∗ phytosterol∗

calvin cycle porphyrin/chlorophyll∗

histidine one carbon pool
one carbon pool calvin cycle

tocopherol∗

porphyrin/chlorophyll∗
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