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Abstract

We consider the problem of variable selection in high-dimensional linear models
where the number of covariates greatly exceeds the sample size. In particular, we
present the concept of partially faithful distributions and discuss their role for in-
ferring associations between the response and the covariates. For partially faithful
distributions, a simplified version of the PC-algorithm (Spirtes et al., 2000) which
is computationally feasible even with thousands of covariates yields consistency for
high-dimensional variable selection under clearly weaker conditions than penalty-based
approaches; in fact, we prove that the PC-algorithm is consistent for very ill-posed
design. If partial faithfulness does not hold, we show that the PC-algorithm still con-
sistently identifies some strong associations which are related to notions of causality.
We also provide an efficient implementation of our (simplified) PC-algorithm in the
R-package pcalg and demonstrate the method on simulated and real data.

1 Introduction

The variable selection problem for high-dimensional models has recently gained a lot of
attraction. A particular stream of research has focused on estimators and algorithms
whose computation is feasible and provably correct (Meinshausen and Bühlmann, 2006;
Zou, 2006; Zhao and Yu, 2006; Bunea et al., 2007; Candes and Tao, 2007; Meinshausen and
Yu, 2006; van de Geer, 2007; Zhang and Huang, 2007; Huang et al., 2006; Wasserman and
Roeder, 2007). As such, these methods distinguish themselves very clearly from heuristic
optimization of an objective function or stochastic simulation or search, e.g. MCMC, which
are often not really exploiting a high-dimensional search space. Prominent examples of
computationally feasible and provably correct (w.r.t. computation) methods are penalty-
based approaches, including the Lasso (Tibshirani, 1996), the adaptive Lasso (Zou, 2006)
or the Dantzig selector (Candes and Tao, 2007).

We propose here a method for linear models which is “diametrically opposed” to
penalty-based schemes. Three reasons for another approach include the following: (i)
it can be worthwhile to infer stronger concepts of associations than what is obtained from
the usual regression coefficients, in particular when focusing on causal relations; (ii) from
a theoretical perspective, we prove that in the framework of so-called partially faithful
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distributions, our method leads to consistent model selection for almost arbitrary designs
and hence for much more general situations than what has been shown for the Dantzig
selector or the Lasso or the adaptive Lasso; (iii) from a practical perspective, it can be very
valuable to have a “diametrically opposed” method in the tool-kit for high-dimensional
data analysis, raising the confidence for relevance of variables if they have been selected
by say two very different methods. We will address all these reasons, without prioritizing
one over the other.

Our method is a simplification of the PC-algorithm (Spirtes et al., 2000) which has
been proposed for estimating directed acyclic graphs; the simplification arises because
selecting variables in a linear model is easier than assigning a directed association in a
graphical model. We prove consistency for variable selection in high-dimensional linear
models where the number of covariates can greatly exceed the sample size. For the ordi-
nary problem of inferring the non-zero regression coefficients, we introduce and assume the
framework of partially faithful distributions. Partial faithfulness is novel and weaker than
the faithfulness condition from graphical models (Spirtes et al., 2000, cf.), and we prove
here that partial faithfulness arises naturally in the context of (high-dimensional) linear
models. Assuming such partial faithfulness in a linear model, which is arguably only a
mild requirement, our simplified PC-algorithm is asymptotically consistent under almost
arbitrarily ill-posed designs; essentially, we only need that the variables are identifiable in
the population case and there are no conditions on the coherence or minimal sparse eigen-
values of the design. Furthermore, causal relations and stronger notions of associations
than what is represented by the regression coefficients can be important. In particular,
when faithfulness fails to hold, these concepts distinguish themselves very clearly from
the regression-type associations. We also prove that for non-faithful distributions, the
PC-algorithm is consistent for inferring some strong associations between the response
variable and the covariates.

Moreover, the PC-algorithm is computationally feasible in high-dimensional problems:
its computational complexity is crudely bounded by a polynomial in p, the dimension
of the covariate space, and we illustrate that our implementation in R (CRAN, 1997 ff.)
has about the same magnitude for computing time as the LARS-algorithm (Efron et al.,
2004). Our approach can also be adapted for preliminary reduction of the dimension of
the covariate space: we call it “correlation screening” and the method bears some relations
to “sure independence screening” (Fan and Lv, 2007).

Finally, we compare our PC-algorithm with the Lasso and the elastic net (Zou and
Hastie, 2005), and we demonstrate on some real data the usefulness of having “diametri-
cally opposed” methods for analyzing a high-dimensional data-set on riboflavin production
from bacillus subtilis.

2 Gaussian linear model and partial faithfulness

We are considering here a class of probability distributions for linear models which satisfies
a so-called partial faithfulness condition. Such a condition will be crucial for identifying the
effective variables (in the sense of regression) with the PC-algorithm whose computational
complexity is bounded by a polynomial in the number of covariates.
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Consider the Gaussian linear model

Yi =

p∑

j=1

βjX
(j)
i + εi, (i = 1, . . . , n),

X1, . . . , Xn i.i.d. ∼ Np(µX ,ΣX),

ε1, . . . , εn i.i.d. ∼ N1(0, σ
2) and independent of {X1, . . . , Xn}. (1)

First, we assume:

(A1) ΣX is strictly positive definite.

Note that (A1) implies identifiability of the regression parameters since β = Σ−1
X γ, where

β = (β1, . . . , βp)
T and γ = (Cov(Y,X (1)) . . . ,Cov(Y,X (p)))T . Moreover, the following mild

assumption is crucial for what follows. It is a condition on the structure of βj (j = 1, . . . , p):
to do so, we will use the framework where the non-zero coefficients are fixed realizations
from a probability distribution.

(A2) Denote the active set by A ⊆ {1, . . . p} and by AC its complement. The regression
coefficients satisfy:

βj = 0 for j ∈ AC ,

{βj ; j ∈ A} ∼ f(b)db,

where f(·) denotes a density in (a subset of) Rpeff , peff = |A|, of an absolutely
continuous distribution with respect to Lebesgue measure.

Assumption (A2) says that the regression coefficients are either equal to zero or (fixed)
realizations from an absolutely continuous distribution with respect to Lebesgue measure.
Once the βj ’s are realized, we fix them such that they can be considered as deterministic
in the Gaussian linear model (1).

Definition 1. (partial faithfulness)
The Gaussian linear model (1) satisfies the weak partial faithfulness assumption if and
only if

Parcor(Y,X(j)|X(S)) = 0 =⇒ βj = 0,

for j ∈ {1, . . . , p} and S ⊆ {1, . . . , p} \ j; and it satisfies the strong partial faithfulness

assumption if and only if

Parcor(Y,X(j)|X(S)) = 0 =⇒ Parcor(Y,X (j)|X(S′)) = 0

for all S ′ with {1, . . . , p} \ j ⊇ S ′ ⊇ S,

for j ∈ {1, . . . , p} and S ⊆ {1, . . . , p} \ j.

Theorem 1. Consider the Gaussian linear model in (1) satisfying assumptions (A1) and
(A2). Then, the weak and strong partial faithfulness assumptions hold, almost surely (with
respect to the distribution generating the non-zero regression coefficients, see assumption
(A2)).
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A proof is given in the Appendix. Theorem 1 says that failure of partial faithfulness
will have probability zero (i.e. Lebesgue measure zero). Our result is in the spirit of a
result by Spirtes et al. (2000, Th. 3.2), saying that non-faithful Gaussian distributions
for a directed acyclic graph have Lebesgue measure zero. To appreciate such results,
consider the setting of our Theorem 1: the regression coefficients having values zero can
arise in an arbitrary order (and they do concentrate on the value 0) and only the non-zero
coefficients are required to arise from an absolutely continuous probability distribution
where concentration on some particular value does not happen.

The concept of faithful distributions is often used in the graphical modeling literature.
There, conditional dependencies of a probability distribution P can be inferred from a
graph thanks to some Markov condition. In general, the distribution P may include other
conditional independence relations than those entailed by or derived from the Markov
condition. If that is not the case, i.e. if all conditional dependencies can be read off
the graph, the distribution is called faithful, see Spirtes et al. (2000). In the case of a
Gaussian graphical model where the corresponding distribution P is multivariate Gaussian,
faithfulness implies the property in Definition 1 among all the variables: since we focus
only on partial correlations between the response Y and any other covariate X (j) (but
not the partial correlation between say X (j) and X(k) (j 6= k)), we use in Definition 1 the
terminology of partial faithfulness. A consequence of partial faithfulness is as follows.

Proposition 1. Consider the Gaussian linear model (1) satisfying the weak partial faith-
fulness condition. Then,

Parcor(Y,X(j)|X(S)) 6= 0 for all S ⊆ {1, . . . , p} \ j ⇐⇒ βj 6= 0,

for j ∈ {1, . . . , p}.

A proof is given in the Appendix. Proposition 1 shows that an effective variable, which
is an element of the active set A = {j;βj 6= 0} has a stronger interpretation in the sense
that all corresponding partial correlations are different from zero when conditioning on
any subset S ⊆ {1, . . . , p} \ j. In many applications, this is a desirable property, and a
stronger concept for association which is linked more closely to some notion of causality
(Spirtes et al., 2000); more details are given in Section 4.

2.1 Correlation screening using weak partial faithfulness

If partial faithfulness holds, see Definition 1, we can exploit some immediate consequences
for construction of algorithms for variable selection. Weak partial faithfulness says:

Parcor(Y,X(j)|X(S)) = 0 =⇒ βj = 0.

The easiest relation, in particular when it comes to estimation, is with S = ∅:

Cor(Y,X(j)) = 0 =⇒ βj = 0. (2)

We can do screening according to marginal correlations and build a first set of candidate
active variables

A[1] = {1 ≤ j ≤ p; Cor(Y,X (j)) 6= 0}.
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We call this the step1 active set or the correlation screening active set. We know by
(2) that variables with corresponding correlations being equal to zero will be non-active,
i.e. they can be dropped from the model. In other words, the true underlying active set
A = {j; βj 6= 0} satisfies

A ⊆ A[1]. (3)

Such covariance screening may reduce the dimensionality of the problem already by a
substantial or even huge amount, and due to (3), we can use other variable selection
methods on the reduced set of variables A[1].

Furthermore, we can do screening with partial correlations of order one by using the
relation: for j ∈ A[1],

Parcor(Y,X(j)|X(k)) = 0 for some k 6= j =⇒ βj = 0. (4)

That is, for checking whether the jth covariate remains in the model, we would additionally
screen with all partial correlations of order one. As we will see in Section 3, it will be
sufficient to use only conditioning variables X (k) which are elements of A[1]. Screening
with partial correlations of order one using (4) leads to a smaller active set

A[2] = {j ∈ A[1]; Parcor(Y,X(j)|X(k)) 6= 0 for all k ∈ A[1], k 6= j} ⊆ A[1].

This new step2 active set A[2] may have reduced the dimensionality of the original problem
a lot. We can then continue screening using higher-order partial correlations, as will be
described in Section 3.1, and we end up with a nested sequence of stepm active sets

A[1] ⊇ A[2] ⊇ . . . ⊇ A[m] ⊇ . . . ⊇ A. (5)

A stepm active set A[m] can be used as dimensionality reduction and any favored
variable selection method could then be used for the reduced linear model with covariates
corresponding to indices in A[m]. Alternatively, we can use the sequence in (5) without
applying additional variable selection methods. This will be described in Section 3.

3 Estimation using the PC-algorithm

A simplified version of the PC-algorithm (Spirtes et al., 2000) can be used to compute the
sequence of stepm active sets in (5).

3.1 The population version of the PC-algorithm

We assume that perfect knowledge about partial correlations is available.
The value of m which is reached by the algorithm is defined as follows:

mreach = min{m; A[m+1] = A[m]} (6)

Proposition 2. For the Gaussian linear model (1) satisfying (A1) and weak partial
faithfulness, the population PCpop-algorithm identifies the true underlying active set, i.e.
A[mreach] = A = {1 ≤ j ≤ p; βj 6= 0}.

A proof is given in the Appendix. Note that weak partial faithfulness is implied by
assumption (A2). Correctness of the population PCpop-algorithm for directed acyclic
graphs has been given by Spirtes et al. (2000, Th. 5.1).
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Algorithm 1 The PCpop-algorithm

1: Start with the step0 active set A[0] = {1, . . . , p}.
2: Set m = 1. Do correlation screening, see (2), and build the step1 active set

A[1] = {1 ≤ j ≤ p; Cor(Y,X (j)) 6= 0}
3: repeat
4: m = m + 1. Construct the stepm active set:

A[m] = { j ∈ A[m−1];

Parcor(Y,X(j)|X(S)) 6= 0, for all S ⊆ A[m−1] \ {j} with |S| = m − 1}.

5: until the stepm active sets do not change anymore.

3.2 Sample version of the PC-algorithm

For finite samples, we need to estimate partial correlations. The sample partial correla-
tion ρ̂Y,j|S = P̂arcor(Y,X(j)|X(S)) and ρ̂i,j|S = P̂arcor(X(i), X(j)|X(S)) can be calculated
recursively by using the following identity: for some k ∈ S,

ρ̂Y,j|S =
ρ̂Y,j|S\k − ρ̂Y,k|S\kρ̂j,k|S\k√
(1 − ρ̂2

Y,k|S\k)(1 − ρ̂2
j,k|S\k)

.

For testing whether a partial correlation is zero or not, we apply Fisher’s Z-transform

Z(Y, j|S) =
1

2
log

(
1 + ρ̂Y,j|S

1 − ρ̂Y,j|S

)
. (7)

Classical decision theory yields then the following rule when using the significance level
α. Reject the null-hypothesis H0(Y, j|S) : ρY,j|S = 0 against the two-sided alternative

HA(Y, j|S) : ρY,j|S 6= 0 if
√

n − |S| − 3|Z(Y, j|S)| > Φ−1(1 − α/2), where Φ(·) denotes
the cdf of N (0, 1).

The sample version of the PC-algorithm is almost identical to the population version
in Section 3.1.

The PC-algorithm

Run the PCpop-algorithm as described in Section 3.1 but replace in steps 2 and 4 of
Algorithm 1 the statements about Parcor(Y,X (j)|X(S)) 6= 0 (including S = ∅) by

√
n − |S| − 3|Z(Y, j|S)| > Φ−1(1 − α/2).

The only tuning parameter of the PC-algorithm is α, the significance level for testing
partial correlations. The analogue to the reached value of m in (6) is denoted by m̂reach.

The computational complexity of the PC-algorithm is difficult to evaluate exactly, but
the worst case is bounded by

O(npm̂reach) which is with high probability bounded by O(nppeff), (8)

where peff = |A|, cf. Kalisch and Bühlmann (2007). Thus, the PC-algorithm is polynomial
in p. In fact, the bound in (8) is often very loose and we can easily use the algorithm for
problems where p ≈ 100 − 5′000, as demonstrated in Section 6.
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4 Failure of partial faithfulness and measures of association

By Theorem 1, failure of partial faithfulness happens for very specific parameter constel-
lations in the linear model (1), i.e. the non-zero coefficients do not arise from a continuous
probability distribution. We give two examples.

Example 1. Consider a Gaussian linear model

Y = X(1) − X(2) + ε,

X(2) = X(1) + γ,

where X(1), γ, ε are i.i.d. ∼ N (0, σ2). This is a linear model as in (1) with a specific
parameter constellation for the regression parameters. It can be easily calculated that

Cor(Y,X(1)) = 0, Parcor(Y,X (1)|X(2)) 6= 0,

and hence, weak partial faithfulness fails to hold. We may understand this also by writing
the model in a different form by simply substituting X (2) = X(1) + γ:

Y = −γ + ε.

Example 2. Consider a Gaussian moving average model from time series:

Xt = θ1εt−1 + εt, t ∈ Z,

where {εt; t ∈ Z} is a sequence of i.i.d. variables εt ∼ N (0, σ2), and |θ1| < 1 a parameter.
In terms of (auto-)regression, the model can be written as

Xt =

∞∑

j=1

(−θ1)
jXt−j + εt, t ∈ Z

and hence, using Y = Xt, this is a linear model with p = ∞. We focus only on three
variables {Y = Xt, Xt−1, Xt−2} corresponding to one response and two covariates. It is
well known that

Cor(Y,Xt−2) = Cor(Xt, Xt−2) = 0, Parcor(Y,Xt−2|Xt−1) = Parcor(Xt, Xt−2|Xt−1) 6= 0,

(Brockwell and Davis, 1991, cf.). Thus, this is another example where weak partial faith-
fulness does not hold.

The PC-algorithm would fail in both examples: it would drop the variable X (1) in
Example 1 or Xt−2 in Example 2 from the active set because the corresponding correlation
is zero. The reason for failure though is - from a certain perspective - not undesirable.
In fact, as described below in the continuation of Examples 1 and 2, there is no causal
relation between the variables Y and X (1) (Example 1) or Y and Xt−2 (Example 2), in the
sense of the intervention framework with the do(·)-operator from Pearl (2000). Therefore,
in a causal sense, the PC-algorithm would correctly declare no relation.
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The following definitions of associations between the response Y and some of the
covariates X(j) are useful:

A = {j; Parcor(Y,X (j)|X({1,...,p}\j)) 6= 0} = {j; βj 6= 0},
Astrong = {j; Parcor(Y,X (j)|X(S)) 6= 0 for all S ⊆ {1, . . . , p} \ j},
Astrong−endo = max{B ⊆ {1, . . . , p}; Parcor(Y,X (j)|X(S)) 6= 0 for all j ∈ B and all S ⊆ B \ j}.

The set A is the usual active set from regression containing the covariates having regression
coefficients different from zero; the set Astrong contains associations with a stronger notion,
requiring that partial correlations remain non-zero when conditioning on any subset of
covariates; and finally, the set Astrong−endo requires that partial correlations remain zero
when conditioning on any subset of “endogenous” covariates which are associated with
the response Y . Because there are fewer conditioning sets involved in A or Astrong−endo

than in Astrong, the following holds:

Astrong ⊆ A, Astrong ⊆ Astrong−endo. (9)

Furthermore,

for weakly partial faithful distributions: Astrong = Astrong−endo = A. (10)

The equality A = Astrong follows from Proposition 1, and the equality Astrong−endo =
A follows exactly as in the proof of Proposition 1. For non-faithful distributions, the
equalities in (10) fail.

In general (for non-faithful distributions), the notions of associations in Astrong and
Astrong−endo are more of a causal nature than in A. In fact, Astrong−endo is in the two
Examples a strong enough measure for causality.

Example 1 (continued)
For the linear model in Example 1, it is easy to see that Astrong = Astrong−endo = {2}. That
is, only the second covariate X (2) is strongly associated with Y . In addition, if assuming
a directed acyclic graph as in Figure 1 for generating the model, Astrong = Astrong−endo

coincides with the set of causal variables in the sense of the do(·) operator from Pearl
(2000). That is, for the distribution of Y with and without intervention, P (Y |do(X (1) =
u)) = P (Y ) for all values u while P (Y |do(X (2) = u)) 6= P (Y ) for some value u.

Example 2 (continued)
For the moving average model in Example 2, it is again straightforward to derive that
Astrong = Astrong−endo = {t − 1}. That is, only the first lagged variable Xt−1 is strongly
associated with Y = Xt. And as for Example 1, by using the directed acyclic graph as in
Figure 1 for generating the model, Astrong = Astrong−endo coincides with the set of causal
variables in the sense of the do(·) operator from Pearl (2000). That is, for the distribution
of Y = Xt with and without intervention, P (Y |do(Xt−2 = u)) = P (Y ) for all values u
while P (Y |do(Xt−1 = u)) 6= P (Y ) for some value u.

The following holds in the context of potentially non-faithful distributions.

Proposition 3. Consider the Gaussian linear model (1) satisfying (A1). Then, the pop-
ulation PCpop-algorithm identifies Astrong−endo, i.e. A[mreach] = Astrong−endo.
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(a) Example 1 (b) Example 2

Figure 1: Directed acyclic graphs corresponding to Examples 1 and 2.

The proof of Proposition 3 is straightforward since the definition of Astrong−endo coin-
cides with the concept of the PCpop-algorithm which looks for the largest set such that
all partial correlations, when conditioning on variables from that set, are non-zero. We
summarize that even when partial faithfulness fails, the PC-algorithm is appropriate for
inferring strong-endogenous associations or “causal” structures.

5 Asymptotic consistency in high dimensions

We will show that the PC-algorithm from Section 3.2 is asymptotically consistent for
variable selection, even if p is much larger than n but assuming that the true underlying
linear model is sparse.

5.1 Consistency with faithful distributions

We consider the Gaussian linear model in (1). To capture high-dimensional behavior,
we will let the dimension grow as a function of sample size: thus, p = pn and also the
distribution of

(Y,X) ∼ Pn = Npn+1(µY,X;n,ΣY,X;n)

changes with n which includes that the regression coefficient vectors β = βn are depending
on n. Our assumptions are as follows.

(B1) The distribution Pn satisfies the weak partial faithfulness condition (see Definition
1) and assumption (A1) for all n.

(B2) The dimension pn = O(na) for some 0 ≤ a < ∞.

(B3) The cardinality of the active set peffn = |An| = |{1 ≤ j ≤ pn; βj,n 6= 0}| satisfies:
peffn = O(n1−b) for some 0 < b ≤ 1.

(B4) The partial correlations Parcorn(Y,X(j)|X(S)) = ρn(Y, j|S) satisfy:

inf{|ρn(Y, j|S)|; 1 ≤ j ≤ pn, S ⊆ {1, . . . , pn} \ j with ρn(Y, j|S) 6= 0} ≥ cn,

c−1
n = O(nd) for some 0 < d < b/2,

sup
n,j,S⊆{1,...,pn}\j

|ρn(Y, j|S)| ≤ M < 1,

where 0 < b ≤ 1 is as in (A3).
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Assumption (B1) is a mild assumption: the inclusion of (A1) is very weak and partial
faithfulness follows from assuming (A2) in Section 2. Assumption (B2) allows for an
arbitrary polynomial growth of dimension as a function of sample size, that is, high-
dimensionality while (B3) is a sparseness assumption in terms of the number of effective
variables. Assumption (B4) is a regularity condition, saying that the non-zero partial
correlations have to be of larger order than 1/

√
n. Without such a condition, one gets

into the domain of super-efficiency, e.g. the behavior of the Hodges-Lehmann estimator.
Assumptions (B3) and (B4) are rather minimal: note that with b = 1 in (B3), for example
fixed peffn = peff < ∞, the partial correlations can decay as n−1/2+ε for any 0 < ε ≤ 1/2.
If the dimension p is fixed (with fixed distribution P in the Gaussian linear model), (B2)
and (B3) hold and (B1) and the second part of (B4) remain as the only conditions.

Denote the active set by An = {1 ≤ j ≤ pn : βj,n 6= 0} and by Ân(α) the estimate
from the PC-algorithm in Section 3.2 with significance level α.

Theorem 2. Consider the Gaussian linear model (1) and assume (B1)-(B4). Then, there
exists αn → 0 (n → ∞), see below, such that the PC-algorithm satisfies:

P[Ân(α) = An]

= 1 − O(exp(−Cn1−2d)) → 1 (n → ∞) for some 0 < C < ∞,

where d > 0 is as in (B4).

A proof is given in the Appendix. It should be noted that for distributions which
satisfy the weak partial faithfulness condition, as required by assumption (B1), the strong
and the usual measures of association agree, i.e. Astrong,n = Astrong−endo,n = An and
hence, the PC-algorithm consistently infers the strong associations. A choice for the value
of the significance level, leading to consistency, is αn = 2(1−Φ(n1/2cn/2)) which depends
on the unknown lower bound of partial correlations in (B4).

5.1.1 Comparison of conditions

It is interesting to compare our conditions with results on `1-penalized estimation and
versions thereof for variable selection. Note that we compare conditions for methods
which are feasible to compute for high-dimensional problems.

For the Lasso, Meinshausen and Bühlmann (2006) prove that a so-called “neighborhood
stability” condition is sufficient and “almost” necessary for consistent variable selection
(the word “almost” refers to the fact that a strict inequality “<” appears in the sufficient
condition whereas for necessity, the corresponding relation is a “≤” relation). Zou (2006)
and Zhao and Yu (2006) give a different, equivalent condition which is termed in the latter
work the “irrepresentable” condition. We point out that the neighborhood stability or
irrepresentable condition can quite easily fail to hold which, due to the “almost” necessity
of the condition, implies inconsistency of the Lasso for variable selection.

In fact, inconsistency of the Lasso typically occurs because of over-estimation, i.e. the
Lasso selects too many variables. This has been made more precise with asymptotic results
on the `1- or `2-norm

‖β̂ − β‖q (q = 1, 2), (11)
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see Bunea et al. (2007); Zhang and Huang (2007); van de Geer (2007); Meinshausen
and Yu (2006). Also Candes and Tao (2007) prove, under restrictive conditions on the
design, an `2-norm result for the Dantzig selector which is another penalized least squares
estimation algorithm. If the `q-norm in (11) goes to zero, it then must hold (under
some conditions for the size of the non-zero coefficients) that Â = {j; β̂j 6= 0} ⊇ A.
Furthermore, an additional stage of thresholding or using the more sophisticated adaptive
Lasso (Zou, 2006) yield consistency of such two-stage procedures (Meinshausen and Yu,
2006; Huang et al., 2006). All of these works assume some conditions on either the minimal
eigenvalues of the empirical covariance of the design, the coherence of the fixed design
or the population correlations of the random design: these quantities measure the “ill-
posedness” or the “degree of linear dependence” of the high-dimensional design matrix.
Some of these conditions are substantially weaker than the neighborhood stability or the
irrepresentable condition mentioned above.
Our conditions here, if one is willing to assume (A2), are again substantially weaker as
we require only (A1) regarding the regularity of the (random) design matrix (assumption
(B4) is mainly for the magnitude of partial correlations rather than correlations among
columns of the design matrix): we do not need any conditions on coherence or eigenvalues
of Gram-submatrices.

5.2 Consistency with non-faithful distributions

We have discussed in Proposition 3 that the PCpop-algorithm identifies the set Astrong−endo

from (10) which represents a more “causal” notion of association than the usual active
set A. The asymptotic arguments in the non-faithful case are very similar to the analysis
before. We assume:

(C1) The distribution Pn satisfies assumption (A1) for all n.

(C2) as assumption (B2).

(C3) The cardinality of set Astrong−endo;n satisfies: |Astrong−endo;n| = O(n1−b) for some
0 < b ≤ 1.

(C4) as assumption (B4).

Theorem 3. Consider the Gaussian linear model (1) and assume (C1)-(C4). Then, there
exists αn → 0 (n → ∞), see below, such that the PC-algorithm satisfies:

P[Ân(α) = Astrong−endo;n]

= 1 − O(exp(−Cn1−2d)) → 1 (n → ∞) for some 0 < C < ∞,

where d > 0 is as in (C4).

Theorem 3 follows from Proposition 3 and analogous to the proof of Theorem 2. A
possible choice of the tuning parameter is α = αn = 2(1 − Φ(n1/2cn/2)).
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5.3 Consistency for correlation screening

For correlation screening, see formula (3), we do not require any sparsity. Related to
our approach of correlation screening is the “Sure independence screening” by Fan and
Lv (2007), but our reasoning, assumptions and mathematical derivations via weak partial
faithfulness are very different. We assume:

(D1) as assumption (C1).

(D2) as assumption (B2).

(D3) as assumption (B4) but for marginal correlations Cor(Y,X (j)) = ρn(Y, j) only.

As pointed out already, it is interesting to note that we do not make any assumption on
sparsity.

Denote by Â[1]
n (α) the correlation screening active set estimated from data using sig-

nificance level α (i.e. the second step in the sample version of the PC-algorithm) and by
Astrong−endo;n, Astrong;n the set of variables from the stronger notions of associations as
described in Section 4.

Theorem 4. Consider the Gaussian linear model (1) and assume (D1)-(D3). Then, there
exists αn → 0 (n → ∞), see below, such that:

P[Â[1]
n (α) ⊇ Astrong−endo,n]

= 1 − O(exp(−Cn1−2d)) → 1 (n → ∞) for some 0 < C < ∞,

where d > 0 is as in (D3).

A proof is given in the Appendix. We point out that Astrong−endo;n ⊇ Astrong;n,
see formula (9). Moreover, for weakly partial faithful distributions, i.e. assuming (B1)

instead of (D1), Theorem 4 says that P[Â[1]
n (α) ⊇ An] → 1 (n → ∞). A possible choice

of α is αn = 2(1 − Φ(n1/2cn/2)). As pointed out above, we do not make any assumptions
on sparsity. However, for non-sparse problems, many correlations may be non-zero and
hence, Â[1] could still be large, e.g. almost as large as the full set {1 ≤ j ≤ p}, and no
effective dimensionality reduction would happen.

6 Numerical results

We analyze the variable selection properties using simulated and some high-dimensional
real data: we consider the classical association target only, namely the active set A =
{j; βj 6= 0}. This enables a fair comparison of our PC-method with various versions of `1-
penalized approaches. In addition to reporting on goodness of fit measures for estimating
associations, we give an overview of the runtime of the different methods.

6.1 ROC analysis

We evaluate here the performance of the methods using ROC curves which measure the
capacities for variable selection, independently from the issue to select good tuning param-
eters. We compare our simplified version of the PC-algorithm (PC, our own R-package
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pcalg) with the Lasso using the LARS algorithm (Efron et al., 2004) (LARS, R-package
lars) and with the Elastic Net (Zou and Hastie, 2005) (ENET, R-package elasticnet).
For the latter, we vary the `1-penalty parameter only while keeping the `2-penalty pa-
rameter fixed at the default value from the R-package enet to construct the ROC curve.
In the ROC plots to be followed, horizontal and vertical bars indicate 95%-confidence
intervals for the false positive rate (FPR) and the true positive rate (TPR), respectively;
definitions of FPR and TPR are given in Section 6.2. In our PC-algorithm, the proposed
default value for the tuning parameter is α = 0.05: its performance is indicated by the
intersection of a vertical line and the ROC curve.

We simulate data according to the Gaussian linear model (1) having p covariates with
µX = 0 and covariance matrix Cov(X (i), X(j)) = ΣX;i,j = ρ|i−j|. The errors are generated
as in model (1). In order to generate values for β, we follow (A2): a certain number peff of
coefficients βj have a value different from zero. The values of the nonzero βjs are sampled
independently from a standard normal distribution and the indices of the nonzero βjs are
evenly spaced between 1 and p. We consider a low- and a high-dimensional setting as
follows:

Low-dimensional: p = 19, peff = 3, n = 100; ρ ∈ {0, 0.3, 0.6} with 1000 replicates

High-dimensional: p = 499, peff = 10, n = 100; ρ ∈ {0, 0.3, 0.6} with 300 replicates

6.1.1 Low Dimensional Case
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Figure 2: Low dimensional: p = 19, ρ = 0. Vertical line indicates performance of PC
using the default α = 0.05.

Results for the low-dimensional case are reported in Figures 2 to 4 which show a clear
pattern. For small false positive rates (FPR), our PC method is clearly dominating LARS
and ENET. If the correlation among the covariates increases, the performance of ENET

13



0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

PC
LARS
ENET

Figure 3: Low dimensional: p = 19, ρ = 0.3. Vertical line indicates performance of PC
using the default α = 0.05.
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Figure 4: Low dimensional: p = 19, ρ = 0.6. Vertical line indicates performance of PC
using the default α = 0.05.

gets worse, whereas the performances of PC and LARS don’t vary much. When focusing
on values of FPR arising from the default value for α in our method, PC outperforms
LARS and ENET by a large margin. Note that many application areas call for a small
FPR, as discussed also in Section 6.3.
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6.1.2 High Dimensional Case
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Figure 5: High dimensional: p = 499, ρ = 0. Vertical line indicates performance of PC
using the default α = 0.05.
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Figure 6: High dimensional: p = 499,ρ = 0.3. Vertical line indicates performance of PC
using the default α = 0.05.

For the high-dimensional case, the resulting ROC curves are given in Figures 5 to 7.
For small false positive rates (FPR), the difference between the methods is not very big.
LARS seems to perform best, while ENET is worst and PC is somewhere in between. For
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Figure 7: High dimensional: p = 499,ρ = 0.6. Vertical line indicates performance of PC
using the default α = 0.05.

larger FPR, this effect gets stronger. Up to the FPR which arises by the default value of
α = 0.05, PC is never significantly outperformed by either LARS or ENET.

6.1.3 Runtime

All calculations were done on a Dual Core Processor with 2.6 GHz and 32 GB RAM
running on Linux and using R 2.5.1. The processor times were averaged in the low and
high-dimensional example over 1000 and 300 replications, respectively. The average pro-
cessor times and standard errors are given in Table 1.

p ρ ave(tPC) [s] ave(tLARS) [s] ave(tENET ) [s]

19 0 0.004 (4e-5) 0.016 (3e-5) 0.024 (3e-5)
19 0.3 0.004 (4e-5) 0.016 (3e-5) 0.024 (3e-5)
19 0.6 0.005 (5e-5) 0.016 (3e-5) 0.024 (3e-5)

499 0 0.164 (0.003) 0.795 (0.006) 13.23 (0.03)
499 0.3 0.163 (0.002) 0.838 (0.007) 13.41 (0.03)
499 0.6 0.160 (0.002) 0.902 (0.006) 12.91 (0.02)

Table 1: Average runtime in seconds over 1000 and 300 repetitions for p = 19 and p = 499,
respectively. The runtimes for PC were measured using the default of α = 0.05 while LARS
and ENET compute a whole path of solutions.

We should avoid the conclusion that PC is faster than LARS or ENET since the
runtimes for PC were measured using the default of α = 0.05 only whereas LARS and
ENET compute a whole path of solutions. The purpose of Table 1 is to show that PC is
certainly feasible for high-dimensional problems. In addition, when using PC on say 10

16



different (small) values of α, the computation is about of the same order of magnitude
than LARS or ENET for the whole solution path.

6.2 Prediction Optimal Tuned Methods

We compare here different methods when using prediction optimal tuning. It is known
that the prediction-optimal tuned Lasso overestimates the true model (Meinshausen and
Bühlmann, 2006). The adaptive Lasso Zou (2006) and the relaxed Lasso Meinshausen
(2007) correct Lasso’s overestimation behavior. Furthermore, we use our simplified version
of the PC-algorithm for variable selection and use then the Lasso or the adaptive Lasso to
estimate coefficients for the sub-model selected by the PC-method. For simplicity, we do
not show results for the elastic net (which was found to be worse in terms of ROC-curves
than adaptive relaxed Lasso).

We are considering the following performance measures:

‖β̂ − β‖2
2 =

p∑

j=1

(β̂j − βj)
2 (MSE Coeff),

EX [(XT (β̂ − β))2] = (β̂ − β)T Σ(β̂ − β)), Σ = Cov(X) (MSE Pred),
p∑

j=1

I(β̂j 6= 0)I(βj 6= 0)/

p∑

j=1

I(βj 6= 0) (true positive rate (TPR)),

p∑

j=1

I(β̂j 6= 0)I(βj = 0)/

p∑

j=1

I(βj = 0) (false positive rate (FPR)). (12)

The methods are used as follows. Prediction optimal tuning is pursued with a val-
idation set having the same size as the training data. The Lasso is computed using
the lars-package from R. For the adaptive Lasso, we first compute a prediction-optimal
Lasso as initial estimator β̂init, and the adaptive Lasso is then computed with penalty
λ

∑p
j=1 |βj |/|β̂init,j | where λ is chosen again in a prediction-optimal way. The computa-

tions are done with the lars-package from R, using re-scaled covariates for the adaptive
step. The relaxed Lasso is computed with the relaxo-package from R. Our simplified
version of the PC-algorithm with the Lasso for estimating coefficients is straightforward
to do using the pcalg- and lars-packages from R: optimal tuning is with respect to the
α-parameter for the PC-algorithm and the penalty parameter for Lasso. For the simpli-
fied version of the PC-algorithm with the adaptive Lasso, we first compute the weights
wj as follows: wj = 0 if the variables has not been selected; and if the variable has been
selected, wj = minimum value of the test statistic

√
n − 3 − |S|Z(Y, j|S) (see Section

3.2) over all iterations of the PC-algorithm. Then, we compute the adaptive Lasso with
penalty λ

∑p
j=1 w−1

j |βj |, i.e. the weights for the adaptive step are from the PC-algorithm.

We simulate from a Gaussian linear model as in (1) with p = 1000, peff = 20, n = 100
and:

β1, . . . , β20 i.i.d. ∼ N (0, 1), β21 = . . . = β1000 = 0,

µX = 0, ΣX;i,j = 0.5|i−j|, σ2 = 1,
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Figure 8: Prediction optimal tuned methods. Boxplots of performance measures as
described in (12) and runtimes, based on 100 simulated model realizations. The PC-
algorithm with Lasso coefficient estimation (PCl), the PC-algorithm with adaptive Lasso
(PCal), Adaptive Lasso (al), Relaxed Lasso (r) and Lasso (l).

with 100 replicates.
Figure 8 displays the results. As expected, the Lasso is yielding too many false posi-

tives while the adaptive Lasso and the relaxed Lasso have much better variable selection
properties. The PC-based methods have clearly lowest false positive rates (FPR) while
paying a price in terms of power, the true positive rate (TPR), and in terms of mean
squared errors (MSE and prediction MSE).

In quite many applications, a low false positive rate is highly desirable even when
paying a price in terms of power. For example, in molecular biology where a covariate rep-
resents a gene, only a limited number of selected genes (covariates) can be experimentally
validated and hence, methods with a low false positive rate are preferred, in the hope that
most of the top-selected genes are relevant. This type of application is briefly sketched in
the next section.

6.3 Real Data: Riboflavin Production from Bacillus Subtilis

We consider a high-dimensional real dataset about riboflavin production in Bacillus Sub-
tilis, provided by DSM Nutritional Products. There is a continuous response variable Y
which measures the production rate of riboflavin, and there are p = 4088 covariates corre-
sponding to the expression levels of genes. One of the major goals is to genetically modify

18



Bacillus Subtilis in order to increase its production rate for riboflavin. An important step
to achieve this goal is to find some genes which are most relevant for the production rate.
We pursue this step by variable (i.e. gene) selection in a linear model.

We use the methods PC, LARS and ENET as for simulated data. We run PC on the
full data set, with various values of α. Then, we compute LARS and ENET and choose
the tuning parameters such that the same number of selected variables arise as for PC.
We show the results from a genetically homogeneous group of n = 72 individuals.

Table 2 indicates that LARS and ENET are more similar variable selection methods
than PC and any of those two. Thus, the PC-algorithm seems to extract information,
i.e. selects genes, in a “rather different” way than the penalized methods LARS and
ENET. We view this property as very desirable: for any large-scale problem, we want to
see different aspects of the problem by using different methods; and ideally, results from
different methods can be combined to obtain better results than what is achievable with
a single procedure. We remark that we still find a remarkable overlap of the few selected

α for PC selected var. PC-LARS PC-ENET LARS-ENET

0.001 3 0 0 2
0.01 4 2 1 3
0.05 5 2 1 3
0.15 6 3 2 3

Table 2: Variable selection for real dataset on riboflavin production from Bacillus Subtilis.
Number of selected variables (selected var.); number of variables which were selected from
both PC and LARS (PC-LARS), from both PC and ENET (PC-ENET) and from both
LARS and ENET (LARS-ENET).

genes among p = 4088 candidates and in fact, it is highly significant when calibrating with
a null-distribution which consists of pure random noise only.

7 Conclusions

The (simplified version of the) PC-algorithm is a very valuable method for inferring asso-
ciations in a high-dimensional (but sparse) linear model where the number of covariates
can greatly exceed the sample size. For weakly partial faithful distributions, and under
mild assumptions allowing for very ill-posed designs, we prove consistency for inferring the
covariates with corresponding regression coefficients being non-zero (Theorem 2). Further-
more, we show that partial faithful distributions arise quite naturally (Theorem 1). In
addition, even if the weak assumption about faithfulness fails to hold, we prove that the
PC-algorithm is consistent for some stronger notions of associations (Theorem 3) and we
describe in Section 4 some connections to the concept of causality.

We also provide an efficient implementation of our (simplified) PC-algorithm in the
R-package pcalg. The method is computationally feasible for high-dimensional problems
with thousands of covariates, and we illustrate some results on simulated and real data in
comparison to the Lasso and the Elastic Net.
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8 Appendix

Proof of Theorem 1:
Consider first the case for weak partial faithfulness. Then, Theorem 1 reads:

Cov(Y,X(j)|X(S)) = 0 for some S ⊆ {1, . . . , p} \ {j} =⇒ βj = 0. (13)

For proving (13), we use the contra-position and assume that βj 6= 0.
Then:

Cov(Y,X(j)|X(S)) =
∑

r∈A∩SC

βrΣX|S;r,j = βjVar(X(j)|X(S)) +
∑

r∈A∩SC ,r 6=j

βrΣX|S;r,j,

where A = {1 ≤ r ≤ p; βr 6= 0} and ΣX|S = Cov(X|X(S)) (which has degenerate
entries for indices in S). In the Gaussian case, conditional covariances are almost surely
constant (and equal the partial covariances), cf. Anderson (1984, Th. 2.5.1). Thus, the
first quantity on the right-hand side equals some deterministic real-valued number aj 6= 0
almost surely. Therefore, the only way that the covariance Cov(Y,X (j)|X(S)) would equal
zero would be:

∑

r∈A∩SC ,r 6=j

βrΣX|S;r,j + aj = 0 a.s.. (14)

But this cannot happen, because (14) describes a hyperplane for {βr; r ∈ A∩ SC , r 6= j}
whose probability is zero since the βr’s are from an absolutely continuous distribution
with respect to Lebesgue measure; i.e. the set of βr’s for which (14) holds has Lebesgue
measure zero. This proves (13).

For proving the statement about strong partial faithfulness, consider the model

Y =
∑

r∈S′∪j

γrX
(r) + η, (15)

where η is independent of {X (r); r ∈ S ′ ∪ j}. The proof is now analogous to (13) but
working with the model (15) where Parcor(Y,X (j)|X(S′)) = 0 is equivalent to γj = 0. In
addition, the non-zero regression coefficients are again realizations of a distribution which
is absolutely continuous with respect to Lebesgue measure. This completes the proof. 2

Proof of Proposition 1:
The implication “=⇒” obviously holds by considering the set S = {1, . . . , p} \ j.
For the other implication “⇐=” we use contra-position. Assume that Parcor(Y,X (j)|X(S)) =
0 for some S ⊆ {1, . . . , p} \ j, and we want to show that βj = 0. But this follows by defi-
nition of weak partial faithfulness. 2

Proof of Proposition 2:
By definition and weak partial faithfulness, A ⊆ A[mreach]. Thus, it remains to show that
A[mreach] ⊆ A.

Consider j ∈ A[mreach]. The value of mreach is such that Parcor(Y,X (j)|X(S)) 6= 0 for
all S ⊆ A[mreach] \ j ⊇ A \ j. In particular,

Parcor(Y,X(j)|X(A) \ j) 6= 0. (16)
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Suppose that βj = 0. Then, by definition of the linear model and the active set A,

Cov(Y,X(j)|X(A) \ j) = 0

which is a contradiction to (16). Hence, it must hold that βj 6= 0 and therefore A[mreach] ⊆
A. 2

Proof of Theorem 2:
The arguments are the same as for proving Theorem 1 in Kalisch and Bühlmann (2007).
We note here that for weakly partial faithful distributions, the active set An = Astrong;n

coincides with the strong associations (see formula (10)), and the latter coincides with the
skeleton of a directed acyclic graph (see Kalisch and Bühlmann (2007, formula (1))). 2

Proof of Theorem 4:
Denote by Zn(Y, j) the quantity as in (7) with S = ∅ and by zn(Y, j) its population
analogue. i.e. the Z-transformed correlation. An error occurs when screening the jth
variable if Zn(Y, j) has been tested to be zero but in fact zn(Y, j) 6= 0. We denote such an
error event by EII

j whose probability can be bounded as

sup
j

P[EII
j ] ≤ O(n) exp(−C1nc2

n),

for some 0 < C1 < ∞, see Kalisch and Bühlmann (2007, formula (17)) (no sparsity
assumption is used for this derivation). Thus, the probability of an error occurring in the
correlation screening procedure is bounded by

P[∪1≤pn
EII

j ] = O(pnn) exp(−C1nc2
n) = O(exp((1 + a) log(n) − C1n

1−2d))

= O(exp(−C2n
1−2d))

for some 0 < C2 < ∞. This completes the proof. 2
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