
Variable selection for high-dimensional models:

partial faithful distributions, strong associations

and the PC-algorithm
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Abstract

We consider the problem of variable selection in high-dimensional linear models
where the number of covariates greatly exceeds the sample size. In particular, we
present the concept of partially faithful distributions and discuss their role for in-
ferring associations between the response and the covariates. For partially faithful
distributions, a simplified version of the PC-algorithm (Spirtes et al., 2000), which
is computationally feasible even with thousands of covariates, yields consistency for
high-dimensional variable selection under rather mild conditions on the (random) de-
sign matrix. Our assumptions are of a different nature than coherence conditions
for penalty-based approaches like the Lasso: we make a simple assumption on the
structure of the regression coefficients to exclude adversarial cases. If partial faithful-
ness does not hold, we show that the PC-algorithm still consistently identifies some
strong associations which are related to notions of causality. We also provide an ef-
ficient implementation of our (simplified) PC-algorithm in the R-package pcalg and
demonstrate the method on simulated and real data.

1 Introduction

The variable selection problem for high-dimensional models has recently gained a lot of
attraction. A particular stream of research has focused on estimators and algorithms
whose computation is feasible and provably correct (Meinshausen and Bühlmann, 2006;
Zou, 2006; Zhao and Yu, 2006; Candès and Tao, 2007; van de Geer, 2008; Zhang and
Huang, 2008; Meinshausen and Yu, 2008; Huang et al., 2008; Bickel et al., 2008; Wasserman
and Roeder, 2008; Wainwright, 2006; Candès and Plan, 2007). As such, these methods
distinguish themselves very clearly from heuristic optimization of an objective function or
stochastic simulation or search, e.g. MCMC, which are often not really exploiting a high-
dimensional search space. Prominent examples of computationally feasible and provably
correct (w.r.t. computation) methods are penalty-based approaches, including the Lasso
(Tibshirani, 1996), the adaptive Lasso (Zou, 2006) or the Dantzig selector (Candès and
Tao, 2007).

We propose here a method for linear models which is “diametrically opposed” to
penalty-based schemes. Reasons to look at other approaches include: (i) from a prac-
tical perspective, it can be very valuable to have a “diametrically opposed” method in
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the tool-kit for high-dimensional data analysis, raising the confidence for relevance of vari-
ables if they have been selected by say two or more very different methods; (ii) it can
be worthwhile to infer stronger concepts of associations than what is obtained from the
usual regression coefficients; (iii) from a methodological and theoretical perspective, we
consider the framework of so-called partially faithful distributions which allows to build
up a hierarchical estimation scheme: the required mathematical assumptions are very dif-
ferent and not directly comparable to coherence assumptions for variable selection with
penalty-based methods which have been refined considerable over the last years, cf. Bickel
et al. (2008).

Our method is a simplification of the PC-algorithm (Spirtes et al., 2000) which has been
proposed for estimating directed acyclic graphs; the simplification arises because selecting
variables in a linear model is easier than assigning a directed association in a graphical
model. We prove consistency for variable selection in high-dimensional linear models
where the number of covariates can greatly exceed the sample size. For the ordinary
problem of inferring the non-zero regression coefficients, we introduce and assume the
framework of partially faithful distributions. Partial faithfulness is novel: it is vaguely
related to the faithfulness condition from graphical models (Spirtes et al., 2000, cf.), but it
distinguishes itself from the latter substantially enough so that a faithfulness assumption
doesn’t imply the partial faithfulness condition and vice-versa. We prove here that partial
faithfulness arises naturally in the context of (high-dimensional) linear models. Assuming
such partial faithfulness in a linear model, our simplified PC-algorithm is asymptotically
consistent under rather general designs; essentially, we only need that the variables are
identifiable in the population case, and there are no further restrictive conditions on the
coherence of the design. Furthermore, causal relations and stronger notions of associations
than what is represented by the regression coefficients can be important. In particular,
when faithfulness fails to hold, these concepts distinguish themselves very clearly from
the regression-type associations. We also prove that for non-faithful distributions, the
PC-algorithm is consistent for inferring some strong associations between the response
variable and the covariates.

Moreover, the PC-algorithm is computationally feasible in high-dimensional problems:
its computational complexity is crudely bounded by a polynomial in p, the dimension
of the covariate space, and we illustrate that our implementation in R (CRAN, 1997 ff.)
has about the same magnitude for computing time as the LARS-algorithm (Efron et al.,
2004). Our approach can also be adapted for preliminary reduction of the dimension of
the covariate space: we call it “correlation screening” which is equivalent to “sure inde-
pendence screening” by Fan and Lv (2008). In the context of partial faithful distributions,
the reasoning and mathematical assumptions are very different though.

Finally, we compare our PC-algorithm with the Lasso and the elastic net (Zou and
Hastie, 2005), and we demonstrate on some real data the usefulness of having “diametri-
cally opposed” methods for analyzing a high-dimensional data-set on riboflavin production
from bacillus subtilis.
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2 Linear models and partial faithfulness

We are considering here a class of probability distributions for linear models which satisfies
a so-called partial faithfulness condition. Such a condition will be crucial for identifying
the effective variables (in the sense of regression) with the PC-algorithm which is compu-
tationally feasible in the high-dimensional context.

Consider the random design linear model

X1, . . . , Xn i.i.d. with E[Xi] = µX , Cov(Xi) = ΣX ,

Yi|Xi independent for i = 1, . . . , n with

E[Yi|Xi] =

p∑

j=1

βjX
(j)
i , Var(Yi|Xi) ≡ σ2 (1)

for some parameters β1, . . . , βp ∈ Rp and σ2 ∈ R+. We have assumed here implicitly that

E|Yi|2 < ∞ and E|X(j)
i |2 < ∞ for all j = 1, . . . , p. First, we assume:

(A1) ΣX is strictly positive definite.

Note that (A1) implies identifiability of the regression parameters from the joint distribu-
tion of (X,Y ) since β = Σ−1

X γ, where β = (β1, . . . , βp)
T and γ = (Cov(Y,X (1)) . . . ,Cov(Y,X (p)))T .

Moreover, the following mild assumption on the structure of β is crucial for what follows.

(A2) Denote the active set by A ⊆ {1, . . . p} and by AC its complement. The regression
coefficients satisfy:

βj = 0 for j ∈ AC ,

for all S ⊆ A (S 6= ∅) : {βj ; j ∈ S} does not lie in a hyper-plane ⊂ R|S|.

A condition which ensures (A2) is within a framework where the non-zero coefficients are
fixed realizations from a probability distribution.

(A2’) The regression coefficients satisfy:

βj = 0 for j ∈ AC ,

{βj ; j ∈ A} ∼ f(b)db,

where f(·) denotes a density in (a subset of) Rpeff , peff = |A|, of an absolutely
continuous distribution with respect to Lebesgue measure.

Obviously, condition (A2’) implies (A2) except on a set (in Rpeff) having Lebesgue measure
zero. Assumption (A2’) says that the regression coefficients are either equal to zero or
(fixed) realizations from an absolutely continuous distribution with respect to Lebesgue
measure. Once the βj ’s are realized, we fix them such that they can be considered as
deterministic in the linear model (1). This framework is different but loosely related to a
Bayesian formulation treating the βj ’s as i.i.d. random variables from a prior distribution
which is a mixture of point mass at zero and a density with respect to Lebesgue measure.

Our assumptions (A1) and (A2) are rather mild in the following sense: the regression
coefficients having values zero can arise in an arbitrary way and only the non-zero coef-
ficients are restricted to exclude adversarial cases. Interestingly, also Candès and Plan
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(2007) make an assumption on the regression coefficients using the concept of random
sampling, i.e. their “generic S-sparse model”. Other than that, there are no immediate
deeper connections to our setting.

Denote by Parcor(Y,X (j)|X(S)) the partial correlation of Y and X (j) given {X(k); k ∈
S} (i.e. the population quantity) where S ⊆ {1, . . . , p}.

Definition 1. (partial faithfulness)
The linear model (1) satisfies the partial faithfulness assumption if and only if for every
j ∈ {1, . . . , p}:

Parcor(Y,X(j)|X(S)) = 0 for some S ⊆ {1, . . . , p} \ j =⇒ βj = 0.

Theorem 1. Consider the linear model in (1) satisfying assumptions (A1) and (A2).
Then, the partial faithfulness assumption holds.
When requiring assumption (A2’) instead of (A2), the partial faithfulness assumption holds
almost surely (with respect to the distribution generating the non-zero regression coeffi-
cients).

A proof is given in the Appendix. Theorem 1 with assumption (A2’) says that failure of
partial faithfulness will have probability zero (i.e. Lebesgue measure zero). This is in the
spirit of a result by Spirtes et al. (2000, Th. 3.2), saying that non-faithful distributions for
a directed acyclic graph have Lebesgue measure zero. However, there is no direct relation
between partial faithfulness and faithfulness (as mentioned earlier), and we do not work
with an assumption of requiring a directed acyclic graph structure.

A consequence of partial faithfulness is as follows.

Proposition 1. Consider the linear model (1) satisfying the partial faithfulness condition.
Then,

Parcor(Y,X(j)|X(S)) 6= 0 for all S ⊆ {1, . . . , p} \ j ⇐⇒ βj 6= 0,

for j ∈ {1, . . . , p}.

A simple proof is given in the Appendix. Proposition 1 shows that an effective variable,
which is an element of the active set A = {j;βj 6= 0} has a stronger interpretation in the
sense that all corresponding partial correlations are different from zero when conditioning
on any subset S ⊆ {1, . . . , p} \ j. In many applications, this is a desirable property, and a
stronger concept for association which is linked more closely to some notion of causality
(Spirtes et al., 2000); more details are given in Section 6.

2.1 Partial correlation screening using partial faithfulness

If partial faithfulness holds, see Definition 1, we can exploit some immediate consequences
for construction of algorithms for variable selection. We focus here on the population
version to understand the main ideas, while the finite-sample case is described in Section
3.2.

Partial faithfulness says:

Parcor(Y,X(j)|X(S)) = 0 for some S ⊆ {1, . . . , p} \ j =⇒ βj = 0.
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The easiest relation, in particular when it comes to estimation, is with S = ∅:

Cor(Y,X(j)) = 0 =⇒ βj = 0. (2)

We can do screening according to marginal correlations and build a first set of candidate
active variables

A[1] = {1 ≤ j ≤ p; Cor(Y,X (j)) 6= 0}.

We call this the step1 active set or the correlation screening active set. We know by
(2) that variables with corresponding correlations being equal to zero will be non-active,
i.e. they can be dropped from the model. In other words, the true underlying active set
A = {j; βj 6= 0} satisfies

A ⊆ A[1]. (3)

Such covariance screening may reduce the dimensionality of the problem already by a
substantial or even huge amount, and due to (3), we can use other variable selection
methods on the reduced set of variables A[1].

Furthermore, we can do screening with partial correlations of order one by using the
relation: for j ∈ A[1],

Parcor(Y,X(j)|X(k)) = 0 for some k 6= j =⇒ βj = 0. (4)

That is, for checking whether the jth covariate remains in the model, we would additionally
screen with all partial correlations of order one. As we will see in Section 3, it will be
sufficient to use only conditioning variables X (k) which are elements of A[1]. Screening
with partial correlations of order one using (4) leads to a smaller active set

A[2] = {j ∈ A[1]; Parcor(Y,X(j)|X(k)) 6= 0 for all k ∈ A[1], k 6= j} ⊆ A[1].

This new step2 active set A[2] may have reduced the dimensionality of the original problem
a lot. We can then continue screening using higher-order partial correlations, as will be
described in Section 3.1, and we end up with a nested sequence of stepm active sets

A[1] ⊇ A[2] ⊇ . . . ⊇ A[m] ⊇ . . . ⊇ A. (5)

A stepm active set A[m] can be used as dimensionality reduction and any favored
variable selection method could then be used for the reduced linear model with covariates
corresponding to indices in A[m]. Alternatively, we can use the sequence in (5) without
applying additional variable selection methods. This will be described in Section 3.

3 Estimation using the PC-algorithm

A simplified version of the PC-algorithm (Spirtes et al., 2000) can be used to compute the
sequence of stepm active sets in (5).
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Algorithm 1 The PCpop-algorithm.

1: Start with the step0 active set A[0] = {1, . . . , p}.
2: Set m = 1. Do correlation screening, see (2), and build the step1 active set

A[1] = {1 ≤ j ≤ p; Cor(Y,X (j)) 6= 0}
3: repeat
4: m = m + 1. Construct the stepm active set:

A[m] = { j ∈ A[m−1];

Parcor(Y,X(j)|X(S)) 6= 0, for all S ⊆ A[m−1] \ {j} with |S| = m − 1}.

5: until |A[m]| ≤ m.

3.1 The population version of the PC-algorithm

To explain some key ideas, we assume first that perfect knowledge about partial correla-
tions is available. The population version of the PC-algorithm is displayed in Algorithm
1 whereas the finite-sample version is described in Section 3.2.

The value of m which is reached in Algorithm 1 is defined as follows:

mreach = min{m; |A[m]| ≤ m}. (6)

Proposition 2. For the linear model (1) satisfying (A1) and partial faithfulness, the
population PCpop-algorithm identifies the true underlying active set, i.e. A[mreach] = A =
{1 ≤ j ≤ p; βj 6= 0}.

A proof is given in the Appendix. Note that partial faithfulness is implied by assump-
tion (A2) or (A2’). Correctness of the population PCpop-algorithm for directed acyclic
graphs has been stated in Spirtes et al. (2000, Th. 5.1).

3.2 Sample version of the PC-algorithm

For finite samples, we need to estimate partial correlations. The sample partial correla-
tion ρ̂Y,j|S = P̂arcor(Y,X(j)|X(S)) and ρ̂i,j|S = P̂arcor(X(i), X(j)|X(S)) can be calculated
recursively by using the following identity: for some k ∈ S,

ρ̂Y,j|S =
ρ̂Y,j|S\k − ρ̂Y,k|S\kρ̂j,k|S\k√
(1 − ρ̂2

Y,k|S\k)(1 − ρ̂2
j,k|S\k)

.

For testing whether a partial correlation is zero or not, we apply Fisher’s Z-transform

Z(Y, j|S) =
1

2
log

(
1 + ρ̂Y,j|S

1 − ρ̂Y,j|S

)
. (7)

Classical decision theory in the Gaussian case yields then the following rule when using
the significance level α. Reject the null-hypothesis H0(Y, j|S) : ρY,j|S = 0 against the

two-sided alternative HA(Y, j|S) : ρY,j|S 6= 0 if
√

n − |S| − 3|Z(Y, j|S)| > Φ−1(1 − α/2),
where Φ(·) denotes the cdf of N (0, 1). The Gaussian distribution serves here as a reference:
even in absence of a Gaussian distribution, the rule above is a thresholding operation.
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The sample version of the PC-algorithm is almost identical to the population version
in Section 3.1.

The PC-algorithm

Run the PCpop-algorithm as described in Section 3.1 but replace in steps 2 and 4 of
Algorithm 1 the statements about Parcor(Y,X (j)|X(S)) 6= 0 (including S = ∅) by

√
n − |S| − 3|Z(Y, j|S)| > Φ−1(1 − α/2).

The resulting estimated set of variables is denoted by Â(α) = Âm̂reach(α), where
m̂reach is the estimated version of the quantity in (6).

The only tuning parameter α of the PC-algorithm is the significance level for testing
partial correlations. The computational complexity of the PC-algorithm is difficult to
evaluate exactly, but the worst case is polynomial in p. In fact, we can easily use the
algorithm for problems where p ≈ 100 − 5′000, as demonstrated in Section 5. Finally, it
is worth pointing out that the PC-algorithm is very different from a greedy forward (or
backward) scheme: the PC-algorithm screens many correlations or partial correlations at
once and may delete many variables at once: it is a more sophisticated pursuit of variable
screening than the marginal correlation screening approach in Fan and Lv (2008).

4 Asymptotic consistency in high dimensions

We will show here that the PC-algorithm from Section 3.2 is asymptotically consistent for
variable selection, even if p is much larger than n but assuming that the true underlying
linear model is sparse.

4.1 Consistency with partially faithful distributions

We consider the linear model in (1) and for simplifying some asymptotic calculations,
we assume a joint Gaussian distribution (see (B1) below). To capture high-dimensional
behavior, we will let the dimension grow as a function of sample size and thus, p = pn and
also the distribution of (Y,X) and the regression coefficient vector change with n. Our
assumptions are as follows.

(B1) The distribution

(X,Y ) ∼ Pn = Npn+1(µX,Y ;n,ΣX,Y ;n)

is Gaussian and Pn satisfies the partial faithfulness condition (see Definition 1) and
assumption (A1) for all n.

(B2) The dimension pn = O(na) for some 0 ≤ a < ∞.

(B3) The cardinality of the active set peffn = |An| = |{1 ≤ j ≤ pn; βj,n 6= 0}| satisfies:
peffn = O(n1−b) for some 0 < b ≤ 1.
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(B4) The partial correlations Parcor(Y,X (j)|X(S)) = ρ(Y, j|S) = ρn(Y, j|S) satisfy:

inf{|ρn(Y, j|S)|; 1 ≤ j ≤ pn, S ⊆ {1, . . . , pn} \ j with ρn(Y, j|S) 6= 0} ≥ cn,

c−1
n = O(nd) for some 0 < d < b/2,

where 0 < b ≤ 1 is as in (A3).

(B5) The partial correlations Parcorn(Y,X(j)|X(S)) = ρn(Y, j|S) and Parcorn(X(i), X(j)|X(S)) =
ρn(i, j|S) satisfy:

sup
n,j,S⊆{1,...,pn}\j

|ρn(Y, j|S)| ≤ M < 1, sup
n,i,j,S⊆{1,...,pn}\{i,j}

|ρn(i, j|S)| ≤ M < 1.

The Gaussian assumption in (B1) is not crucial, see also Remark 1 below. A more detailed
discussion of assumptions (B1)-(B5) is given in Section 4.1.1.

Denote by Ân(α) the estimated set of variables from the PC-algorithm in Section 3.2
with significance level α.

Theorem 2. Consider the linear model (1) and assume (B1)-(B5). Then, there exists
αn → 0 (n → ∞), see below, such that the PC-algorithm satisfies:

P[Ân(αn) = An] = 1 − O(exp(−Cn1−2d)) → 1 (n → ∞) for some 0 < C < ∞,

where d > 0 is as in (B4).

A proof is given in the Appendix. A choice for the value of the significance level leading
to consistency is αn = 2(1 −Φ(n1/2cn/2)) which depends on the unknown lower bound of
partial correlations in (B4).

Remark 1. For non-Gaussian distributions, Theorem 2 still holds when assuming some
moment assumptions, such as supn E|Y |r < ∞, supj,n E|X(j)|r < ∞ for some r ≥ 2, and
making more stringent requirements for the numbers a, b and d in (B2),(B3) and (B4). In
particular, if s is small, the polynomial growth of the dimensionality p = pn cannot be too
fast. The main difference to the proof of Theorem 2 is the fact that an exponential bound as
in (16) is to be replaced by a polynomial bound using Rosenthal’s inequality: Propositions
4 and 5 in Wille and Bühlmann (2006) serve as a sketch for the complete argument.

4.1.1 Discussion of conditions

There is a substantial amount of recent work on high-dimensional and computationally
tractable variable selection, most of it considering (versions of) the Lasso (Tibshirani,
1996) or also the Dantzig selector (Candès and Tao, 2007). None of these two methods
exploits partial faithfulness and thus, it is interesting to discuss our conditions with a view
towards other established results.

First, we remark that most other works on high-dimensional variable selection make
assumptions on the design matrix but allow for any sparse parameter vector β; an excep-
tion is the work by Candès and Plan (2007). Here, our assumption (A2) or (A2’) makes
some restrictions on the non-zero components of β but allowing for designs where e.g. the
Lasso is inconsistent, see Example 1 below.
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For the Lasso, Meinshausen and Bühlmann (2006) prove that a so-called “neighborhood
stability” condition is sufficient and “almost” necessary for consistent variable selection
(the word “almost” refers to the fact that a strict inequality “<” appears in the sufficient
condition whereas for necessity, the corresponding relation is a “≤” relation). Zou (2006)
and Zhao and Yu (2006) give a different, equivalent condition: in the latter work, it is
called the “irrepresentable” condition. We point out that the neighborhood stability or
irrepresentable condition can quite easily fail to hold (e.g. in Example 1 below) which, due
to the “almost” necessity of the condition, implies inconsistency of the Lasso for variable
selection. For details about the irrepresentable condition, we refer to Zhao and Yu (2006).
The adaptive Lasso (Zou, 2006) or other two-stage Lasso and thresholding procedures
(Meinshausen and Yu, 2008) yield consistent variable selection under substantially weaker
conditions than the neighborhood stability or irrepresentable condition, see also Example
1 below. Such two-stage procedures rely on results for ‖β̂ − β‖q (q = 1, 2) whose optimal
convergence rate to zero is guaranteed under remarkable mild assumptions (Bickel et al.,
2008) (which are not directly comparable with our conditions (B1)-(B5)).

Regarding our assumption (B1), the Gaussian distribution can be relaxed as indicated
in Remark 1. The inclusion of (A1) is rather weak since we do not require explicitly any
behaviour of the covariance matrix ΣX = ΣX;n in the sequence of distributions Pn (n ∈ N),
except strict positive definiteness for all n (but no explicit bound on the minimal eigen-
value). The partial faithfulness conditions follows from e.g. assuming (A2) or (A2’) in
Section 2 for every n. It is also interesting to note that we require partial faithfulness
only: dependence relations among covariates enter only indirectly via conditioning sets
S ⊆ {1, . . . p}\j for a partial correlation between the response Y and some covariate X (j).
However, as a word of caution, the result by Robins et al. (2003) indicates that uniform
consistency for variable selection may fail to hold due to “nearly” partially faithful dis-
tributions. Assumption (B2) allows for an arbitrary polynomial growth of dimension as
a function of sample size, i.e. high-dimensionality, while (B3) is a sparseness assumption
in terms of the number of effective variables. Both (B2) and (B3) are fairly standard
assumptions in high-dimensional asymptotics. Assumption (B4) is a regularity condition,
saying that the non-zero partial correlations have to be of larger order than 1/

√
n. With-

out such a condition, one gets into the domain of super-efficiency, e.g. the behavior of the
Hodges-Lehmann estimator. Assumptions (B3) and the first part of (B4) are rather mild:
note that with b = 1 in (B3), for example for fixed peffn = peff < ∞, the partial corre-
lations can decay as n−1/2+ε for any 0 < ε ≤ 1/2. Finally, assumption (B5) is excluding
perfect collinearity: since we require all partial correlations to be bounded by a constant
M < 1 for all n ∈ N, this yields some relatively mild restrictions on the covariance matrix
ΣX,Y = ΣX,Y ;n. If the dimension p is fixed (with fixed distribution P in the linear model),
(B2), (B3) and (B4) hold, and (B1) and (B5) remain as the only conditions.

Although our assumptions are not directly comparable to the neighborhood stability
or irrepresentable condition for the Lasso in general, it is easy to construct examples where
the latter fails to be consistent while the PC-algorithm recovers the true set of variables,
as exemplified by the following example.
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Example 1. Consider the Gaussian linear model from (1) with

p = 4, peff = |A| = 3,

β1, β2, β3 fixed i.i.d. realizations from N (0, 1), β4 = 0, σ2 = 1, µX = 0,

ΣX =




1 ρ1 ρ1 ρ2

ρ1 1 ρ1 ρ2

ρ1 ρ1 1 ρ2

ρ2 ρ2 ρ2 1


 , ρ1 = −0.4, ρ2 = 0.2.

It is shown in Zou (2006, Cor. 1) that the Lasso is inconsistent for this model. On the
other hand, (B1) holds, because of (A2’), and also (B5) is true (which are all the conditions
for the PC-algorithm for a fixed distribution P ). Hence, the PC-algorithm is consistent
for variable selection. It should be noted though that also the adaptive Lasso is consistent
for this example.

4.2 Asymptotic behavior of correlation screening

For correlation screening, see formula (3), we do not require any sparsity. We also remark
that correlation screening is the same as “sure independence screening” by Fan and Lv
(2008), but our reasoning, assumptions and mathematical derivations via partial faithful-
ness are very different. We assume:

(C1) as assumption (B1).

(C2) as assumption (B2).

(C3) as assumption (B4) but for marginal correlations Cor(Y,X (j)) = ρn(Y, j) only.

(C4) as assumption (B5) but for marginal correlations Cor(Y,X (j)) = ρn(Y, j) only.

Denote by Â[1]
n (α) the correlation screening active set estimated from data using sig-

nificance level α, i.e. the second step in the sample version of the PC-algorithm.

Theorem 3. Consider the linear model (1) and assume (C1)-(C4). Then, there exists
αn → 0 (n → ∞), see below, such that:

P[Â[1]
n (α) ⊇ An] = 1 − O(exp(−Cn1−2d)) → 1 (n → ∞) for some 0 < C < ∞,

where d > 0 is as in (C3).

A proof is given in the Appendix. A possible choice of α is αn = 2(1 − Φ(n1/2cn/2)).
As pointed out above, we do not make any assumptions on sparsity. However, for non-
sparse problems, many correlations may be non-zero and hence, Â[1] could still be large,
e.g. almost as large as the full set {1 ≤ j ≤ p}, and no effective dimensionality reduction
would happen.

Under some condition on the covariance ΣX of the random design, Fan and Lv (2008)
have shown that , correlation screening, which they call sure independence screening,
is overestimating the active set A. In general, this is not true. However, Theorem 3
describes that without essentially any assumption on ΣX but assuming partial faithfulness,
correlation screening is overestimating the active set. This result may justify correlation
screening as a more powerful tool than what it appears to be in the restrictive setting of
Fan and Lv (2008).
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5 Numerical results

We analyze the variable selection properties for inferring the active set A = {j; βj 6= 0}
using simulated and some high-dimensional real data. We compare our simplified version
of the PC-algorithm with versions of `1-penalized approaches. In addition to reporting
on accuracy for variable selection, we give an overview of the runtime of the different
methods.

5.1 ROC analysis for simulated data

We simulate data according to a Gaussian linear model as in (1) having p covariates with
µX = 0 and covariance matrix Cov(X (i), X(j)) = ΣX;i,j = ρ|i−j|. In order to generate
values for β, we follow (A2’): a certain number peff of coefficients βj have a value different
from zero. The values of the nonzero βjs are sampled independently from a standard
normal distribution and the indices of the nonzero βjs are evenly spaced between 1 and
p. We consider a low- and a high-dimensional setting as follows:

Low-dimensional: p = 19, peff = 3, n = 100; ρ ∈ {0, 0.3, 0.6} with 1000 replicates

High-dimensional: p = 499, peff = 10, n = 100; ρ ∈ {0, 0.3, 0.6} with 300 replicates

We evaluate the performance of the methods using ROC curves which measure the
capacities for variable selection independently from the issue of choosing good tuning
parameters. We compare our simplified version of the PC-algorithm (PC, our own R-
package pcalg) with the Lasso using the LARS algorithm (Efron et al., 2004) (LARS,
R-package lars) and with the Elastic Net (Zou and Hastie, 2005) (ENET, R-package
elasticnet). For the latter, we vary the `1-penalty parameter only while keeping the
`2-penalty parameter fixed at the default value from the R-package enet to construct the
ROC curve. In the ROC plots to be followed, horizontal and vertical bars indicate 95%-
confidence intervals for the false positive rate (FPR) and the true positive rate (TPR),
respectively; definitions of FPR and TPR are given in Section 5.2. In our PC-algorithm,
the proposed default value for the tuning parameter is α = 0.05: its performance is
indicated by the intersection of a vertical line and the ROC curve. A more principled way
to choose the amount of regularization can be done using subsampling: Meinshausen and
Bühlmann (2008) present a generic approach which allows to control the familywise error
rate.

Low-dimensional case. Results for the low-dimensional case are reported in Figures 1
to 3 which show a clear pattern. For small false positive rates (FPR), our PC method is
clearly dominating LARS and ENET. If the correlation among the covariates increases,
the performance of ENET gets worse, whereas the performances of PC and LARS don’t
vary much. When focusing on values of FPR arising from the default value for α in our
method, PC outperforms LARS and ENET by a large margin. Note that many application
areas call for a small FPR, as discussed also in Section 5.3.

High-dimensional case. For the high-dimensional case, the resulting ROC curves are
given in Figures 4 to 6. For small false positive rates (FPR), the difference between the
methods is not very big. LARS seems to perform best, while ENET is worst and PC is
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Figure 1: Low dimensional: p = 19, ρ = 0. Vertical line indicates performance of PC
using the default α = 0.05.
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Figure 2: Low dimensional: p = 19, ρ = 0.3. Vertical line indicates performance of PC
using the default α = 0.05.

somewhere in between. For larger FPR, this effect gets stronger. Up to the FPR which
arises by the default value of α = 0.05, PC is never significantly outperformed by either
LARS or ENET.

All calculations were done on a Dual Core Processor with 2.6 GHz and 32 GB RAM
running on Linux and using R 2.5.1. The processor times were averaged in the low and
high-dimensional example over 1000 and 300 replications, respectively. The average pro-
cessor times and standard errors are given in Table 1.
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Figure 3: Low dimensional: p = 19, ρ = 0.6. Vertical line indicates performance of PC
using the default α = 0.05.
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Figure 4: High dimensional: p = 499, ρ = 0. Vertical line indicates performance of PC
using the default α = 0.05.

We should avoid the conclusion that PC is faster than LARS or ENET since the
runtimes for PC were measured using the default of α = 0.05 only whereas LARS and
ENET compute a whole path of solutions. The purpose of Table 1 is to show that PC is
certainly feasible for high-dimensional problems. In addition, when using PC on say 10
different (small) values of α, the computation is about of the same order of magnitude
than LARS or ENET for the whole solution path.
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Figure 5: High dimensional: p = 499, ρ = 0.3. Vertical line indicates performance of PC
using the default α = 0.05.
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Figure 6: High dimensional: p = 499, ρ = 0.6. Vertical line indicates performance of PC
using the default α = 0.05.

5.2 Prediction Optimal Tuned Methods for simulated data

We compare here different methods when using prediction optimal tuning. It is known
that the prediction-optimal tuned Lasso overestimates the true model (Meinshausen and
Bühlmann, 2006). But the adaptive Lasso Zou (2006) and the relaxed Lasso Meinshausen
(2007) correct Lasso’s overestimation behavior and prediction-optimal tuning for these
methods yields a good amount of regularization for variable selection. Furthermore, we
use our simplified version of the PC-algorithm for variable selection and use then the
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p ρ ave(tPC) [s] ave(tLARS) [s] ave(tENET ) [s]

19 0 0.004 (4e-5) 0.016 (3e-5) 0.024 (3e-5)
19 0.3 0.004 (4e-5) 0.016 (3e-5) 0.024 (3e-5)
19 0.6 0.005 (5e-5) 0.016 (3e-5) 0.024 (3e-5)

499 0 0.164 (0.003) 0.795 (0.006) 13.23 (0.03)
499 0.3 0.163 (0.002) 0.838 (0.007) 13.41 (0.03)
499 0.6 0.160 (0.002) 0.902 (0.006) 12.91 (0.02)

Table 1: Average runtime in seconds over 1000 and 300 repetitions for p = 19 and p = 499,
respectively. The runtimes for PC were measured using the default of α = 0.05 while LARS
and ENET compute a whole path of solutions.

Lasso or the adaptive Lasso to estimate coefficients for the sub-model selected by the PC-
method. For simplicity, we do not show results for the elastic net (which was found to be
worse in terms of ROC-curves than the Lasso).

We simulate from a Gaussian linear model as in (1) with p = 1000, peff = 20, n = 100
and:

β1, . . . , β20 i.i.d. ∼ N (0, 1), β21 = . . . = β1000 = 0,

µX = 0, ΣX;i,j = 0.5|i−j|, σ2 = 1,

with 100 replicates.
We are considering the following performance measures:

‖β̂ − β‖2
2 =

p∑

j=1

(β̂j − βj)
2 (MSE Coeff),

EX [(XT (β̂ − β))2] = (β̂ − β)T Σ(β̂ − β)), Σ = Cov(X) (MSE Pred),
p∑

j=1

I(β̂j 6= 0)I(βj 6= 0)/

p∑

j=1

I(βj 6= 0) (true positive rate (TPR)),

p∑

j=1

I(β̂j 6= 0)I(βj = 0)/

p∑

j=1

I(βj = 0) (false positive rate (FPR)). (8)

The methods are used as follows. Prediction optimal tuning is pursued with a val-
idation set having the same size as the training data. The Lasso is computed using
the lars-package from R. For the adaptive Lasso, we first compute a prediction-optimal
Lasso as initial estimator β̂init, and the adaptive Lasso is then computed with penalty
λ

∑p
j=1 |βj |/|β̂init,j | where λ is chosen again in a prediction-optimal way. The computa-

tions are done with the lars-package from R, using re-scaled covariates for the adaptive
step. The relaxed Lasso is computed with the relaxo-package from R. Our simplified
version of the PC-algorithm with the Lasso for estimating coefficients is straightforward
to do using the pcalg- and lars-packages from R: optimal tuning is with respect to the
α-parameter for the PC-algorithm and the penalty parameter for Lasso. For the simplified
version of the PC-algorithm with the adaptive Lasso, we first compute weights wj as fol-
lows: wj = 0 if the variables has not been selected; and if the variable has been selected,

15



wj = minimum value of the test statistic
√

n − 3 − |S|Z(Y, j|S) (see Section 3.2) over
all iterations of the PC-algorithm. Then, we compute the adaptive Lasso with penalty
λ

∑p
j=1 w−1

j |βj |, i.e. the weights for the adaptive step are from the PC-algorithm.
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Figure 7: Prediction optimal tuned methods. Boxplots of performance measures as de-
scribed in (8) and runtimes, based on 100 simulated model realizations. The PC-algorithm
with Lasso coefficient estimation (PCl), the PC-algorithm with adaptive Lasso (PCal),
Adaptive Lasso (al), Relaxed Lasso (r) and Lasso (l).

Figure 7 displays the results. As expected, the Lasso is yielding too many false posi-
tives while the adaptive Lasso and the relaxed Lasso have much better variable selection
properties. The PC-based methods have clearly lowest false positive rates (FPR) while
paying a price in terms of power, the true positive rate (TPR), and in terms of mean
squared errors (MSE and prediction MSE).

In quite many applications, a low false positive rate is highly desirable even when
paying a price in terms of power. For example, in molecular biology where a covariate rep-
resents a gene, only a limited number of selected genes (covariates) can be experimentally
validated and hence, methods with a low false positive rate are preferred, in the hope that
most of the top-selected genes are relevant. This type of application is briefly sketched in
the next section.

5.3 Real Data: Riboflavin Production from Bacillus Subtilis

We consider a high-dimensional real dataset about riboflavin production in Bacillus Sub-
tilis, provided by DSM Nutritional Products. There is a continuous response variable Y
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which measures the logarithm of the production rate of riboflavin, and there are p = 4088
covariates corresponding to the logarithms of expression levels of genes. One of the major
goals is to genetically modify Bacillus Subtilis in order to increase its production rate for
riboflavin. An important step to achieve this goal is to find some genes which are most
relevant for the production rate. We pursue this step by variable (i.e. gene) selection in a
linear model.

We use the methods PC, LARS and ENET as for simulated data. We run PC on the
full data set, with various values of α. Then, we compute LARS and ENET and choose
the tuning parameters such that the same number of selected variables arise as for PC.
We show the results from a genetically homogeneous group of n = 72 individuals.

Table 2 indicates that LARS and ENET are more similar variable selection methods
than PC and any of those two. Thus, the PC-algorithm seems to extract information,
i.e. selects genes, in a “rather different” way than the penalized methods LARS and
ENET. We view this property as very desirable: for any large-scale problem, we want to
see different aspects of the problem by using different methods; and ideally, results from
different methods can be combined to obtain better results than what is achievable with
a single procedure. We remark that we still find a remarkable overlap of the few selected

α for PC selected var. PC-LARS PC-ENET LARS-ENET

0.001 3 0 0 2
0.01 4 2 1 3
0.05 5 2 1 3
0.15 6 3 2 3

Table 2: Variable selection for real dataset on riboflavin production from Bacillus Subtilis.
Number of selected variables (selected var.); number of variables which were selected from
both PC and LARS (PC-LARS), from both PC and ENET (PC-ENET) and from both
LARS and ENET (LARS-ENET).

genes among p = 4088 candidates and in fact, it is highly significant when calibrating with
a null-distribution which consists of pure random noise only.

6 Failure of partial faithfulness and measures of association

Failure of partial faithfulness happens for very specific parameter constellations in the
linear model (1), e.g. a violation of (A2) or (A2’) saying that the non-zero coefficients lie
in a hyper-plane. We give two examples.

Example 2. Consider a Gaussian linear model

Y = X(1) − X(2) + ε,

X(2) = X(1) + γ,

where X(1), γ, ε are i.i.d. ∼ N (0, σ2). This is a linear model as in (1) with a specific
parameter constellation for the regression parameters. It can be easily calculated that

Cor(Y,X(1)) = 0, Parcor(Y,X (1)|X(2)) 6= 0,
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and hence, partial faithfulness fails to hold.

Example 3. Consider a Gaussian moving average model from time series:

Xt = θ1εt−1 + εt, t ∈ Z,

where {εt; t ∈ Z} is a sequence of i.i.d. variables εt ∼ N (0, σ2), and |θ1| < 1 a parameter.
In terms of (auto-)regression, the model can be written as

Xt =
∞∑

j=1

(−θ1)
jXt−j + εt, t ∈ Z

and hence, using Y = Xt, this is a linear model with p = ∞. We focus only on three
variables {Y = Xt, Xt−1, Xt−2} corresponding to one response and two covariates. It is
well known that

Cor(Y,Xt−2) = Cor(Xt, Xt−2) = 0, Parcor(Y,Xt−2|Xt−1) = Parcor(Xt, Xt−2|Xt−1) 6= 0,

(Brockwell and Davis, 1991, cf.). Thus, this is another example where partial faithfulness
does not hold.

The PC-algorithm would fail in both examples: it would drop the variable X (1) in
Example 2 or Xt−2 in Example 3 from the active set because the corresponding correlation
is zero. The reason for failure though is - from a certain perspective - not undesirable.
In fact, as described below in the continuation of Examples 2 and 3, there is no causal
relation between the variables Y and X (1) (Example 2) or Y and Xt−2 (Example 3), in the
sense of the intervention framework with the do(·)-operator from Pearl (2000). Therefore,
in a causal sense, the PC-algorithm would correctly declare no relation.

The following definitions of associations between the response Y and some of the
covariates X(j) are useful:

A = {j; Parcor(Y,X (j)|X({1,...,p}\j)) 6= 0} = {j; βj 6= 0},
Astrong = {j; Parcor(Y,X (j)|X(S)) 6= 0 for all S ⊆ {1, . . . , p} \ j},
Astrong−endo = max{B ⊆ {1, . . . , p}; Parcor(Y,X (j)|X(S)) 6= 0 for all j ∈ B and all S ⊆ B \ j}.

The set A is the usual active set from regression containing the covariates having regression
coefficients different from zero; the set Astrong contains associations with a stronger notion,
requiring that partial correlations remain non-zero when conditioning on any subset of
covariates; and finally, the set Astrong−endo requires that partial correlations remain zero
when conditioning on any subset of “endogenous” covariates which are associated with
the response Y . Because there are fewer conditioning sets involved in A or Astrong−endo

than in Astrong, the following holds in general:

Astrong ⊆ A, Astrong ⊆ Astrong−endo. (9)

Furthermore,

for partial faithful distributions: Astrong = Astrong−endo = A. (10)
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The equality A = Astrong follows from Proposition 1, and the equality Astrong−endo =
A follows exactly as in the proof of Proposition 1. For non-faithful distributions, the
equalities in (10) fail.

In general (for non-faithful distributions), the notions of associations in Astrong and
Astrong−endo are more of a causal nature than in A. In fact, Astrong−endo is in the two
Examples a strong enough measure for causality.

Example 2 (continued)
For the linear model in Example 2, it is easy to see that Astrong = Astrong−endo = {2}. That
is, only the second covariate X (2) is strongly associated with Y . In addition, if assuming
a directed acyclic graph as in Figure 8 for generating the model, Astrong = Astrong−endo

coincides with the set of causal variables in the sense of the do(·) operator from Pearl
(2000). That is, for the distribution of Y with and without intervention, P (Y |do(X (1) =
u)) = P (Y ) for all values u while P (Y |do(X (2) = u)) 6= P (Y ) for some value u.

Example 3 (continued)
For the moving average model in Example 3, it is again straightforward to derive that
Astrong = Astrong−endo = {t−1}. That is, only the first lagged variable Xt−1 is strongly as-
sociated with Y = Xt. And as for Example 2, by using the directed acyclic graph as in Fig-
ure 8 for generating the model (where εt−2, εt−1, εt are latent), Astrong = Astrong−endo co-
incides with the set of causal variables in the sense of the do(·) operator from Pearl (2000).
That is, for the distribution of Y = Xt with and without intervention, P (Y |do(Xt−2 =
u)) = P (Y ) for all values u while P (Y |do(Xt−1 = u)) 6= P (Y ) for some value u.

(a) Example 2 (b) Example 3

Figure 8: Directed acyclic graphs corresponding to Examples 2 and 3 (where εt−2, εt−1, εt

are latent variables).

The following holds in the context of potentially non-faithful distributions.

Proposition 3. Consider the linear model (1) satisfying (A1). Then, the population
PCpop-algorithm satisfies

Astrong ⊆ A[mreach] ⊆ Astrong−endo.

A proof is given in the Appendix. Proposition 3 says that in the context of potentially
non-faithful distributions, the PC-algorithm identifies stronger associations than what is
given by Astrong−endo. Note that for Examples 2 and 3, the strong-endogenous associations
coincide with the strong associations and with the “causal” effects.
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6.1 Asymptotic behavior when partial faithfulness fails to hold

We have discussed in Proposition 3 that the PCpop-algorithm identifies a set of associations
as described in (10). The asymptotic arguments in the non-faithful case are very similar
to Section 4. We assume:

(D1) The distribution Pn is Gaussian and satisfies assumption (A1) for all n.

(D2) as assumption (B2).

(D3) The cardinality of the set Astrong−endo;n satisfies: |Astrong−endo;n| = O(n1−b) for some
0 < b ≤ 1.

(D4) as assumption (B4).

(D5) as assumption (B5).

Theorem 4. Consider the linear model (1) and assume (D1)-(D5). Then, there exists
αn → 0 (n → ∞), see below, such that the PC-algorithm satisfies:

P[Astrong;n ⊆ Ân(α) ⊆ Astrong−endo;n]

= 1 − O(exp(−Cn1−2d)) → 1 (n → ∞) for some 0 < C < ∞,

where d > 0 is as in (D4).

Theorem 4 follows from Proposition 3 and analogous to the proof of Theorem 2. A
possible choice of the tuning parameter is α = αn = 2(1 − Φ(n1/2cn/2)).

6.2 Numerical results when partial faithfulness fails to hold

We consider a version of Example 3. Denote by

Ut = (0.95εt−1 + εt)/
√

1 + 0.952 (t = 2, 3, 4, 5),

ε1, ε2, . . . , ε5 i.i.d. ∼ N (0, 1)

a Gaussian MA(1) process with marginal variance 1. Define

Y = U5 + 0.15X(4) + 0.15X(5) + 0.15X(6) ,

X(1) = U4, X(2) = U3, X(3) = U2,

X(4), X(5), X(6) i.i.d. ∼ N (0, 1) independent from {X (1), X(2), X(3)},
X(7), . . . , X(20) ∼ N14(0,Σ) independent from {X (j); j = 1, 2, . . . , 6}, Σij = 0.5|i−j|.

(11)

The covariates X (7), . . . , X(20) are ineffective and all partial correlations with the response
Y are zero. Furthermore, the model has the property that

Cor(Y,X(j)) = 0 for j = 2, 3,

while the partial correlations Parcor(Y,X (2)|X(1)) 6= 0 and Parcor(Y,X (3)|X(1), X(2)) 6= 0.
Thus, the partial faithfulness condition fails to hold. Finally, the model exhibits relatively
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Figure 9: Target Astrong−endo = Astrong in model (11). Based on sample size n = 1000.
Vertical line indicates performance of PC using the default α = 0.05.

weak (partial) correlations of Y with X (4), X(5) and X(6). The active set from standard
regression, the strong endogenous and strong associations are

A = {1, 2, 3, 4, 5, 6}, Astrong−endo = Astrong = {1, 4, 5, 6}.

From Theorem 4 we know that the simplified PC-algorithm will identify the set Astrong−endo =
Astrong = {1, 4, 5, 6} whereas regression-type variable selection methods such as the Lasso
or the elastic net yield the active set A as sample size n tends to infinity.

We show in Figure 9 and 10, for the model in (11), the ROC curves of the simplified
PC-algorithm, the Lasso and the elastic net for estimating Astrong−endo = Astrong and
for A, respectively. The results are based on sample size n = 1000 and 300 independent
simulations from the model. As expected, we see very clearly that the PC-algorithm is
better for estimating the set Astrong−endo = Astrong while the Lasso or elastic net are
superior for finding the active set A.

7 Conclusions

The (simplified version of the) PC-algorithm is a very useful method for inferring asso-
ciations in a high-dimensional (but sparse) linear model where the number of covariates
can greatly exceed the sample size: we support this claim by asymptotic theory (Theo-
rems 2-3), some results on simulated and real data in comparison to the Lasso and the
Elastic Net, and we provide an an efficient implementation of our simplified version of
the PC-algorithm in the R-package pcalg which allows computations for high-dimensional
problems with thousands of covariates. In view of all these results and facts, the PC-
algorithm is a complementary approach to Lasso-type estimation: in practice, it is very
valuable to have such an alternative method in the tool-kit for high-dimensional data
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Figure 10: Target Astrong−endo = Astrong in model (11). Based on sample size n = 1000.
Vertical line indicates performance of PC using the default α = 0.05.

analysis. In addition, the fact that the PC-algorithm performs well for regression prob-
lems suggests that this continues to be true in the context of high-dimensional graphical
modeling and causal analysis (Spirtes et al., 2000; Kalisch and Bühlmann, 2007).

We introduce here, as a key part of our approach, the framework of partial faith-
ful distributions which is loosely related to faithfulness in graphical modeling (Spirtes
et al., 2000). In the regression setting, we show that partial faithfulness holds generically
(Theorem 1) when excluding some adversarial constellations for the non-zero regression
coefficients via assumption (A2); and assumption (A2) holds when considering the setting
where the non-zero regression coefficients arise by sampling from a density, i.e. assumption
(A2’). In addition, even if the assumption about partial faithfulness fails to hold, we prove
that the PC-algorithm is consistent for some other notions of associations (Theorem 4)
and we describe in Section 6 some connections to the concept of causality.

8 Appendix

Proof of Theorem 1:
Consider first the case for Gaussian distributions where (Y,X) ∼ Np+1(µY X ,ΣY X). Then,
Theorem 1 reads:

Cov(Y,X(j)|X(S)) = 0 for some S ⊆ {1, . . . , p} \ {j} =⇒ βj = 0. (12)

For proving (12), we use the contra-position and assume that βj 6= 0.
Then:

Cov(Y,X(j)|X(S)) =
∑

r∈A∩SC

βrΣX|S;r,j = βjVar(X(j)|X(S)) +
∑

r∈A∩SC ,r 6=j

βrΣX|S;r,j,

where A = {1 ≤ r ≤ p; βr 6= 0} and ΣX|S = Cov(X|X(S)) (which has degenerate entries
for indices in S). In the Gaussian case, conditional covariances are almost surely constant
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(and equal to the partial covariances), cf. Anderson (1984, Th. 2.5.1). Thus, the first
quantity on the right-hand side equals some deterministic real-valued number aj 6= 0
almost surely. Therefore, the only way that the covariance Cov(Y,X (j)|X(S)) would equal
zero would be:

∑

r∈A∩SC ,r 6=j

βrΣX|S;r,j + aj = 0 a.s. (13)

But this cannot happen, because (13) describes a hyper-plane for {βr; r ∈ A∩SC , r 6= j}
(with coefficients given by ΣX|S and hence not depending on β) and this is in conflict with
assumption (A2). This proves (12).

For the non-Gaussian case, we observe that the statement in Theorem 1 is only about
algebraic properties of sub-matrices and sub-vectors of ΣY X and µY X , respectively. But
these algebraic properties do not depend on other characteristics than second moments of
the underlying distribution and hence, they also hold for other distributions with second-
order moments as in the Gaussian case. This completes the proof. 2

Proof of Proposition 1:
The implication “=⇒” obviously holds by considering the set S = {1, . . . , p} \ j.
For the other implication “⇐=” we use contra-position. Assume that Parcor(Y,X (j)|X(S)) =
0 for some S ⊆ {1, . . . , p} \ j, and we want to show that βj = 0. But this follows by defi-
nition of partial faithfulness. 2

Proof of Proposition 2:
By definition and partial faithfulness, A ⊆ A[mreach]. Thus, it remains to show that
A[mreach] ⊆ A.

Consider j ∈ A[mreach]. The value of mreach is such that

Parcor(Y,X(j)|X(S)) 6= 0 for all S ⊆ A[mreach−1] \ j ⊇ A \ j,

|S| ≤ mreach − 1. (14)

Regarding the last inequality: by definition of PC-algorithm, conditioning sets of size
|S| = mreach−1 are considered in iteration mreach. In previous iterations of the algorithm,
sets S of lower cardinality |S| ≤ mreach − 1 are considered, and in particular (because
A[1] ⊇ A[2] ⊇ . . .), all subsets S ⊆ A[mreach−1] with |S| ≤ mreach − 1 are considered.

Suppose that βj = 0. It holds that |A \ j| ≤ mreach − 1 (because A ⊆ A[mreach] and
|A[mreach]| ≤ mreach). In particular, using (14),

Parcor(Y,X(j)|X(A) \ j) 6= 0. (15)

Then, by definition of the linear model and the active set A and since βj = 0,

Cov(Y,X(j)|X(A) \ j) = 0

which is a contradiction to (15). Hence, it must hold that βj 6= 0 and therefore A[mreach] ⊆
A. 2

Proof of Theorem 2:
A first main step is to show that the PCpop-algorithm (i.e. population version) infers the
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true underlying active set An, assuming partial faithfulness (instead of faithfulness as e.g.
in graphical modeling). We formulated this step in Proposition 2 as a separate result, and
its proof is given above.

Having established Proposition 2, the arguments for controlling the estimation error
due to finite sample size are similar as for proving Theorem 1 in Kalisch and Bühlmann
(2007). First, we show uniform consistency for estimating partial correlations up to order

peffn. For ease of notation, we denote by Y = X (0) and by K
peffn

i,j = {S ⊆ {0, . . . , pn} \
{i, j}; |S| ≤ peffn}. Then,

sup
i,j;S∈K

peffn
j

P[|ρ̂n;i,j|S − ρn;i,j|S| > γ] ≤ C1(n − peffn) exp(n − peff − 4) log(
4 − γ2

4 + γ2
), (16)

where 0 < C1 < ∞ depends on M in (B5) only. The bound in (16) appears in Kalisch
and Bühlmann (2007, Corollary 1): for proving it, we require the Gaussian assumption
for the distribution (without partial faithfulness) and (B2), (B3) and (B5). It is then
straightforward to derive unform consistency of Z-transformed partial correlations: the
details are given in Kalisch and Bühlmann (2007, Lemma 1). Next, we consider a version
of the PC-algorithm which stops after mreach iterations: the type I and type II errors
(i.e. false positive and false negative decisions) can be controlled using the union bound
and for the type II error, we need assumption (B4) in addition. The arguments are
analogous as for proving Lemma 4 in Kalisch and Bühlmann (2007). Finally, we argue
that P[m̂reach = mreach] → 1 (analogous to Lemma 5 in Kalisch and Bühlmann (2007))
which then allows to complete the proof of Theorem 1. 2

Proof of Theorem 3:
By definition, An ⊆ A[1], where the latter is the set of variables from correlation screening.

Denote by Zn(Y, j) the quantity as in (7) with S = ∅ and by zn(Y, j) its population
analogue. i.e. the Z-transformed correlation. An error occurs when screening the jth
variable if Zn(Y, j) has been tested to be zero but in fact zn(Y, j) 6= 0. We denote such an
error event by EII

j whose probability can be bounded as

sup
j

P[EII
j ] ≤ O(n) exp(−C1nc2

n),

for some 0 < C1 < ∞, see Kalisch and Bühlmann (2007, formula (17)) (no sparsity
assumption is used for this derivation). Thus, the probability of an error occurring in the
correlation screening procedure is bounded by

P[∪1≤pnEII
j ] = O(pnn) exp(−C1nc2

n) = O(exp((1 + a) log(n) − C1n
1−2d))

= O(exp(−C2n
1−2d))

for some 0 < C2 < ∞. This completes the proof. 2

Proof of Proposition 3:
Consider the set

Ã[mreach] = {j; Parcor(Y,X (j)|X(S)) 6= 0 for all S ∈ A[mreach] \ j.
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Obviously, since A[m1] ⊇ A[m2] ⊇ . . . ⊇ A[mreach], there are fewer conditioning sets S
occurring in Ã[mreach] than in A[mreach] and hence

A[mreach] ⊆ Ã[mreach]. (17)

Moreover, for every j ∈ Ã[mreach]:

Parcor(Y,X(j)|X(S)) 6= 0 for all S ∈ Ã[mreach] \ j.

Thus, Ã[mreach] is a set B as in the definition of Astrong−endo, but it may not be maximal.
Therefore, Ã[mreach] ⊆ Astrong−endo which, together with (17), completes the proof. 2
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Kalisch, M. and Bühlmann, P. (2007). Estimating high-dimensional directed acyclic
graphs with the PC-algorithm. Journal of Machine Learning Research 8 613–636.

Meinshausen, N. (2007). Relaxed Lasso. Computational Statistics & Data Analysis 52
374–393.
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