Boosting and Twin Boosting for High-Dimensional Data

Peter Bühlmann

Seminar für Statistik, ETH Zürich

High-dimensional data

$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. or stationary
$X_{i} p$-dimensional predictor variable
Y_{i} univariate response variable, e.g. $Y_{i} \in \mathbb{R}$ or $Y_{i} \in\{0,1\}$
areas of application: astronomy, biology, imaging, marketing research, text classification,...

High-dimensional data

$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. or stationary
$X_{i} p$-dimensional predictor variable
Y_{i} univariate response variable, e.g. $Y_{i} \in \mathbb{R}$ or $Y_{i} \in\{0,1\}$

high-dimensional: $p \gg n$

areas of application: astronomy, biology, imaging, marketing research, text classification,...

Examples from molecular biology
Microarray data

- predictor variables:
expressions of $p \approx 5^{\prime} 000-20^{\prime} 000$ genes
- response variable: e.g. cancer sub-type or survival time
- sample size is $n \approx 10-200$

Examples from molecular biology
Microarray data

- predictor variables: expressions of $p \approx 5^{\prime} 000-20^{\prime} 000$ genes
- response variable: e.g. cancer sub-type or survival time
- sample size is $n \approx 10-200$

Splice site detection in DNA sequences
$p=16^{\prime} 384, n \approx 11^{\prime} 000$

Ensemble methods

also called multiple predictions, aggregation methods, ...
seem to be mainly useful for high-dimensional data and for large data-sets with p and n large
"philosophy":
a combination of estimates is better
than a single individual prediction
"clear" in the Bayesian paradigm:
e.g. Bayesian model averaging

Ensemble methods

also called multiple predictions, aggregation methods, ...
seem to be mainly useful for high-dimensional data and for large data-sets with p and n large
"philosophy":
a combination of estimates is better than a single individual prediction
"clear" in the Bayesian paradigm:
e.g. Bayesian model averaging

General description

Base procedure or weak learner:

$$
\text { data } \xrightarrow[\longrightarrow]{\text { algorithm } A} \hat{\theta}(\cdot) \text { (a function estimate) }
$$

e.g.: simple linear regression, tree, MARS, "classical" smoothing, ...
generating an ensemble of estimates (or predictions):
weighted data 1
algorithm A $\hat{\theta}_{1}(\cdot)$
weighted data 2 algorithm A $\hat{\theta}_{2}(\cdot)$
weighted data M
algorithm A $\hat{\theta}_{M}(\cdot)$
aggregation (or "voting"): $\hat{f}_{A}(\cdot)=\sum_{m=1}^{M} a_{m} \hat{\theta}_{m}(\cdot)$
data weights ? averaging weights a_{m} ?
two main settings:

- independently generated ensemble:

Example: Bagging, where

- reweighted data is generated by bootstrapping
- aggregation is the mean of the estimates
- coordinated generation of ensemble:
sequential: ensemble m depends on previous ensembles direct dependence typically only on ensemble m - 1
Example: Boosting

Bagging is essentially a variance reduction method
e.g. use large trees and reduce their variance via bagging
Boosting is "basis expansion" and a bias reduction method
e.g. small trees whose combination yields richer function class

Random Forests
inden nenerated ansemble with "randomized tree learner
two main settings:

- independently generated ensemble:

Example: Bagging, where

- reweighted data is generated by bootstrapping
- aggregation is the mean of the estimates
- coordinated generation of ensemble: sequential: ensemble m depends on previous ensembles direct dependence typically only on ensemble m - 1 Example: Boosting

Bagging is essentially a variance reduction method e.g. use large trees and reduce their variance via bagging

Boosting is "basis expansion" and a bias reduction method e.g. small trees whose combination yields richer function class
\square
two main settings:

- independently generated ensemble:

Example: Bagging, where

- reweighted data is generated by bootstrapping
- aggregation is the mean of the estimates
- coordinated generation of ensemble: sequential: ensemble m depends on previous ensembles direct dependence typically only on ensemble m - 1 Example: Boosting

Bagging is essentially a variance reduction method e.g. use large trees and reduce their variance via bagging

Boosting is "basis expansion" and a bias reduction method e.g. small trees whose combination yields richer function class

Random Forests (Alit \& Geman, 1996; Breiman, 2001) is an indep. generated ensemble with "randomized tree learner"
mathematically: definition(s) not precise... because you could use/think of the ensemble method again as the base procedure
but there are many impressive empirical results
with a version of LogitBoost (an ensemble method)

Roman Lutz
Statistics, ETH Zurich
winner of the WCCI 2006 prediction/classification challenge
\rightsquigarrow not an "out-dated" method
competitors were: weighted LS-SVM (S. Cawley),
Bayesian Neural Networks (R. Neal),
Random Forests (C. Dahinden), SVM/Gaussian process classifier (W. Chu)

Classification of 2 lymph nodal status in breast cancer using gene expressions from microarray data:
$n=33, p=7129$
(for CART: gene-preselection, reducing to $\hat{p}_{\text {opt }} \approx 50$)

method	test set error	gain over CART
CART	22.5%	-
LogitBoost with trees	16.3%	28%
LogitBoost with bagged trees	12.2%	46%

Classification of 2 lymph nodal status in breast cancer using gene expressions from microarray data:
$n=33, p=7129$
(for CART: gene-preselection, reducing to $\hat{p}_{o p t} \approx 50$)

method	test set error	gain over CART
CART	22.5%	-
LogitBoost with trees	16.3%	28%
LogitBoost with bagged trees	12.2%	46%

What about fitted models?
Interpretation of estimated parameters?
\rightsquigarrow prediction, variable selection, variable importance

- Linear models
- Generalized linear models
- Additive models
- Interaction models

Boosting algorithms

AdaBoost proposed for classification:

Freund \& Schapire (1996)

data weights (rough original idea): large weights to previously heavily misclassified instances sequential algorithm; coordinated ensemble
averaging weights a_{m} :
large if in-sample performance in m th round was good

Boosting algorithms

AdaBoost proposed for classification:
Freund \& Schapire (1996)
data weights (rough original idea): large weights to previously heavily misclassified instances sequential algorithm; coordinated ensemble averaging weights a_{m} : large if in-sample performance in m th round was good

Why should this be good?

Why should this be good?
some common answers 5 years ago ...
> it works so well for prediction (which is quite true)
$>$ it concentrates on the "hard cases" (so what?)

Why should this be good?
some common answers 5 years ago ... because

- it works so well for prediction (which is quite true)
- it concentrates on the "hard cases" (so what?)
- AdaBoost almost never overfits the data no matter how many iterations it is run (not true)

Why should this be good?
some common answers 5 years ago ... because

- it works so well for prediction (which is quite true)
- it concentrates on the "hard cases" (so what?)

Why should this be good?

some common answers 5 years ago ... because

- it works so well for prediction (which is quite true)
- it concentrates on the "hard cases" (so what?)
- AdaBoost almost never overfits the data no matter how many iterations it is run (not true)

A better explanation
Breiman (1998/99):
AdaBoost is functional gradient descent (FGD) procedure
Aim: find $f^{*}(\cdot)=\operatorname{argmin}_{f(\cdot)} \mathbb{E}[\rho(Y, f(X))]$

$$
\text { e.g. for } \rho(y, f)=|y-f|^{2} \rightsquigarrow f^{*}(x)=\mathbb{E}[Y \mid X=x]
$$

FGD solution: consider empirical risk $n^{-1} \sum_{i=1}^{n} \rho\left(Y_{i}, f\left(X_{i}\right)\right)$ and do iterative steepest descent in function space

Generic FGD algorithm
Step 1. $\hat{f}_{0} \equiv 0$; set $m=0$.
Step 2. Increase m by 1. Compute negative gradient $-\frac{\partial}{\partial t} \rho(Y, f)$ and evaluate at $f=\hat{f}_{m-1}\left(X_{i}\right)=U_{i}(i=1, \ldots, n)$
Step 3. Fit negative gradient vector U_{1}, \ldots, U_{n} by base proced.

$$
\left(X_{i}, U_{i}\right)_{i=1}^{n} \xrightarrow{\text { algorithm } \mathrm{A}} \hat{\theta}_{m}(\cdot)
$$

e.g. $\hat{\theta}_{m}(\cdot)$ fitted by (weighted) least squares
i.e. $\hat{\theta}_{m}(\cdot)$ is an approximation of the negative gradient vector

Step 4. Up-date $\hat{f}_{m}=\hat{f}_{m-1}(\cdot)+\nu \cdot \hat{\theta}_{m}(\cdot)(0<\nu \leq 1$ step-length $)$ i.e: proceed along an estimate of the negative gradient vector

Step 5. Iterate Steps 2-4 until $m=m_{\text {stop }}$
ν small will be good, e.g. $\nu=0.1$

Why "functional gradient"?

Alternative formulation in function space: empirical risk functional: $C(f)=n^{-1} \sum_{i=1}^{n} \rho\left(Y_{i}, f\left(X_{i}\right)\right)$ inner product:

$$
\langle f, g\rangle=n^{-1} \sum_{i=1}^{n} f\left(X_{i}\right) g\left(X_{i}\right)
$$

negative Gateaux derivative:
$-d C(f)(x)=\frac{\partial}{\partial \alpha}-\left.C\left(f+\alpha 1_{x}\right)\right|_{\alpha=0}, \rightsquigarrow-d C\left(\hat{f}_{m-1}\right)\left(X_{i}\right)=U_{i}$
as previously defined!

By definition: FGD yields additive combination of base procedure fits
$\nu \sum_{m=1}^{m_{\text {stop }}} \hat{\theta}_{m}(\cdot)$

Breiman (1998):
FGD with $\rho(y, f)=\exp ((2 y-1) \cdot f)$ for binary classification yields the AdaBoost algorithm
(great result!)

L_{2} Boosting (Friedman, 2001; PB \& Yu, 2003)

loss function $\rho(y, f)=|y-f|^{2}$
population minimizer: $f^{*}(x)=\mathbb{E}[Y \mid X=x]$
FGD with base procedure $\hat{\theta}(\cdot)$: repeated fitting of residuals

$$
\begin{aligned}
& m=1:\left(X_{i}, Y_{i}\right)_{i=1}^{n} \rightsquigarrow \hat{\theta}_{1}(\cdot), \hat{f}_{1}=\hat{\theta}_{1} \quad \rightsquigarrow \text { resid. } U_{i}=Y_{i}-\hat{f}_{1}\left(X_{i}\right) \\
& m=2:\left(X_{i}, U_{i}\right)_{i=1}^{n} \rightsquigarrow \hat{\theta}_{2}(\cdot), \hat{f}_{2}=\hat{f}_{1}+\hat{\theta}_{2} \rightsquigarrow \text { resid. } U_{i}=Y_{i}-\hat{f}_{2}\left(X_{i}\right)
\end{aligned}
$$

$$
\hat{f}_{m_{\text {stop }}}(\cdot)=\nu \sum_{m=1}^{m_{\text {stop }}} \hat{\theta}_{m}(\cdot) \quad \text { (greedy fitting of residuals) }
$$

Tukey (1977): twicing for $m_{\text {stop }}=2$ and $\nu=1$

any gain over classical methods? (for additive modeling)

$$
n=300, p=8
$$

Ozone data: $n=300, p=8$

- magenta: L_{2} Boosting with stumps
(horiz. line $=$ cross-validated stopping)
- black: L_{2} Boosting with componentwise smoothing spline
(horiz. line = cross-validated stopping)
i.e: smoothing spline fitting against the
selected predictor which reduces RSS most
- green: MARS restricted to additive modeling
- red: additive model using backfitting
L_{2} Boosting with stumps or comp. smooth. spl: additive model, $\nu \sum_{m=0}^{m_{\text {stop }}} \hat{\theta}_{m}\left(x^{\left(\hat{\mathcal{S}}_{m}\right)}\right)=\hat{g}_{1}\left(x^{(1)}\right)+\ldots+\hat{g}_{p}\left(x^{(p)}\right)$

simulated data: non-additive regression function

$$
n=200, p=100
$$

Regression: $\mathrm{n}=200, \mathrm{p}=100$

- magenta: L_{2} Boosting with stumps
- black: L_{2} Boosting with componentwise
- green: MARS restricted to additive modeling
- red: additive model using backfitting and
fwd. var. selection

similar for classification very often:

Boosting performs comparatively well in high-dimensions
(there is a lot of empirical evidence for this!)

Structured models and choosing the base procedure

have just seen: with the
componentwise smoothing spline base procedure
smoothes the response against the one predictor variable which reduces RSS most
$\rightsquigarrow L_{2}$ Boosting yields an additive model fit, including variable selection

Structured models and choosing the base procedure

have just seen: with the
componentwise smoothing spline base procedure
smoothes the response against the one predictor variable which reduces RSS most
$\rightsquigarrow L_{2}$ Boosting yields an additive model fit, including variable selection
i.e. structured model fit

Componentwise linear least squares base procedure simple linear ordinary least squares against the one predictor variable which reduces RSS most

$$
\hat{\theta}(x)=\hat{\beta}_{\hat{\mathcal{S}}} X^{(\hat{\mathcal{S}})}, \hat{\beta}_{j}=\sum_{i=1}^{n} Y_{i} X_{i}^{(j)} / \sum_{i=1}^{n}\left(X_{i}^{(j)}\right)^{2}, \hat{\mathcal{S}}=\operatorname{argmin}_{j} \sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{j} X_{i}^{(j)}\right)^{2}
$$

first round: selected predictor variable $X^{\left(\hat{\mathcal{S}}_{1}\right)}$ (e.g. $=X^{(3)}$) corresponding $\hat{\beta}_{\hat{\mathcal{S}}_{1}} \rightsquigarrow$ fitted function $\hat{f}_{1}(x)$
2nd round: selected predictor variable $X^{\left(\hat{\mathcal{S}}_{2}\right)}\left(\right.$ e.g. $\left.=X^{(21)}\right)$ corresponding $\hat{\beta}_{\hat{S}_{2}} \rightsquigarrow$ fitted function $\hat{f}_{2}(x)$
etc.
L_{2} Boosting: $\hat{f}_{m}(x)=\hat{f}_{m-1}(x)+\nu \cdot \hat{\theta}(x)$
\rightsquigarrow linear model fit, including variable selection

Componentwise linear least squares base procedure simple linear ordinary least squares against the one predictor variable which reduces RSS most
first round: selected predictor variable $X^{\left(\hat{\mathcal{S}}_{1}\right)}$ (e.g. $\left.=X^{(3)}\right)$ corresponding $\hat{\beta}_{\hat{\mathcal{S}}_{1}} \rightsquigarrow$ fitted function $\hat{f}_{1}(x)$
2nd round: selected predictor variable $X^{\left(\hat{\mathcal{S}}_{2}\right)}$ (e.g. $\left.=X^{(21)}\right)$ corresponding $\hat{\beta}_{\hat{\mathcal{S}}_{2}} \rightsquigarrow$ fitted function $\hat{f}_{2}(x)$
etc.
L_{2} Boosting: $\hat{f}_{m}(x)=\hat{f}_{m-1}(x)+\nu \cdot \hat{\theta}(x)$
\rightsquigarrow linear model fit, including variable selection
i.e. structured model fit
for $\nu=1$, this is known as
Matching Pursuit (Mallat and Zhang, 1993)
Weak greedy algorithm (deVore \& Temlyakov, 1997)
a version of Boosting (Schapire, 1992; Freund \& Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gauss in 1803
R.V. Southwell in 1933
for $\nu=1$, this is known as
Matching Pursuit (Mallat and Zhang, 1993)
Weak greedy algorithm (deVore \& Temlyakov, 1997)
a version of Boosting (Schapire, 1992; Freund \& Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gauss in 1803
"Princeps Mathematicorum"

R.V. Southwell in 1933

Professor in Oxford

Binary lymph node classification using gene expressions: a high noise problem $n=49$ samples, $p=7129$ gene expressions
cross-validated misclassification error ($2 / 3$ training; $1 / 3$ test)

Lasso	L_{2} Boosting	FPLR	Pelora	1-NN	DLDA	SVM
21.1%	17.7%	35.25%	27.8%	43.25%	36.12%	36.88%

multivariate gene selection
best 200 genes (Wilcoxon test) no additional gene selection

42 (out of 7129) selected genes $(n=49)$

sorted regression coefficients

identifiability problem: strong correlations among some genes
\rightsquigarrow consider groups of highly correlated genes biological categories (e.g. GO ontology),

Pairwise smoothing spline base procedure smoothes response against the pair of predictor variables which reduces RSS most
$\rightsquigarrow L_{2}$ Boosting yields a nonparametric interaction model, including variable selection

Pairwise smoothing spline base procedure smoothes response against the pair of predictor variables which reduces RSS most
$\rightsquigarrow L_{2}$ Boosting yields a nonparametric interaction model, including variable selection

i.e. structured model fit

Example: degree 2 nonparametric interaction modelling Friedman \#1 model:

$$
Y=10 \sin \left(\pi X^{(1)} X^{(2)}\right)+20\left(X^{(3)}-0.5\right)^{2}+10 X^{(4)}+5 X^{(5)}+\mathcal{N}(0,1), X=\left(X^{(1)}, \ldots, X^{(20)}\right) \sim \text { Unif. }\left([0,1]^{20}\right)
$$

L_{2} Boosting with pairwise splines
sample size $n=50$
$p=20$, effective $p_{\text {eff }}=5$
both methods have the same (high) degree of interpretation

Regression tree base procedure
stumps (2 terminal nodes): L_{2} Boosting fits an additive model trees with d terminal nodes: L_{2} Boosting fits an interaction model of degree $d-2$
note: trees can be very useful because:

- thev can easilv handle missina data
$>$ they can easily deal with mixed categorical, ordinal continuous data
- thev are invariant under monotone covariate-transformations

Regression tree base procedure
stumps (2 terminal nodes): L_{2} Boosting fits an additive model trees with d terminal nodes: L_{2} Boosting fits an interaction model of degree $d-2$
i.e. "fairly" structured model fit
note: trees can be very useful because:

- they can easily handle missina data
$>$ they can easily deal with mixed categorical, ordinal continuous data
- thev are invariant under monotone covariate-transformations

Regression tree base procedure
stumps (2 terminal nodes): L_{2} Boosting fits an additive model trees with d terminal nodes: L_{2} Boosting fits an interaction model of degree $d-2$

i.e. "fairly" structured model fit

note: trees can be very useful because:

- they can easily handle missing data
- they can easily deal with mixed categorical, ordinal, continuous data
- they are invariant under monotone covariate-transformations

The low variance high bias "principle" once we have decided about some structural properties

choose base procedure with low variance but potentially large estimation bias

bias can be reduced by further boosting iterations (which will increase variance)
example:
low degrees of freedom in componentwise smoothing splines for additive modeling

there is a supporting asymptotic minimax theory for this principle (PB \& Yu, 2003)

asymptotically as $n \rightarrow \infty$,
L_{2} Boosting with smoothing spline is optimal (achieves minimax rate) for 1-dimensional curve estimation $\left(x \in \mathbb{R}^{1}\right)$
if degrees of freedom (number of equivalent parameters) in the smoothing spline are fixed (i.e. "low")
and number of boosting iterations asymptotically increases

More on L_{2} Boosting for linear models

use componentwise linear least squares base procedure
L_{2} Boosting converges to a least squares solution as boosting iterations $m \rightarrow \infty$
(the unique LS solution if design has full rank $p \leq n$)
when stopping early:

- it does variable selection
- coefficient estimates are typically shrunken version of LS
"similar to" the Lasso

More on L_{2} Boosting for linear models

use componentwise linear least squares base procedure
L_{2} Boosting converges to a least squares solution as boosting iterations $m \rightarrow \infty$
(the unique LS solution if design has full rank $p \leq n$)
when stopping early:

- it does variable selection
- coefficient estimates are typically shrunken version of LS
\rightsquigarrow "similar to" the Lasso

$$
\hat{\beta}(\lambda)=\operatorname{argmin}_{\beta}(n^{-1}\|Y-X \beta\|^{2}+\underbrace{\lambda}_{\geq 0} \underbrace{\|\beta\|_{1}}_{\sum_{j=1}^{p}\left|\beta_{j}\right|})
$$

Connections to Lasso (for linear models): Efron, Hastie, Johnstone, Tibshirani (2004): for special design matrices,

> iterations of L_{2} Boosting with "infinitesimally" small ν yield all Lasso solutions when varying λ
\rightsquigarrow computationally interesting to produce all Lasso solutions in one sweep of boosting
Least Angle Regression LARS (Efron et al., 2004) is computationally clever as well
when adding some backward steps
the solutions from Lasso and modified B Bosting "coincide
\qquad

Connections to Lasso (for linear models):
Efron, Hastie, Johnstone, Tibshirani (2004): for special design matrices,
iterations of L_{2} Boosting with "infinitesimally" small ν yield all Lasso solutions when varying λ
\rightsquigarrow computationally interesting to produce all Lasso solutions in one sweep of boosting
Least Angle Regression LARS (Efron et al., 2004) is computationally clever as well

Zhao and Yu (2005): in "general", when adding some backward steps the solutions from Lasso and modified Boosting "coincide"
greedy (plus backward steps) and convex optimization are surprisingly similar

The theoretical limit for dimensionality linear model

$$
Y_{i}=\beta_{0}+\sum_{j=1}^{p} \beta_{j} X_{i}^{(j)}+\epsilon_{i}(i=1, \ldots, n), \quad p \gg n
$$

Theorem (PB, 2006)
 L_{2} Boosting with comp. linear LS is consistent (with suitable

 number of boosting iterations) if: - $p_{n}=O\left(\exp \left(C n^{1-\xi}\right)\right)(0<\xi<1) \quad$ (high-dimensional) essentially exponentially many variables relative to n i.e. for suitable, slowly growing $m=m_{n}$:$$
\mathbb{E}_{X}\left|\hat{f}_{m_{n}, n}(X)-f_{n}(X)\right|^{2}=o_{P}(1)(n \rightarrow \infty)
$$

The theoretical limit for dimensionality linear model

$$
Y_{i}=\beta_{0}+\sum_{j=1}^{p} \beta_{j} X_{i}^{(j)}+\epsilon_{i}(i=1, \ldots, n), \quad p \gg n
$$

Theorem (PB, 2006)
L_{2} Boosting with comp. linear LS is consistent (with suitable number of boosting iterations) if:

- $p_{n}=O\left(\exp \left(C n^{1-\xi}\right)\right)(0<\xi<1) \quad$ (high-dimensional) essentially exponentially many variables relative to n
- $\sup _{n} \sum_{j=1}^{p_{n}}\left|\beta_{j, n}\right|<\infty \quad \ell^{1}$-sparseness of true function i.e. for suitable, slowly growing $m=m_{n}$:

$$
\mathbb{E}_{X}\left|\hat{f}_{m_{n}, n}(X)-f_{n}(X)\right|^{2}=o_{P}(1)(n \rightarrow \infty)
$$

"no" assumptions about the predictor variables/design matrix
analogous results also for

- multivariate regression
- vector autoregressive time series
(Lutz \& PB, 2006)

Other loss functions for boosting: beyond regression

 for binary classification with $Y \in\{0,1\}$:$\rho(y, f)=\log _{2}(1+\exp (-(2 * y-1) f))$
negative binomial log-likelihood
population minimizer: $f^{*}(x)=\log \left(\frac{p(x)}{1-p(x)}\right)$
\rightsquigarrow can estimate probabilities $p(\cdot)$ from estimate $\hat{f}(\cdot)$

Requirement: $\rho(y, f)$ is differentiable with respect to f almost
everywhere
for example: $L_{1}-$ Ioss $\rho(y, f)=|y-f|$ is OK

Other loss functions for boosting: beyond regression

for binary classification with $Y \in\{0,1\}$:
$\rho(y, f)=\log _{2}(1+\exp (-(2 * y-1) f))$
negative binomial log-likelihood
population minimizer: $f^{*}(x)=\log \left(\frac{p(x)}{1-p(x)}\right)$
\rightsquigarrow can estimate probabilities $p(\cdot)$ from estimate $\hat{f}(\cdot)$
for count data with $Y \in\{0,1,2, \ldots\}$:
$\rho(y, f)=\exp (f)-y f$
negative Poisson log-likelihood population minimizer: $f^{*}(x)=\log (\mathbb{E}[Y \mid X=x])$
etc...

Requirement: $\rho(y, f)$ is differentiable with respect to f almost
evervwhere
for example: L_{1}-loss $\rho(y, f)=|y-f|$ is OK

Other loss functions for boosting: beyond regression

for binary classification with $Y \in\{0,1\}$:
$\rho(y, f)=\log _{2}(1+\exp (-(2 * y-1) f))$
negative binomial log-likelihood
population minimizer: $f^{*}(x)=\log \left(\frac{p(x)}{1-p(x)}\right)$
\rightsquigarrow can estimate probabilities $p(\cdot)$ from estimate $\hat{f}(\cdot)$
for count data with $Y \in\{0,1,2, \ldots\}$:
$\rho(y, f)=\exp (f)-y f$
negative Poisson log-likelihood population minimizer: $f^{*}(x)=\log (\mathbb{E}[Y \mid X=x])$
etc...
Requirement: $\rho(y, f)$ is differentiable with respect to f almost everywhere for example: L_{1}-loss $\rho(y, f)=|y-f|$ is OK

Computation

computation for general loss functions involves a trivial extension only!
instead of residuals in L_{2} Boosting

$$
U_{i}=Y_{i}-\hat{f}_{m-1}\left(X_{i}\right), i=1, \ldots, n
$$

we use "generalized residuals"

$$
U_{i}=\left.\frac{\partial}{\partial f} \rho(Y, f)\right|_{f=\hat{f}_{m-1}\left(X_{i}\right)}, i=1, \ldots, n
$$

since there is (usually) a closed form, simple expression of the partial derivative
\rightsquigarrow same computational cost as for L_{2} Boosting

The mboost package in R (Hothorn \& PB, 2006)

for various boosting algorithms and corresponding model fitting

- easy to use and coherent implementation for
- regression
- classification
- Poisson regression
- survival analysis with Cox's partial likelihood
- your own loss function
- allows for various weak learners
- componentwise least squares
- componentwise smoothing splines
- trees
- computationally very fast for high-dimensional generalized linear models

CPU time
Binary lymph node classification example: $p=7129, n=49$ with L_{2} Boosting or BinomialBoosting (Binomial log-likelihood) for large range of solutions
in comparison:
for linear models, cor rutino Lasso solutions toral λ

CPU time
Binary lymph node classification example: $p=7129, n=49$ with L_{2} Boosting or BinomialBoosting (Binomial log-likelihood) for large range of solutions

it's less than a second!

in comparison:
for linear mndels computing Lasso solutions for all λ 's

CPU time
Binary lymph node classification example: $p=7129, n=49$ with L_{2} Boosting or BinomialBoosting (Binomial log-likelihood) for large range of solutions

it's less than a second!

0.906 seconds using mboost in R (PB \& Hothorn, 2006)
in comparison:
for linear models, computing Lasso solutions for all λ 's
2.603 seconds using lars in R (with use. gram=F)

DNA splice site detection: a classification problem

DNA sequence

response $Y \in\{0,1\}$: splice or non-splice site predictor variables: 7 factors each having 4 levels
(full dimension: $4^{7}=16^{\prime} 384$)
data: $p=16^{\prime} 384, n=11^{\prime} 220$
logistic regression:
$\log \left(\frac{p(x)}{1-p(x)}\right)=\beta_{0}+$ main effects + first order interactions $+\ldots$
with sum-to-zero constraints
use groupwise linear least squares base procedure and binomial likelihood loss
"groupwise":
e.g. the whole interaction term between factor 2 and 5 (which is encoded with 9 free parameters/dummy indicators) is fitted at a time

- mainly neighboring DNA positions show interactions (has been "known" and "debated")
- no interaction among exon and intron positions
- no second-order interactions
predictive power:
competitive with "state to the art" maximum entropy modeling from Yeo \& Burge (2004)
test set correlation between true and predicted class

Boosting	0.6593
max. entropy (Yeo \& Burge)	0.6589

- our model is simple and has clear interpretation
- it is as good or better than many of the complicated non-Markovian stochastic process models (e.g. Zhao, Huang and Speed (2004))
we have other examples on
- survival analysis
- high-order contingency tables
- etc...

Can we easily improve?

(probably) not that much with respect to prediction
but often substantially with respect to variable/feature selection
approach for variable selection with Boosting:
variables which have been selected by the base procedure in
the process of boosting
e.g. in a (generalized) linear model fit:
variables with correspodning regression coefficient $\neq 0$
\rightsquigarrow no significance testing involved

Can we easily improve?

(probably) not that much with respect to prediction
approach for variable selection with Boosting:
variables which have been selected bv the base procedure in
the process of boosting
e.g. in a (generalized) linear model fit:
variables with correspodning rearession coefficient $\neq 0$

Can we easily improve?

(probably) not that much with respect to prediction but often substantially with respect to variable/feature selection
approach for variable selection with Boosting:
variables which have been selected by the base procedure in the process of boosting
e.g. in a (generalized) linear model fit:
variables with correspodning regression coefficient $\neq 0$
\rightsquigarrow no significance testing involved

Building on the analogy with the Lasso
Meinshausen \& PB (2006):
for linear models

- Lasso is consistent for variable selection, even for $p \gg n$, if the design matrix is not "too correlated" $P[$ selected model $=$ true model $] \underbrace{\rightarrow 0}_{\text {quickly }}(n \rightarrow \infty)$
- prediction optimal solution selects too many variables
- if the design is "too correlated"
\rightsquigarrow Lasso is inconsistent for variable selection

Adaptive Lasso (Zou, 2006) resolves the inconsistency problem for variable selection:

$$
\hat{\beta}=\operatorname{argmin}_{\beta} \sum_{i=1}^{n}\left(Y_{i}-(X \beta)_{i}\right)^{2}+\lambda \sum_{j=1}^{p} \frac{\left|\beta_{j}\right|}{\underbrace{\left|\beta_{\text {init }, j}\right|}_{\text {e.g. OLS }}}
$$

nice result (Zou, 2006):
adaptive Lasso is consistent for variable selection (proof for low-dimensional problems only)

Twin Boosting (PB, 2006)

encompassing the adaptive Lasso for special cases
rough idea: two runs of boosting
first round of boosting as usual: first twin
second round of boosting which is forced to resemble the first rosind second twin

Twin Boosting (PB, 2006)

encompassing the adaptive Lasso for special cases
rough idea: two runs of boosting

- first round of boosting as usual: first twin

second round of boosting which is forced to resemble the

 first round: second twin

Twin Boosting (PB, 2006)

encompassing the adaptive Lasso for special cases
rough idea: two runs of boosting

- first round of boosting as usual: first twin
- second round of boosting which is forced to resemble the first round: second twin

Twin L_{2} Boosting for linear models
recap:
L_{2} Boosting with componentwise linear least squares chooses variable j which reduces RSS most

$$
\Leftrightarrow \quad\left|n^{-1} \sum_{i=1}^{n} U_{i} X_{i}^{(j)}\right|=\left|\widehat{\operatorname{Cor}}\left(U, X^{(j)}\right)\right| \text { maximal w.r.t. } j
$$

if predictor variables are standardized
first round: boosting estimate $\hat{\beta}_{\text {init }}$ from L_{2} Boosting
second round: as L_{2} Boosting but selecting variable using

$$
\left|n^{-1} \sum_{i=1}^{n} U_{i} X_{i}^{(j)}\right| \cdot\left|\hat{\beta}_{i n i t, j}\right| \text { maximal w.r.t. } j
$$

"pulling it towards" the initial estimate
\rightsquigarrow very easy and computationally efficient modification

PB (2006):

 for orthogonal linear models,> Twin L_{2} Boosting and adaptive Lasso coincide (with $\beta_{\text {init }}=$ estimate from first round of boosting) as step-size factor $\nu \rightarrow 0$

Twin Boosting (as well as adaptive Lasso) involve 2 tuning parameters more powerful for regularization in high-dimensional spaces

PB (2006):
for orthogonal linear models,

> Twin L_{2} Boosting and adaptive Lasso coincide (with $\beta_{\text {init }}=$ estimate from first round of boosting) as step-size factor $\nu \rightarrow 0$

Twin Boosting (as well as adaptive Lasso) involve
2 tuning parameters
\rightsquigarrow more powerful for regularization in high-dimensional spaces

Simulated example: $n=50, p=500$

$$
Y=\sum_{j=1}^{500} \beta_{j} X^{(j)}+\varepsilon, \beta_{1}=5, \beta_{j}=0(j=2, \ldots, 500)
$$

black: L_{2} Boosting
red: Twin L_{2} Boosting
easily extends to logistic linear and generalized linear models

Twin Boosting for trees
recap: trees can be excellent base procedures because

- they can easily handle missing data
- they can easily deal with mixed categorical, ordinal, continuous data
- they are invariant under monotone covariate-transformations
first round: boosting estimate $f_{\text {init }}$
second round: as boosting but select in each iteration the best tree $\hat{g}(\cdot)$ which reduces RSS and "resembles" $f_{\text {init }}$

$$
\underbrace{C_{\hat{g}}}_{\text {Cor }\left(\hat{g}, t_{\text {init }}\right)} \cdot \underbrace{\left(2 \sum_{i=1}^{n} U_{i} \hat{g}\left(X_{i}\right)-\sum_{i=1}^{n} \hat{g}\left(X_{i}\right)^{2}\right)}_{\text {"penalized correlation" }} \text { is maximized w.r.t. } \hat{g}
$$

(there is some mathematical justification for this)
\rightsquigarrow concept and formulae easily extend to classification, etc...

Sonar data: binary classification with $n=208, p=60$
misclassification error

boosting iteration
black: L_{2} Boosting
no. variables

red: Twin L_{2} Boosting
with synthetically enlarged predictor space adding $500 \mathcal{N}(0,1)$-distributed ineffective predictor variables

black: L_{2} Boosting
red: Twin L_{2} Boosting
\rightsquigarrow improved variable selection with Twin Boosting

Conclusions

Boosting

- is mainly useful for high-dimensional and/or large datasets
- is computationally very efficient
- is very competitive for prediction

- and Twin Boosting improves upon
- variable selection
- assigning variable importance in structured models (linear, additive, interaction)

