
Boosting and Twin Boosting
for High-Dimensional Data

Peter Bühlmann

Seminar für Statistik, ETH Zürich

High-dimensional data

(X1, Y1), . . . , (Xn, Yn) i.i.d. or stationary
Xi p-dimensional predictor variable
Yi univariate response variable, e.g. Yi ∈ R or Yi ∈ {0, 1}

high-dimensional: p � n

areas of application: astronomy, biology, imaging,
marketing research, text classification,...

High-dimensional data

(X1, Y1), . . . , (Xn, Yn) i.i.d. or stationary
Xi p-dimensional predictor variable
Yi univariate response variable, e.g. Yi ∈ R or Yi ∈ {0, 1}

high-dimensional: p � n

areas of application: astronomy, biology, imaging,
marketing research, text classification,...

Examples from molecular biology

Microarray data
I predictor variables:

expressions of p ≈ 5′000− 20′000 genes
I response variable: e.g. cancer sub-type or survival time
I sample size is n ≈ 10− 200

Splice site detection in DNA sequences
p = 16′384, n ≈ 11′000

Examples from molecular biology

Microarray data
I predictor variables:

expressions of p ≈ 5′000− 20′000 genes
I response variable: e.g. cancer sub-type or survival time
I sample size is n ≈ 10− 200

Splice site detection in DNA sequences
p = 16′384, n ≈ 11′000

Ensemble methods

also called multiple predictions, aggregation methods, ...

seem to be mainly useful for high-dimensional data
and for large data-sets with p and n large

“philosophy”:

a combination of estimates is better
than a single individual prediction

“clear” in the Bayesian paradigm:
e.g. Bayesian model averaging

Ensemble methods

also called multiple predictions, aggregation methods, ...

seem to be mainly useful for high-dimensional data
and for large data-sets with p and n large

“philosophy”:

a combination of estimates is better
than a single individual prediction

“clear” in the Bayesian paradigm:
e.g. Bayesian model averaging

General description

Base procedure or weak learner:

data
algorithm A

−→ θ̂(·) (a function estimate)
e.g.: simple linear regression, tree, MARS, “classical” smoothing, ...

generating an ensemble of estimates (or predictions):

weighted data 1
algorithm A

−→ θ̂1(·)

weighted data 2
algorithm A

−→ θ̂2(·)
· · · · · ·

weighted data M
algorithm A

−→ θ̂M(·)

aggregation (or “voting”): f̂A(·) =
∑M

m=1 amθ̂m(·)

data weights ? averaging weights am ?

two main settings:
I independently generated ensemble:

Example: Bagging, where
• reweighted data is generated by bootstrapping
• aggregation is the mean of the estimates

I coordinated generation of ensemble:
sequential: ensemble m depends on previous ensembles
direct dependence typically only on ensemble m − 1
Example: Boosting

Bagging is essentially a variance reduction method
e.g. use large trees and reduce their variance via bagging

Boosting is “basis expansion” and a bias reduction method
e.g. small trees whose combination yields richer function class

Random Forests (Alit & Geman, 1996; Breiman, 2001) is an
indep. generated ensemble with “randomized tree learner”

two main settings:
I independently generated ensemble:

Example: Bagging, where
• reweighted data is generated by bootstrapping
• aggregation is the mean of the estimates

I coordinated generation of ensemble:
sequential: ensemble m depends on previous ensembles
direct dependence typically only on ensemble m − 1
Example: Boosting

Bagging is essentially a variance reduction method
e.g. use large trees and reduce their variance via bagging

Boosting is “basis expansion” and a bias reduction method
e.g. small trees whose combination yields richer function class

Random Forests (Alit & Geman, 1996; Breiman, 2001) is an
indep. generated ensemble with “randomized tree learner”

two main settings:
I independently generated ensemble:

Example: Bagging, where
• reweighted data is generated by bootstrapping
• aggregation is the mean of the estimates

I coordinated generation of ensemble:
sequential: ensemble m depends on previous ensembles
direct dependence typically only on ensemble m − 1
Example: Boosting

Bagging is essentially a variance reduction method
e.g. use large trees and reduce their variance via bagging

Boosting is “basis expansion” and a bias reduction method
e.g. small trees whose combination yields richer function class

Random Forests (Alit & Geman, 1996; Breiman, 2001) is an
indep. generated ensemble with “randomized tree learner”

mathematically: definition(s) not precise...
because you could use/think of the ensemble method again as
the base procedure

but there are many impressive empirical results

with a version of LogitBoost (an ensemble method)

Roman Lutz
Statistics, ETH Zurich

winner of the WCCI 2006 prediction/classification challenge

 not an “out-dated” method
competitors were: weighted LS-SVM (S. Cawley),

Bayesian Neural Networks (R. Neal),
Random Forests (C. Dahinden),
SVM/Gaussian process classifier (W. Chu)

Classification of 2 lymph nodal status in breast cancer using
gene expressions from microarray data:
n = 33, p = 7129
(for CART: gene-preselection, reducing to p̂opt ≈ 50)

method test set error gain over CART
CART 22.5% –
LogitBoost with trees 16.3% 28%
LogitBoost with bagged trees 12.2% 46%

are we happy with that?

Classification of 2 lymph nodal status in breast cancer using
gene expressions from microarray data:
n = 33, p = 7129
(for CART: gene-preselection, reducing to p̂opt ≈ 50)

method test set error gain over CART
CART 22.5% –
LogitBoost with trees 16.3% 28%
LogitBoost with bagged trees 12.2% 46%

are we happy with that?

What about fitted models?
Interpretation of estimated parameters?

 prediction, variable selection, variable importance

I Linear models
I Generalized linear models
I Additive models
I Interaction models

Boosting algorithms

AdaBoost proposed for classification:
Freund & Schapire (1996)

data weights (rough original idea):
large weights to previously heavily misclassified instances
sequential algorithm; coordinated ensemble

averaging weights am:
large if in-sample performance in mth round was good

Why should this be good?

Boosting algorithms

AdaBoost proposed for classification:
Freund & Schapire (1996)

data weights (rough original idea):
large weights to previously heavily misclassified instances
sequential algorithm; coordinated ensemble

averaging weights am:
large if in-sample performance in mth round was good

Why should this be good?

Why should this be good?

some common answers 5 years ago ...
because

I it works so well for prediction (which is quite true)
I it concentrates on the “hard cases” (so what?)
I AdaBoost almost never overfits the data no matter how

many iterations it is run (not true)

Why should this be good?

some common answers 5 years ago ...
because

I it works so well for prediction (which is quite true)
I it concentrates on the “hard cases” (so what?)
I AdaBoost almost never overfits the data no matter how

many iterations it is run (not true)

Why should this be good?

some common answers 5 years ago ...
because

I it works so well for prediction (which is quite true)
I it concentrates on the “hard cases” (so what?)
I AdaBoost almost never overfits the data no matter how

many iterations it is run (not true)

Why should this be good?

some common answers 5 years ago ...
because

I it works so well for prediction (which is quite true)
I it concentrates on the “hard cases” (so what?)
I AdaBoost almost never overfits the data no matter how

many iterations it is run (not true)

A better explanation
Breiman (1998/99):
AdaBoost is functional gradient descent (FGD) procedure

Aim: find f ∗(·) = argminf (·)E[ρ(Y , f (X))]

e.g. for ρ(y , f) = |y − f |2 f ∗(x) = E[Y |X = x]

FGD solution: consider empirical risk n−1 ∑n
i=1 ρ(Yi , f (Xi)) and

do iterative steepest descent in function space

Generic FGD algorithm

Step 1. f̂0 ≡ 0; set m = 0.

Step 2. Increase m by 1. Compute negative gradient − ∂
∂f ρ(Y , f)

and evaluate at f = f̂m−1(Xi) = Ui (i = 1, . . . , n)

Step 3. Fit negative gradient vector U1, . . . , Un by base proced.

(Xi , Ui)
n
i=1

algorithm A
−→ θ̂m(·)

e.g. θ̂m(·) fitted by (weighted) least squares
i.e. θ̂m(·) is an approximation of the negative gradient vector

Step 4. Up-date f̂m = f̂m−1(·) + ν · θ̂m(·) (0 < ν ≤ 1 step-length)
i.e: proceed along an estimate of the negative gradient vector

Step 5. Iterate Steps 2-4 until m = mstop

ν small will be good, e.g. ν = 0.1

Why “functional gradient”?

Alternative formulation in function space:

empirical risk functional: C(f) = n−1 ∑n
i=1 ρ(Yi , f (Xi))

inner product: 〈f , g〉 = n−1 ∑n
i=1 f (Xi)g(Xi)

negative Gateaux derivative:

−dC(f)(x) =
∂

∂α
− C(f + α1x)|α=0, −dC(f̂m−1)(Xi) = Ui

as previously defined!

By definition: FGD yields additive combination of base
procedure fits ν

∑mstop
m=1 θ̂m(·)

Breiman (1998):
FGD with ρ(y , f) = exp((2y − 1) · f) for binary classification

yields the AdaBoost algorithm
(great result!)

L2Boosting (Friedman, 2001; PB & Yu, 2003)

loss function ρ(y , f) = |y − f |2
population minimizer: f ∗(x) = E[Y |X = x]
FGD with base procedure θ̂(·): repeated fitting of residuals

m = 1 : (Xi , Yi)
n
i=1 θ̂1(·), f̂1 = θ̂1 resid. Ui = Yi − f̂1(Xi)

m = 2 : (Xi , Ui)
n
i=1 θ̂2(·), f̂2 = f̂1 + θ̂2 resid. Ui = Yi − f̂2(Xi)

... ...

f̂mstop(·) = ν
∑mstop

m=1 θ̂m(·) (greedy fitting of residuals)

Tukey (1977): twicing for mstop = 2 and ν = 1

any gain over classical methods? (for additive modeling)

n = 300, p = 8
Ozone data: n=300, p=8

boosting iterations

M
S

E

0 20 40 60 80 100

18
19

20
21

22 - magenta: L2Boosting with stumps

(horiz. line = cross-validated stopping)

- black: L2Boosting with componentwise

smoothing spline

(horiz. line = cross-validated stopping)

i.e: smoothing spline fitting against the

selected predictor which reduces RSS most

- green: MARS restricted to additive modeling

- red: additive model using backfitting

L2Boosting with stumps or comp. smooth. spl: additive model,
ν

∑mstop
m=0 θ̂m(x (Ŝm)) = ĝ1(x (1)) + . . . + ĝp(x (p))

simulated data: non-additive regression function

n = 200, p = 100
Regression: n=200, p=100

boosting iterations

M
S

E

0 50 100 150 200 250 300

11
12

13
14

15
16

- magenta: L2Boosting with stumps

- black: L2Boosting with componentwise

- green: MARS restricted to additive modeling

- red: additive model using backfitting and

fwd. var. selection

similar for classification
very often:

Boosting performs comparatively well in high-dimensions
(there is a lot of empirical evidence for this!)

Structured models and choosing the base procedure

have just seen: with the
componentwise smoothing spline base procedure
smoothes the response against the one predictor variable which reduces RSS most

 L2Boosting yields an additive model fit,
including variable selection

i.e. structured model fit

Structured models and choosing the base procedure

have just seen: with the
componentwise smoothing spline base procedure
smoothes the response against the one predictor variable which reduces RSS most

 L2Boosting yields an additive model fit,
including variable selection

i.e. structured model fit

Componentwise linear least squares base procedure

simple linear ordinary least squares against the one predictor
variable which reduces RSS most

θ̂(x) = β̂Ŝx(Ŝ)
, β̂j =

nX
i=1

Yi X
(j)
i /

nX
i=1

(X (j)
i)2

, Ŝ = argminj

nX
i=1

(Yi − β̂j X
(j)
i)2

first round: selected predictor variable X (Ŝ1) (e.g. = X (3))
corresponding β̂Ŝ1

 fitted function f̂1(x)

2nd round: selected predictor variable X (Ŝ2) (e.g.= X (21))
corresponding β̂Ŝ2

 fitted function f̂2(x)
etc.
L2Boosting: f̂m(x) = f̂m−1(x) + ν · θ̂(x)

 linear model fit, including variable selection

i.e. structured model fit

Componentwise linear least squares base procedure

simple linear ordinary least squares against the one predictor
variable which reduces RSS most

θ̂(x) = β̂Ŝx(Ŝ)
, β̂j =

nX
i=1

Yi X
(j)
i /

nX
i=1

(X (j)
i)2

, Ŝ = argminj

nX
i=1

(Yi − β̂j X
(j)
i)2

first round: selected predictor variable X (Ŝ1) (e.g. = X (3))
corresponding β̂Ŝ1

 fitted function f̂1(x)

2nd round: selected predictor variable X (Ŝ2) (e.g.= X (21))
corresponding β̂Ŝ2

 fitted function f̂2(x)
etc.
L2Boosting: f̂m(x) = f̂m−1(x) + ν · θ̂(x)

 linear model fit, including variable selection

i.e. structured model fit

for ν = 1, this is known as
Matching Pursuit (Mallat and Zhang, 1993)
Weak greedy algorithm (deVore & Temlyakov, 1997)
a version of Boosting (Schapire, 1992; Freund & Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gauss in 1803
“Princeps Mathematicorum”

R.V. Southwell in 1933
Professor in Oxford

for ν = 1, this is known as
Matching Pursuit (Mallat and Zhang, 1993)
Weak greedy algorithm (deVore & Temlyakov, 1997)
a version of Boosting (Schapire, 1992; Freund & Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gauss in 1803
“Princeps Mathematicorum”

R.V. Southwell in 1933
Professor in Oxford

Binary lymph node classification using gene expressions:
a high noise problem

n = 49 samples, p = 7129 gene expressions

cross-validated misclassification error (2/3 training; 1/3 test)

Lasso L2Boosting FPLR Pelora 1-NN DLDA SVM
21.1% 17.7% 35.25% 27.8% 43.25% 36.12% 36.88%

multivariate gene selection best 200 genes (Wilcoxon test)
no additional gene selection

42 (out of 7129) selected genes (n = 49)

0 10 20 30 40

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05

sorted regression coefficients

selected genes

108

identifiability problem: strong correlations among some genes

 consider groups of highly correlated genes
biological categories (e.g. GO ontology),

Pairwise smoothing spline base procedure
smoothes response against the pair of predictor variables
which reduces RSS most
 L2Boosting yields a nonparametric interaction model,

including variable selection

i.e. structured model fit

Pairwise smoothing spline base procedure
smoothes response against the pair of predictor variables
which reduces RSS most
 L2Boosting yields a nonparametric interaction model,

including variable selection

i.e. structured model fit

Example: degree 2 nonparametric interaction modelling
Friedman #1 model:
Y = 10 sin(πX (1)X (2))+20(X (3)−0.5)2 +10X (4) +5X (5) +N (0, 1), X = (X (1), . . . , X (20)) ∼ Unif.([0, 1]20)

0 100 200 300 400 500

4
5

6
7

p=20, p−eff=10, n=50

boosting iterations

M
S

E

MARS

L2Boost

AIC_c stopped

L2Boosting with pairwise splines

sample size n = 50
p = 20, effective peff = 5

both methods have the same (high) degree of interpretation

Regression tree base procedure

stumps (2 terminal nodes): L2Boosting fits an additive model

trees with d terminal nodes: L2Boosting fits an interaction
model of degree d − 2

i.e. “fairly” structured model fit

note: trees can be very useful because:
I they can easily handle missing data
I they can easily deal with mixed categorical, ordinal,

continuous data
I they are invariant under monotone

covariate-transformations

Regression tree base procedure

stumps (2 terminal nodes): L2Boosting fits an additive model

trees with d terminal nodes: L2Boosting fits an interaction
model of degree d − 2

i.e. “fairly” structured model fit

note: trees can be very useful because:
I they can easily handle missing data
I they can easily deal with mixed categorical, ordinal,

continuous data
I they are invariant under monotone

covariate-transformations

Regression tree base procedure

stumps (2 terminal nodes): L2Boosting fits an additive model

trees with d terminal nodes: L2Boosting fits an interaction
model of degree d − 2

i.e. “fairly” structured model fit

note: trees can be very useful because:
I they can easily handle missing data
I they can easily deal with mixed categorical, ordinal,

continuous data
I they are invariant under monotone

covariate-transformations

The low variance high bias “principle”
once we have decided about some structural properties

choose base procedure with
low variance but potentially large estimation bias

bias can be reduced by further boosting iterations (which will
increase variance)

example:
low degrees of freedom in componentwise smoothing splines
for additive modeling

there is a supporting
asymptotic minimax theory for this principle (PB & Yu, 2003)

asymptotically as n →∞,
L2Boosting with smoothing spline is optimal (achieves minimax rate) for
1-dimensional curve estimation (x ∈ R1)

if degrees of freedom (number of equivalent parameters) in the smoothing
spline are fixed (i.e. “low”)
and number of boosting iterations asymptotically increases

More on L2Boosting for linear models

use componentwise linear least squares base procedure

L2Boosting converges to a least squares solution as boosting
iterations m →∞
(the unique LS solution if design has full rank p ≤ n)

when stopping early:
I it does variable selection
I coefficient estimates are typically shrunken version of LS

 “similar to” the Lasso

β̂(λ) = argminβ(n−1‖Y − Xβ‖2 + λ︸︷︷︸
≥0

‖β‖1︸ ︷︷ ︸Pp
j=1 |βj |

)

More on L2Boosting for linear models

use componentwise linear least squares base procedure

L2Boosting converges to a least squares solution as boosting
iterations m →∞
(the unique LS solution if design has full rank p ≤ n)

when stopping early:
I it does variable selection
I coefficient estimates are typically shrunken version of LS

 “similar to” the Lasso

β̂(λ) = argminβ(n−1‖Y − Xβ‖2 + λ︸︷︷︸
≥0

‖β‖1︸ ︷︷ ︸Pp
j=1 |βj |

)

Connections to Lasso (for linear models):
Efron, Hastie, Johnstone, Tibshirani (2004): for special design
matrices,

iterations of L2Boosting with “infinitesimally” small ν
yield all Lasso solutions when varying λ

 computationally interesting to produce all Lasso solutions in
one sweep of boosting

Least Angle Regression LARS (Efron et al., 2004) is
computationally clever as well

Zhao and Yu (2005): in “general”,
when adding some backward steps
the solutions from Lasso and modified Boosting “coincide”

greedy (plus backward steps) and convex optimization are
surprisingly similar

Connections to Lasso (for linear models):
Efron, Hastie, Johnstone, Tibshirani (2004): for special design
matrices,

iterations of L2Boosting with “infinitesimally” small ν
yield all Lasso solutions when varying λ

 computationally interesting to produce all Lasso solutions in
one sweep of boosting

Least Angle Regression LARS (Efron et al., 2004) is
computationally clever as well

Zhao and Yu (2005): in “general”,
when adding some backward steps
the solutions from Lasso and modified Boosting “coincide”

greedy (plus backward steps) and convex optimization are
surprisingly similar

The theoretical limit for dimensionality
linear model

Yi = β0 +

p∑
j=1

βjX
(j)
i + εi (i = 1, . . . , n), p � n

Theorem (PB, 2006)
L2Boosting with comp. linear LS is consistent (with suitable
number of boosting iterations) if:
• pn = O(exp(Cn1−ξ)) (0 < ξ < 1) (high-dimensional)

essentially exponentially many variables relative to n
• supn

∑pn
j=1 |βj,n| < ∞ `1-sparseness of true function

i.e. for suitable, slowly growing m = mn:

EX |̂fmn,n(X)− fn(X)|2 = oP(1) (n →∞)

“no” assumptions about the predictor variables/design matrix

The theoretical limit for dimensionality
linear model

Yi = β0 +

p∑
j=1

βjX
(j)
i + εi (i = 1, . . . , n), p � n

Theorem (PB, 2006)
L2Boosting with comp. linear LS is consistent (with suitable
number of boosting iterations) if:
• pn = O(exp(Cn1−ξ)) (0 < ξ < 1) (high-dimensional)

essentially exponentially many variables relative to n
• supn

∑pn
j=1 |βj,n| < ∞ `1-sparseness of true function

i.e. for suitable, slowly growing m = mn:

EX |̂fmn,n(X)− fn(X)|2 = oP(1) (n →∞)

“no” assumptions about the predictor variables/design matrix

analogous results also for
• multivariate regression
• vector autoregressive time series
(Lutz & PB, 2006)

Other loss functions for boosting: beyond regression

for binary classification with Y ∈ {0, 1}:
ρ(y , f) = log2(1 + exp(−(2 ∗ y − 1)f))
negative binomial log-likelihood
population minimizer: f ∗(x) = log(p(x)

1−p(x))

 can estimate probabilities p(·) from estimate f̂ (·)

for count data with Y ∈ {0, 1, 2, . . .}:
ρ(y , f) = exp(f)− yf
negative Poisson log-likelihood
population minimizer: f ∗(x) = log(E[Y |X = x])

etc...

Requirement: ρ(y , f) is differentiable with respect to f almost
everywhere
for example: L1-loss ρ(y , f) = |y − f | is OK

Other loss functions for boosting: beyond regression

for binary classification with Y ∈ {0, 1}:
ρ(y , f) = log2(1 + exp(−(2 ∗ y − 1)f))
negative binomial log-likelihood
population minimizer: f ∗(x) = log(p(x)

1−p(x))

 can estimate probabilities p(·) from estimate f̂ (·)

for count data with Y ∈ {0, 1, 2, . . .}:
ρ(y , f) = exp(f)− yf
negative Poisson log-likelihood
population minimizer: f ∗(x) = log(E[Y |X = x])

etc...

Requirement: ρ(y , f) is differentiable with respect to f almost
everywhere
for example: L1-loss ρ(y , f) = |y − f | is OK

Other loss functions for boosting: beyond regression

for binary classification with Y ∈ {0, 1}:
ρ(y , f) = log2(1 + exp(−(2 ∗ y − 1)f))
negative binomial log-likelihood
population minimizer: f ∗(x) = log(p(x)

1−p(x))

 can estimate probabilities p(·) from estimate f̂ (·)

for count data with Y ∈ {0, 1, 2, . . .}:
ρ(y , f) = exp(f)− yf
negative Poisson log-likelihood
population minimizer: f ∗(x) = log(E[Y |X = x])

etc...

Requirement: ρ(y , f) is differentiable with respect to f almost
everywhere
for example: L1-loss ρ(y , f) = |y − f | is OK

Computation

computation for general loss functions involves a
trivial extension only!

instead of residuals in L2Boosting

Ui = Yi − f̂m−1(Xi), i = 1, . . . , n

we use “generalized residuals”

Ui =
∂

∂f
ρ(Y , f)|f=f̂m−1(Xi)

, i = 1, . . . , n

since there is (usually) a closed form, simple expression of the
partial derivative
 same computational cost as for L2Boosting

The mboost package in R (Hothorn & PB, 2006)

for various boosting algorithms and corresponding model fitting

I easy to use and coherent implementation for
• regression
• classification
• Poisson regression
• survival analysis with Cox’s partial likelihood
• your own loss function

I allows for various weak learners
• componentwise least squares
• componentwise smoothing splines
• trees

I computationally very fast for high-dimensional generalized
linear models

CPU time
Binary lymph node classification example: p = 7129, n = 49
with L2Boosting or BinomialBoosting (Binomial log-likelihood)
for large range of solutions

it’s less than a second!

0.906 seconds using mboost in R (PB & Hothorn, 2006)

in comparison:
for linear models, computing Lasso solutions for all λ’s

2.603 seconds using lars in R (with use.gram=F)

CPU time
Binary lymph node classification example: p = 7129, n = 49
with L2Boosting or BinomialBoosting (Binomial log-likelihood)
for large range of solutions

it’s less than a second!

0.906 seconds using mboost in R (PB & Hothorn, 2006)

in comparison:
for linear models, computing Lasso solutions for all λ’s

2.603 seconds using lars in R (with use.gram=F)

CPU time
Binary lymph node classification example: p = 7129, n = 49
with L2Boosting or BinomialBoosting (Binomial log-likelihood)
for large range of solutions

it’s less than a second!

0.906 seconds using mboost in R (PB & Hothorn, 2006)

in comparison:
for linear models, computing Lasso solutions for all λ’s

2.603 seconds using lars in R (with use.gram=F)

DNA splice site detection: a classification problem

DNA sequence

. . . ACGGC . . . NNN GC︸︷︷︸
potential donor site

NNNN

︸ ︷︷ ︸
3 positions exon GC 4 positions intron

. . . AAC . . .

response Y ∈ {0, 1}: splice or non-splice site
predictor variables: 7 factors each having 4 levels

(full dimension: 47 = 16′384)
data: p = 16′384, n = 11′220

logistic regression:

log
(

p(x)

1− p(x)

)
= β0 + main effects + first order interactions + . . .

with sum-to-zero constraints

use groupwise linear least squares base procedure
and binomial likelihood loss

“groupwise”:
e.g. the whole interaction term between factor 2 and 5 (which is
encoded with 9 free parameters/dummy indicators) is fitted at a
time

Term

1 3 5 7 1:3 1:5 1:7 2:4 2:6 3:4 3:6 4:5 4:7 5:7
2 4 6 1:2 1:4 1:6 2:3 2:5 2:7 3:5 3:7 4:6 5:6 6:7

l 2
−

no
rm

0
1

2 GL
GL/R
GL/MLE

Term

1:2:3 1:2:5 1:2:7 1:3:5 1:3:7 1:4:6 1:5:6 1:6:7 2:3:5 2:3:7 2:4:6 2:5:6 2:6:7 3:4:6 3:5:6 3:6:7 4:5:7 5:6:7
1:2:4 1:2:6 1:3:4 1:3:6 1:4:5 1:4:7 1:5:7 2:3:4 2:3:6 2:4:5 2:4:7 2:5:7 3:4:5 3:4:7 3:5:7 4:5:6 4:6:7

l 2
−

no
rm

0
1

2

I mainly neighboring DNA positions show interactions
(has been “known” and “debated”)

I no interaction among exon and intron positions
I no second-order interactions

predictive power:
competitive with “state to the art” maximum entropy modeling
from Yeo & Burge (2004)

test set correlation between true and predicted class

Boosting 0.6593
max. entropy (Yeo & Burge) 0.6589

I our model is simple and has clear interpretation
I it is as good or better than many of the complicated

non-Markovian stochastic process models
(e.g. Zhao, Huang and Speed (2004))

we have other examples on
I survival analysis
I high-order contingency tables
I etc...

Can we easily improve?

(probably) not that much with respect to prediction
but often substantially with respect to variable/feature selection

approach for variable selection with Boosting:
variables which have been selected by the base procedure in
the process of boosting

e.g. in a (generalized) linear model fit:
variables with correspodning regression coefficient 6= 0

 no significance testing involved

Can we easily improve?

(probably) not that much with respect to prediction
but often substantially with respect to variable/feature selection

approach for variable selection with Boosting:
variables which have been selected by the base procedure in
the process of boosting

e.g. in a (generalized) linear model fit:
variables with correspodning regression coefficient 6= 0

 no significance testing involved

Can we easily improve?

(probably) not that much with respect to prediction
but often substantially with respect to variable/feature selection

approach for variable selection with Boosting:
variables which have been selected by the base procedure in
the process of boosting

e.g. in a (generalized) linear model fit:
variables with correspodning regression coefficient 6= 0

 no significance testing involved

Building on the analogy with the Lasso

Meinshausen & PB (2006):
for linear models

I Lasso is consistent for variable selection, even for p � n,
if the design matrix is not “too correlated”
P[selected model = true model] → 0︸︷︷︸

quickly

(n →∞)

I prediction optimal solution selects too many variables
I if the design is “too correlated”
 Lasso is inconsistent for variable selection

Adaptive Lasso (Zou, 2006) resolves the inconsistency problem
for variable selection:

β̂ = argminβ

n∑
i=1

(Yi − (Xβ)i)
2 + λ

p∑
j=1

|βj |
|βinit ,j |︸ ︷︷ ︸

e.g. OLS

nice result (Zou, 2006):
adaptive Lasso is consistent for variable selection
(proof for low-dimensional problems only)

Twin Boosting (PB, 2006)

encompassing the adaptive Lasso for special cases

rough idea: two runs of boosting
I first round of boosting as usual: first twin
I second round of boosting which is forced to resemble the

first round: second twin

Twin Boosting (PB, 2006)

encompassing the adaptive Lasso for special cases

rough idea: two runs of boosting
I first round of boosting as usual: first twin
I second round of boosting which is forced to resemble the

first round: second twin

Twin Boosting (PB, 2006)

encompassing the adaptive Lasso for special cases

rough idea: two runs of boosting
I first round of boosting as usual: first twin
I second round of boosting which is forced to resemble the

first round: second twin

Twin L2Boosting for linear models

recap: L2Boosting with componentwise linear least squares
chooses variable j which reduces RSS most

⇔ |n−1
n∑

i=1

UiX
(j)
i | = |Ĉor(U, X (j))| maximal w.r.t. j

if predictor variables are standardized

first round: boosting estimate β̂init from L2Boosting

second round: as L2Boosting but selecting variable using

|n−1
n∑

i=1

UiX
(j)
i | · |β̂init ,j | maximal w.r.t. j

“pulling it towards” the initial estimate
 very easy and computationally efficient modification

PB (2006):
for orthogonal linear models,

Twin L2Boosting and adaptive Lasso coincide
(with βinit = estimate from first round of boosting)

as step-size factor ν → 0

Twin Boosting (as well as adaptive Lasso) involve
2 tuning parameters
 more powerful for regularization in high-dimensional spaces

PB (2006):
for orthogonal linear models,

Twin L2Boosting and adaptive Lasso coincide
(with βinit = estimate from first round of boosting)

as step-size factor ν → 0

Twin Boosting (as well as adaptive Lasso) involve
2 tuning parameters
 more powerful for regularization in high-dimensional spaces

Simulated example: n = 50, p=500

Y =
500∑
j=1

βjX (j) + ε, β1 = 5, βj = 0 (j = 2, . . . , 500)

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MSE

boosting iteration

M
S

E

0 50 100 150 200

0
10

20
30

40

no. variables

boosting iteration

no
. o

f v
ar

ia
bl

es

0 20 40 60 80 100

0
2

4
6

8
10

no. incorrect variables

boosting iteration

no
. o

f i
nc

or
re

ct
 v

ar
ia

bl
es

black: L2Boosting red: Twin L2Boosting

easily extends to logistic linear and generalized linear models

Twin Boosting for trees
recap: trees can be excellent base procedures because

I they can easily handle missing data
I they can easily deal with mixed categorical, ordinal, continuous data
I they are invariant under monotone covariate-transformations

first round: boosting estimate finit

second round: as boosting but select in each iteration the
best tree ĝ(·) which reduces RSS and “resembles” finit

Cĝ|{z}
Cor(ĝ,finit)

·

2

nX
i=1

Ui ĝ(Xi)−
nX

i=1

ĝ(Xi)
2

!
| {z }

“penalized correlation”

is maximized w.r.t. ĝ

(there is some mathematical justification for this)

 concept and formulae easily extend to classification, etc...

Sonar data: binary classification with n=208, p = 60

0 100 200 300 400 500

0.
17

0.
18

0.
19

0.
20

0.
21

0.
22

misclassification error

boosting iteration

m
is

cl
as

si
fic

at
io

n
er

ro
r

0 100 200 300 400 500

0
10

20
30

40

no. variables

boosting iteration
no

. o
f v

ar
ia

bl
es

black: L2Boosting red: Twin L2Boosting

with synthetically enlarged predictor space
adding 500 N (0, 1)-distributed ineffective predictor variables

0 100 200 300 400 500

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

0.
25

misclassification error

boosting iteration

m
is

cl
as

si
fic

at
io

n
er

ro
r

0 100 200 300 400 500

0
20

40
60

80

no. variables

boosting iteration

no
. o

f v
ar

ia
bl

es

0 100 200 300 400 500

0
10

20
30

40
50

no. incorrect variables

boosting iteration

no
. o

f v
ar

ia
bl

es

black: L2Boosting red: Twin L2Boosting

 improved variable selection with Twin Boosting

Conclusions

Boosting
I is mainly useful for high-dimensional and/or large datasets
I is computationally very efficient
I is very competitive for prediction

I and Twin Boosting improves upon
• variable selection
• assigning variable importance in structured models

(linear, additive, interaction)

	High-dimensional data

