
Noname manuscript No.
(will be inserted by the editor)

Comments on: A Random Forest Guided Tour
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We congratulate Gérard Biau and Erwan Scornet for an interesting paper on
an important topic, namely towards better understanding of Random Forests
and related ensemble schemes.

1 Some further thoughts on the paper

Biau and Scornet (referred in the sequel as “BS”) present a nice overview on
recent developments for Random Forests. As mentioned in BS, already Amit
and Geman (1997) proposed to randomly select covariables (or “features”)
during the process of learning decision trees, and average at the final stage:
their motivation was mainly of computational nature, in order to deal with very
many features. In fact, Breiman (2001) is referring to the paper by Amit and
Geman, but he certainly is the person who has made a pioneering contribution
with Random Forests pointing out its stunning accuracy in a wide range of
problems, its versatility and introducing also concepts of variable importance.

Peter Bühlmann
Seminar for Statistics, ETH Zürich, CH-8092 Zürich
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1.1 Improving the performance of Random Forests?

Random Forests as proposed by Breiman (2001) is surprisingly accurate for
regression and classification problems, and there is empirical support that it
is among the “best off-the-shelf classifiers/estimators”. In particular, the fact
that the performance of the algorithm is rather insensitive to the choice of
the tuning parameters justifies its use without the need to carefully choose
a regularization parameter with e.g. cross-validation. We note that this find-
ing is very different from other nonparametric or high-dimensional estimation
schemes such as the Lasso (Tibshirani, 1996) or versions thereof.

Improving Random Forests, with respect to a wide range of applications
and datasets, has been found to be very difficult. Recently, Cannings and
Samworth (2015) proposed a random projection ensemble method for classi-
fication, and they report a couple of scenarios where Random Forests can be
outperformed by some of their random projection ensemble classifiers. How-
ever, when Random Forests competes against one of their proposed random
projection methods, the empirical results do not point very clearly in favor of
one or the other method.

1.2 Subsampling and bootstrapping

The theoretical arguments for Random Forests seem to be much better de-
veloped for its version with subsampling instead of bootstrapping. We point
here to an older result of Freedman (1977), saying that subsampling with sub-
sample size an is closest to bootstrap resampling with respect to the total
variation norm for an = bn/2c. This fact has been also empirically exploited
in Bühlmann and Yu (2002) with their subagging procedure when compared
to bagging (Breiman, 1996). The theory described in BS is interesting: for ex-
ample, that the median forest is consistent if an = o(n) (Scornet, 2015), and
that asymptotic normality holds if an = o(

√
n) (Mentch and Hooker, 2015).

All these results exclude the range where an ∼ Cn for some 0 < C < 1. Is it
a fundamental limitation that an = o(n) (e.g. for consistency) or is it rather a
lack of techniques to deal with U-statistics of order an where an is very large
and asymptotically proportional to n?

1.3 Variable importance

Variable importance is very crucial for many practical applications. Construct-
ing importance measures based on Random Forests is very interesting as it
enables applications with mixed data-types (continuous and categorical data):
for example, Fellinghauer et al (2013) make use of Random Forests variable
importance for constructing conditional independence graphs.

The importance measure which have been proposed so far seem to work
“reasonably well”, but they seem to lack a more rigorous multivariate justi-

fication. For example, the M̂DA measure and its population version MDA∗
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are reflecting a marginal aspect, as M̂DA is based on marginal permutation of
the variable of interest. A multivariate interpretation, e.g. as for a regression
coefficient in a (generalized) linear model, cannot be easily achieved unless
one adopts the computationally cumbersome conditional importance measure
(Strobl et al, 2008).

This remains a topic of future research.

1.4 Extensions based on Random Forests

As BS point out, Random Forests can be used in other settings than classifi-
cation or regression.

Missing data problems are briefly mentioned in BS. Another powerful
method is MissForest (Stekhoven and Bühlmann, 2012): it uses Random Forests
regression iteratively to impute the missing values. The method enjoys the
same advantage as Random Forests for regression and classification, namely
that it can be easily used for mixed type data, taking nonlinearities and inter-
actions into account.

For survival problems, Random Forests and other ensemble methods have
been proposed also in Hothorn et al (2006), based on the idea of weighted
resampling with inverse probability of censoring (IPC) weights (van der Laan
and Robins, 2003, cf.).

2 Some outlook: inhomogeneous large-scale data

The Random Forests methodology and also the presented theory in BS rely on
the assumption that the data are i.i.d. realizations of (X1, Y1), . . . , (Xn, Yn).
In particular for large-scale data (or “big data”) where n is large, the i.i.d.
assumption is questionable. It can be weakened by assuming that the data
comes from G unknown groups, with i.i.d. realizations within each group. If
the groups are completely unstructured, this corresponds to a mixture model
with G components. For example, a mixture of high-dimensional regression
models has been considered by Städler et al (2010). In view of no further
structural assumption about the groups, the problem of estimating the mixture
components is rather difficult. An easier case occurs when the groups contain
consecutive observations: such a scenario then corresponds to a change point
problem. Especially for large-scale (“big”) data, we believe that a change point
model of the following form is a reasonable approximation:

Yi = fi(Xi) + σεi (i = 1, . . . , n),

ε1, . . . , εn i.i.d. with E[εi] = 0, Var(εi) = 1, (1)

where fi(·) is piecewise constant as a function of i, and εi is independent of
Xi. That is, when having G segments with corresponding change points scaled
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to the interval [0, 1], namely, α0 = 0 < α1 < . . . < αG = 1,

fi(x) =

G∑
g=1

f(g;x)I(i/n ∈ (αg−1, αg]),

involving G nonparametric regression functions f(1; ·), . . . , f(G; ·) for the G
different segments. A related but high-dimensional parametric linear change
point model has been proposed by Leonardi and Bühlmann (2016). There, the
regression function f(g;x) is fitted with an `1-norm penalized linear function
βTg x: replacing it by a Random Forests regression function, we propose the fol-
lowing joint estimator for the change points and the nonparametric regression
functions: for γ > 0

α̂ = arg min
G,α

{ G∑
g=1

Ln(αg−1, αg) + γG
}
, (2)

where the loss function Ln is given by

Ln(αg−1, αg) = n−1
n∑
i=1

(yi − f̂(g;xi))
2 I(i/n ∈ (αg−1, αg]) , (3)

the functions f̂(g; ·) are the Random Forest regression functions estimated on
the subsample {(Xi, Yi) : I(i/n ∈ (αg−1, αg]} from a segment (αg−1, αg], and
the minimization in (2) is over the set of all vectors α = (α0, . . . , αG) satisfying
0 = α0 < α1 < . . . < αG = 1 and αg − αg−1 ≥ δ for all g, with δ > 0. The
parameter δ ensures that the estimated segments will not become too small,
containing at least δ · n data points.

2.1 Binary Segmentation algorithm

It is proved in Leonardi and Bühlmann (2016) for a high-dimensional linear
change point model, that a binary segmentation algorithm leads to an estima-
tor which has the same statistical properties as the global estimator in (2), in
terms of an oracle inequality which bears some similarity to the one from high-
dimensional regression (Bühlmann and van de Geer, 2011, cf.). The algorithm
here is as follows.

For 0 ≤ u < v ≤ 1 define

h(u, v) = arg min
s∈{u}∪[u+δ,v−δ]

{Ln(u, s) + Ln(s, v) + γ(1 + I(s > u)) } . (4)

The binary segmentation algorithm works by computing the best single change
point for the interval (0, 1] (obtained when h(0, 1) 6= 0) and then to iterate
this criterion on both segments separated by this point, until no more change
points are found (due to the penalty in the objective function). We can describe
this algorithm by using a binary tree structure T with nodes labeled by sub-
intervals (u, v] ⊂ (0, 1]. The steps of the algorithm are given by:
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1. Initialize T to the tree with a single root node labeled by (0, 1].
2. For each terminal node (u, v] in T compute s = h(u, v). If s > u add to T

the additional nodes (u, s] and (s, v] as descendants of node (u, v].
3. Repeat 2. until no more nodes can be added to T .

The set of terminal nodes in T , denoted by T 0, can be identified with the
estimated change point vector α̂, by picking up the extremes in these intervals;
that is

α̂ =
⋃

(u,v]∈T 0

{u, v} .

2.2 Some numerical illustrations

Consider the following regression model with change points as in (1):

εi ∼ N (0, 1), σ = 1; Xi ∼ Np(0, Σ), Σij = 0.8|i−j| ∀i, j;
α0 = 0, α1 = 0.3, α2 = 0.7, α3 = 1;

f(g = 1;x) = sin(x(1)) + x(2) + x(3) + x(1)x(2),

f(g = 2;x) = sin(x(1)) + x(p−1) + x(p) + x(p−2)x(p−1),

f(g = 3;x) = x(1) + x(1)x(20) + sin(x(50)) (5)

with p = 2n and n ∈ {50, 100, . . . , 250}. For 20 independent replications of
sample size n we compute the estimated change points and the number of
groups given by the binary segmentation algorithm of Section 2.1, using the
loss function based on Random Forests defined in (3). The boxplots corre-
sponding to the first estimated change point and the barplots for the estimated
number of groups for each sample size n are summarized in Figure 1, suggest-
ing asymptotic consistency as n → ∞ (while p = 2n → ∞ as well). For the
simulations we used δ = 0.1 and a γ parameter depending on n and p, given
by γ(n) =

√
log(p)/n. In practice the number of groups can be selected by a

cross-validation procedure as proposed in Leonardi and Bühlmann (2016).

2.3 Maximin aggregation: Magging

Besides the nonparametric segmentation which is interesting in its own right,
we have access to the output statistics of the Random Forests estimates,

namely the functions f̂(g; ·) as well as the importance measures M̂DA(g;X(j))
(see formula (6) in the the paper by BS).

We can aggregate the estimates of the different segments to a single es-
timated regression function or a single variable importance measure. Instead
of mean aggregation (Breiman, 1996), it is perhaps more interesting to ask
for some sort of “stability” across all the G groups. This can be achieved by
maximin aggregation called “magging” (Meinshausen and Bühlmann, 2015;
Bühlmann and Meinshausen, 2016). The idea is to find the convex combina-

tion of f̂(1; ·), . . . , f̂(G; ·) which optimizes the explained variance in the worst
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Fig. 1 First estimated change point fraction α̂1 (left panel) and number of groups G (right

panel), as a function of sample size n and p = 2n. We used δ = 0.1 and γ =
√

log(p)/n

case scenario across the G groups. It can be shown that this corresponds to a
convex aggregation whose `2-norm is minimized:

f̂magging =

G∑
g=1

ŵg f̂(g; ·), (6)

where the convex combination weights can be computed from a quadratic
program

ŵ = argminw∈CG
‖

G∑
g=1

wg(f̂(g;X1), . . . , f̂(g;Xn))T ‖22, (7)

with CG = {w ∈ RG; wg ≥ 0,
∑G
g=1 wg = 1}. The aggregated regression

estimator with magging, as in (6), is useful for predicting response variables
at new X-variables: not on average but with some robustness against the worst
case. Furthermore, the aggregated variable importance measure with magging

M̂DAmagging(X(j)) =

G∑
g=1

ŵgM̂DA(g;X(j)),

with ŵ as in (7), for each variable X(j) (j = 1 . . . , p), is summarizing the
variable importance across all G segments. If a variable is important in all the

segments, it should be picked up by a large value of M̂DAmagging(·).
If we do not have access to the groups, we can estimate them as described

in (2) and Section 2.1, and then plug-in the estimated version into the magging
procedure.

We compute the importance measure for the model in Section 2.2, for a
single sample of size n = 250 points and with p = 500 covariables, with the
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Fig. 2 Top: importance measure M̂DA(g; ·) for each estimated group g = 1, 2, 3 of model

(5). Bottom: “Pooled” importance measure M̂DA given by Random Forests on the whole

data and aggregated importance measure M̂DAmagging, with weights given by (7). The

vector of weights ŵ in (7) is ŵ = (0.000, 0.128, 0.872). For M̂DA, the top 7 most important

variables are 2, 3, 498, 1, 4, 499, 500; and for M̂DAmagging the top 7 important variables
are 1, 499, 2, 3, 498, 500, 50.

estimated change points using the method described above. The values of the

M̂DA(g; ·) importance measure for each group and each covariable and the

aggregated M̂DAmagging measure based on magging are shown in Figure 2. The
weights ŵ computed by (7) are ŵ = (0.000, 0.128, 0.872), saying in particular
that the magging estimate for optimizing the worst-case performance (across
groups) is putting weight zero to the first group with g = 1. In contrast, if
we would pool all the data without taking the groups, this would correspond
approximately to the average weights, each having the value 1/3, which would
provide a rather different solution which does not protect against worst case
performance as argued in Meinshausen and Bühlmann (2015) and Bühlmann
and Meinshausen (2016). As described in the caption of Figure 2, the true
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active variable 50 is found to be important in magging while it does not appear
to be “relevant” in the pooled data.

3 Conclusions

Biau and Scornet have provided a very insightful review of the theory and
methodology of Random Forests. The theory and methodology is assuming
that the data is homogeneous, being i.i.d. realizations from the same distribu-
tion or realizations from a stationary stochastic process. We propose here that
for heterogeneous data, which is rather rule than exception in large-scale prob-
lems, one should segment or group the data first, then use Random Forests (or
other flexible and powerful regression or classification methods), and finally
aggregate the estimates from each estimated segment or group. The latter
step can be done with magging (maximin aggregation) which optimizes the
predictive performance in a worst case scenario.
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Bühlmann P, Meinshausen N (2016) Magging: maximin aggregation for inho-

mogeneous large-scale data. Proceedings of the IEEE 104:126–135
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