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We congratulate Gerhard Tutz and Jan Gertheiss, referred in the sequel as “TG”, for
an interesting and inspiring paper on the important topic of regression for categorical
data. Much has happened over the 15 years, including earlier contributions from the
authors: the current overview and expository paper is a most welcome addition to
the literature.

1 Some further thoughts on the paper

TG have written a master piece on modern regression with categorical covariables.
Special attention is given to the case with ordinal categorical predictors: TG explain a
variety of possibilities to build in additional information in terms of sparsity, smooth-
ness and “clusteredness”. From a fundamental perspective, the case with ordinal
categories is complex and difficult. Using a vague analogy to nonparametric curve
estimation, the issue here is a kind of varying regularization problem to adapt well to
the rough and flat parts of an underlying true function (besides the role of selection).
“Clever” regularization or penalization is certainly a powerful vehicle for obtaining
accurate point estimates of the underlying generalized regression coefficients, or for
model parameters beyond regression as discussed also in TG in Sections 5 and 6.

1.1 Different penalization types for different predictors

A natural question in practice will be the choice of the penalization type which might
be different for different covariables, and which of the categorical variables should be
subject to a penalty term. Regarding the second question, a sparsity-type penalization
should automatically select the variables to be strongly clustered, strongly smoothed
or thresholded to zero and thus, such sparsity inducing schemes often work well for
the purpose of selection (on the level of individual or groups of parameters). Cross-
validation is a natural candidate for addressing the first question (aside from its use
to choose the amount of regularization) but it might become computationally very
cumbersome to run it a large multitude of times for evaluating many combinations.
Here, a combination means that some subset of ordinal covariables are subject to a
clustering penalty (Section 3.1.3 in TG), another subset of ordinal covariables subject
to a smoothing penalty (Section 3.1.1 in TG), and another subset subject to a sparsity
only penalty (Section 3.1.2 in TG). We will illustrate in Section 2 an exploratory way,
by inspecting confidence intervals, from which one might extract some reasonable
information for a combination of the qualitatively different penalty terms acting on
different covariables.
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1.2 Tree methods and Random Forests

Section 7.3 in TG mentions tree based approaches. They have the advantage that
they work in a natural way for mixed variables, where some of the covariables are
continuous, some categorical with nominal and ordinal categories. Approaches based
on penalization become intrinsically more complicated with mixed data, requiring a
careful choice of various penalty terms and their corresponding regularization param-
eters (see also above regarding the difficulty to choose different penalization types).
If the task would be prediction only, Random Forests (Breiman, 2001) is often a
very powerful method which (essentially) does not require to choose any tuning pa-
rameter(s): reasons for its success in general include that the algorithm also takes
interactions between variables into account and that it can deal in a scale-free man-
ner with mixed variables. We wonder how well it would perform for prediction in
the dataset on “Spending for Food” analyzed in TG. Based on adaptations of Ran-
dom Forests, we have obtained in other works some interesting results for predictive
survival modeling (Hothorn et al., 2006), for predictive imputation of missing data
(Stekhoven and Bühlmann, 2012), but also for variable importance in mixed undi-
rected graphical models (Fellinghauer et al., 2013). The disadvantage of Random
Forests “technology” is that it does not yield statistical point estimation or inferen-
tial statements in a well-defined statistical model; and notions of measuring “variable
importance”, as advocated in Breiman (2001) or its modified version in (Strobl et al.,
2008), are still very algorithmic with no statistical guarantees in terms of p-values or
confidence intervals.

2 Some outlook: confidence intervals and p-values

We would like to outline here the additional perspective of uncertainty quantification.
Recently, some progress has been made to construct confidence intervals and statis-
tical hypothesis tests in potentially high-dimensional generalized regression models
(Bühlmann, 2013; Zhang and Zhang, 2014; van de Geer et al., 2014; Javanmard and
Montanari, 2014; Dezeure et al., 2015; van de Geer and Stucky, 2015). The key idea is
to “de-bias” or “de-sparsify” the sparse Lasso estimator (Tibshirani, 1996). Starting
from the Lasso, the de-sparsifying operation leads to a non-sparse but regular estima-
tor whose low-dimensional components have an asymptotic Gaussian distribution.

For example, consider a linear model

Y = Xβ0 + ε,

with fixed design n× p matrix X and a Gaussian error term ε with i.i.d. components
having mean zero and variance σ2

ε (where p denotes here the number of parameters).
The situation might be very high-dimensional with p � n but the parameter β0 is
assumed to be sparse. Assuming such sparsity conditions and a restricted eigenvalue
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assumption on X (Bühlmann and van de Geer, 2011, cf.), we have:
√
n(β̂ − β0) = W + ∆,

W ∼ Np(0, σ
2
εΩ), max

j=1,...,p
|∆j| = oP (1) (p ≥ n→∞),

where Ω is a known covariance matrix depending on the design matrix X (in analogy
to ordinary least squares where Ω would be equal to (XTX/n)−1). The remarkable
feature of this result is that: (i) the de-sparsified estimator has 1/

√
n convergence

rate, despite the very high-dimensional setting and unlike for estimating the regression
function where the convergence rate is only

√
log(p)/n (Bühlmann and van de Geer,

2011, cf.); and (ii) that the limiting distribution is known up to the unknown noise
variance which can be estimated also in the high-dimensional setting. Thus, we can
construct confidence intervals for single parameters β0

j , and we can test statistical
hypotheses for groups of parameters. Regarding the latter, a group hypotheses is of
the form

H0,G; β0
j = 0 for all j ∈ G,

where G ⊆ {1, . . . p}. If G is very large, we have to rely on the test-statistic
maxj∈G |β̂j/s.e.(β̂j)|, and if G is small (say |G| ≤ 10), we can also use the sum-statistic∑

j∈G β̂j: the corresponding asymptotic limiting distributions can be calculated or ef-
ficiently simulated in case of the max-type statistics. In addition, multiple testing
correction can be done efficiently since the covariance structure, proportional to Ω, is
known. All of this (but not the sum-type statistics) is implemented in the R-package
hdi for generalized linear models (Meier et al., 2014; Dezeure et al., 2015).

The methodology outlined above can be used for categorical (nominal) predictor
variables, at least in the simple form. In the notation of TG, consider the model
formulation (1) for a linear model as in (3): the regression parameters for the jth
covariable are βjr, r = 1, . . . , kj (using the constraint from TG with βj0 = 0), for
j = 1, . . . , p. The R-package hdi then leads to confidence intervals for the underlying
true parameters β0

jr, r = 1, . . . kj, j = 1, . . . p. We can also test whether the j
categorical covariable has a significant effect on the response Y by considering the
null-hypothesis

H0,Gj
: βjr = 0 for all r = 1, . . . , kj.

Testing this hypothesis is related to the group-wise selection discussed in Section 3.1.2
in TG, but now with a statistical uncertainty measure in terms of a p-value instead
of a point estimator only.

We illustrate the confidence intervals of the single regression parameters for a simu-
lated dataset. The suggested approach allows also to informally infer whether the co-
efficients from ordered categorical covariables are similar for neighboring levels within
the same categorical variable, by inspecting the confidence intervals. The results are
displayed in Figure 1. If the confidence intervals would heavily overlap for the coef-
ficients from neighboring levels within ordinal categorical variables, clustering of the
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corresponding categories would be natural; if the overlap of neighboring confidence
intervals is less pronounced, smoothing of the levels seems reasonable; and if the
confidence intervals would not overlap at all, there should be no penalty or regular-
ization for the levels within the categorical variable. In particular, with such a “visual
inspection of confidence intervals”, one could determine for which of the ordinal cat-
egorical variables some smoothing or clustering of categories would be expected to
be beneficial. (Trying all combinations and optimizing a cross-validation score could
become quickly computationally infeasible). We infer from Figure 1 that there are

95% CI: S0 coverage = 0.481 , S0c coverage = 0.984
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Figure 1: Confidence intervals for the non-zero regression coefficients based on the
de-sparsified Lasso for high-dimensional inference with R-package hdi. The under-
lying data is a single realization from model (M) described below with sample size
n = 800 and 100 categorical variables with 581 parameters in total. Shown are the
confidence intervals for the parameters from the active set S0 = {1, 3, 15, 31} of the
categorical variables. The complement (S0)c = {1, . . . , 100}\S0 encodes the categor-
ical variables which have no effect on the response. The true parameters were covered
by the nominal 95% confidence intervals in 48.1% of the 27 intervals corresponding
to the active variables in S0 (often only slightly missing to cover the true parameter),
and in 98.4% of the 554 intervals corresponding to the non-active variables in (S0)c.
When using a Bonferroni-Holm correction for controlling the familywise error rate
in multiple testing, we detect all the four categorical variables from S0 and no false
positive finding is made (i.e., no significant variable from (S0)c).
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four significant categorical variables, namely variables 1, 3, 15 and 31; and these are
indeed the only true variables having an effect. The plot also suggests the following
scenarios: variable 1 has two clusters of categorical values (which is true), variable
3 has unstructured categorical values (which is true), variable 15 has two clusters
of categorical values (which is true) and that there is an indication that variable 31
has a smooth structure for its categorical values (which is true). Thus, the plot in
Figure 1 is indeed rather informative about the true underlying structure. More state-
ments can be made: the significance of the categorical variables when adjusted for
controlling the familywise error rate in multiple testing, using the Bonferroni-Holm
procedure, leads to the four significant variables (as mentioned already) and to no
false positive findings; without the multiplicity adjustment, 9 out of 554 confidence
intervals for coefficients whose true values are zero do not cover the true value zero
and hence would lead to false positives.

The model underlying the one simulated dataset of sample size n = 800 with 100
categorical variables is constructed as follows.

(M) Consider X ∼ N100(0,Σ) with Toeplitz matrix Σij = 0.9|i−j|. Generate n
i.i.d. samples from N100(0,Σ). The active set of categorical variables with
non-zero effect for the response is S0 = {1, 3, 15, 31}. We categorize each vari-
able X(j) (j = 1, . . . , 100) according to the empirical quantile (over the n = 800
realizations) of X(j) with Uj categories: U1 = 5, U3 = 6, Uj = 10 (j = 15, 31),
all other Uj’s from Uniform from {2, . . . , 12}. This leads to a dummy encoding
design matrix X with

∑100
j=1(Uj − 1) columns. Consider the regression coeffi-

cients:

clustered categorical values:

β1,1 = β1,2 = β1,3 = 1, β1,4 = 2,

β15,1 = β15,2 = . . . = β15,7 = 1, β15,8 = β15,9 = 2,

smoothed categorical values:

β31,1 = 1, β31,2 = 1.25, β31,3 = 1.5, . . . , β31,9 = 1 + 8 · 0.25,

unstructured coefficients:

β3,1 = 1, β3,2 = −1, β3,3 = 0, β3,4 = 2, β3,5 = −2.

Finally, take the error term as n = 800 realizations from ε ∼ N (0, 1).

We have not explored how to obtain confidence statements based on regularization
for smoothing or clustering the category levels within an ordinal categorical variable
(whose importance has been presented in TG for point estimation). Following the
same idea as for the de-sparsified estimator outlined above (see also van de Geer
et al. (2014)), one might be able to gain statistical power by constructing confidence
statements based on a version of a regularized estimator which encourages not only
sparsity (as the Lasso) but also to smooth or cluster ordinal categories. To our
knowledge, this has not been pursued so far.
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3 Conclusions

Tutz and Gertheiss have provided a very insightful and careful overview of method-
ology developed in the last 10-15 years for regularized regression for categorical data.
Their focus is on point estimation, which is the first step in statistical inference.
We have illustrated that recent techniques for constructing confidence statements in
high-dimensional generalized regression have the potential to be useful also for re-
gression with categorical data. For a simulated dataset with sample size n = 800,
100 categorical variables and 581 parameters in total, we obtain very reasonable re-
sults even without smoothing or clustering categorical values: this can serve as a step
for inferring which categorical variables (or parts of their levels) should be subject
to smoothing or clustering as described in TG. Obtaining more powerful confidence
statements by using also smoothing or clustering of ordinal categories might be possi-
ble: achieving this, particularly in the high-dimensional setting, is an open problem.
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