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I congratulate Rob Tibshirani for his excellent retrospective view on the Lasso. It is of
great interest to the whole community in statistics (and beyond), ranging from methodology
and computation to applications: nice to read and of wide appeal!

The original Lasso paper (Tibshirani, 1996) has an enormous impact. Figure 1 shows
that its citation frequency continues to be in the exponential growth regime, together with
the false discovery rate paper from Benjamini and Hochberg (1995): both of these works
are crucial for high-dimensional statistical inference.
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Fig. 1. Cumulative citation counts (y-axis with log-scale) from ISI Web of Knowledge (largest ab-
scissa on x-axis corresponds to August 31, 2010). Left: Lasso (Tibshirani, 1996), False discovery
rate (Benjamini and Hochberg, 1995), Reversible jump MCMC (Green, 1995), Wavelet shrinkage
(Donoho and Johnstone, 1994), published between 1994 and 1996. Right: Bootstrap (Efron, 1979),
published earlier.

The Lasso was a real achievement 15 years ago: it enabled estimation and variable
selection simultaneously in one stage, in the non-orthogonal setting. The novelty has been
the second “S” in Lasso (Least Absolute Shrinkage and Selection Operator). More recently,
progress has been made in understanding the selection property of Lasso.

Consider a potentially high-dimensional linear model: Y = Xβ0+ε (p ≫ n), with active
set S0 = {j; β0,j 6= 0} and sparsity index s0 = |S0|. The evolution of theory looks roughly
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as follows (to simplify, I use an asymptotic formulation where the dimension can be thought
as p = pn ≫ n as n → ∞; but in fact, most of the developed theory is non-asymptotic).
It is about 15 lines of proof to show that under no conditions on the design X (assuming
fixed design) and rather mild assumptions on the error:

‖X(β̂ − β0)‖
2

2
/n ≤ ‖β0‖1OP (

√

log(p)/n),

cf. Bühlmann and van de Geer (2011, Ch.6), which essentially recovers an early result
by Greenshtein and Ritov (2004). And hence, the Lasso is consistent for prediction if the
regression vector is sparse in the ℓ1-norm ‖β0‖1 = o(

√

n/ log(p)). Achieving an optimal
convergence rate for prediction and estimation of the parameter vector requires a design
condition such as restricted eigenvalue assumptions (Bickel et al., 2009) or the slightly
weaker compatibility condition (van de Geer, 2007; van de Geer and Bühlmann, 2009).
Denoting by φ2

0
such a restricted eigenvalue (which we assume to be bounded away from

zero):

‖X(β̂ − β0)‖
2

2
/n ≤ s0/φ

2

0
OP (log(p)/n),

‖β̂ − β0‖1 ≤ s0/φ
2

0OP (
√

log(p)/n), (1)

cf. Donoho et al. (2006), Bunea et al. (2007), van de Geer (2008) and Bickel et al. (2009).
Finally, for recovering the active set S0, such that P[Ŝ = S0] is large, tending to one as
p ≫ n → ∞, we need rather restrictive assumptions which are sufficient and (essentially)
necessary: the neighborhood stability condition for X (Meinshausen and Bühlmann, 2006),
which is equivalent to the irrepresentable condition (Zhao and Yu, 2006; Zou, 2006), and
a “beta-min” condition minj∈S0

|β0,j | ≥ Cs0/φ
2
0

√

log(p)/n requiring that the non-zero co-
efficients are not too small. Both of these conditions are restrictive and rather unlikely to
hold in practice! However, it is straightforward to show from the second inequality in (1)
that

Ŝ ⊇ Srelev, Srelev = {j; |β0,j | > C
s0
φ2
0

√

log(p)/n}

holds with high probability. The underlying assumption is again a restricted eigenvalue
condition on the design: in sparse problems, it is not overly restrictive (van de Geer and
Bühlmann, 2009; Bühlmann and van de Geer, 2011)[Cor.6.8]. Furthermore, if the beta-min
condition holds, then the true active set S0 = Srelev and we obtain the variable screening
property:

Ŝ ⊇ S0 with high probability.

Regarding the choice of the regularisation parameter, we typically use λ̂CV from cross-
validation. “Luckily”, empirical and some theoretical indications support that Ŝ(λ̂CV ) ⊇
S0 (or ⊇ Srelev): this is the relevant property in practice! The Lasso is doing variable
screening and hence, I suggest to interpret the second “S” in Lasso as “screening” rather
than “selection”.

Once we have the screening property, the task is to get rid of the false positive selec-
tions. Two-stage procedures such as the adaptive Lasso (Zou, 2006) or the relaxed Lasso
(Meinshausen, 2007) are very useful. Recently, we have developed methods to control some
type I (multiple testing) error rates, guarding against false positive selections: stability se-
lection (Meinshausen and Bühlmann, 2010) is based on re- or sub-sampling for very general
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problems, and related multi sample-splitting procedures yield p-values in high-dimensional
linear or generalised linear models (Meinshausen et al., 2009).

These re-sampling techniques are feasible since computation is efficient: as pointed out
by Rob, (block-) coordinatewise algorithms are often extremely fast. Besides Fu (1998),
the idea was transferred to statistics (among others) by Paul Tseng, Werner Stuetzle and
Sylvain Sardy (former PhD student of Stuetzle), cf. Sardy et al. (2000) or Sardy and Tseng
(2004). A key work is from Tseng (2001), and also Tseng and Yun (2009) is crucial for
extending the computation to e.g. group Lasso problems for the non-Gaussian, generalized
linear model case (Meier et al., 2008).

The issue of assigning uncertainty and variability in high-dimensional statistical infer-
ence deserves further research. For example, questions about power are largely unanswered.
Rob Tibshirani laid out very nicely the various extensions and possibilities when applying
convex penalisation to regularise empirical risk corresponding to a convex loss function.
There is some work arguing why concave penalties have advantages (Fan and Lv, 2001;
Zhang, 2010): the latter reference comes up with interesting properties about local min-
ima. The issue of non-convexity is often more severe if the loss function (e.g. negative
log-likelihood) is non-convex. Applying a convex penalty to such problems is still useful,
yet more challenging in terms of computation and understanding the theoretical phenom-
ena: potential applications are mixture regression models (Khalili and Chen, 2007; Städler
et al., 2010), linear mixed-effects models (Bondell et al., 2010; Schelldorfer et al., 2010) or
missing data problems (Allen and Tibshirani, 2010; Städler and Bühlmann, 2009). The
beauty of convex optimisation and convex analysis is (partially) lost and further research
in this direction seems worthwhile.

The Lasso, invented by Rob Tibshirani, has and continues to stimulate exciting research:
it is a true success! It is my great pleasure to propose the vote of thanks.
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Meier, L., S. van de Geer, and P. Bühlmann (2008). The Group Lasso for logistic regression.
Journal of the Royal Statistical Society Series B 70, 53–71.

Meinshausen, N. (2007). Relaxed Lasso. Computational Statistics & Data Analysis 52,
374–393.
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