
Discussion

Peter Bühlmann and Bin Yu

October 15, 2007

We would like to thank the authors for their provocative view on boosting. Their view is
built upon some “contrary” evidence based on a particular simulation model. In our discussion,
we argue that the structure of the simulation model explains many aspects of the “contrary”
evidence. We touch upon the issue of shrinkage or small step-sizes, and we conclude that the
“statistical view” provides constructive insights for applying boosting in a highly successful
way.

The gradient and “statistical” point of view

The gradient point of view of AdaBoost is, in our opinion, a great leap forward for under-
standing AdaBoost and deriving new variants of boosting now meaning much more than just
AdaBoost. This view, which seems to be called the “statistical view” by Mease and Wyner
(MW), has been pioneered by Breiman (1998, 1999), Friedman et al. (2000), Mason et al.
(2000), Rätsch et al. (2001) and is not just a product of the statistics community. The gradient
view of boosting allows transferring of the boosting methodology to many other contexts than
just classification, see for example Meir and Rätsch (2003) or Bühlmann and Hothorn (2007)
for an overview. We should also emphasize that the gradient view has never promised to ex-
plain everything about AdaBoost. Hence we are puzzled by the negative picture of this view
painted in the paper under discussion: it differs greatly for most part from our experience and
understanding of the statistical research on boosting. In particular, the MW paper seems to
ignore simulation, real data and theoretical evidence about overfitting and early stopping (cf.
Bartlett and Traskin (2007) regarding asymptotic theory for AdaBoost). We will discuss these
issues in more details below.

The relevance of MW’s counter-examples

The evidences in MW are simulated “counter-examples”. It is questionable that they are repre-
sentative of situations encountered in practice. More importantly, with one exception, evidence
of differences shown contradicting the so-called “statistical view” are 1 or 2 % in error rate.
One wonders how important or meaningful these differences are in practice, even though they
might be statistically significant. In any real world situation, the model used is for sure wrong

1

and the approximation error of the model to the real situation could easily swallow these small
differences in performance.

Furthermore, all the evaluation metrics in the MW paper are on statistical performance
without any consideration of the computation involved or the meaning of the model derived.
For large data problems, computation is an indispensable player and needs to be in the picture.

Additive decision boundary but non-additive logit-probabilities

MW’s model (in Section 3) is additive for the decision boundary. In terms of conditional
probabilities p(x) = P[Y = 1|X = x] on the logit-scale, logit(p(x)) is not an additive function
in the (feature) components of x.

Since the population minimizer of (gradient) AdaBoost or also of LogitBoost equals

Fpop(x) = 0.5 · logit(p(x)) = 0.5 · log
(

p(x)
1− p(x)

)
,

a (boosting) estimate will be good if it involves an effective parameterization. We believe that
this is a central insight, which has been pioneered by Breiman (1998, 1999), Friedman et al.
(2000) and which has been further developed by more recent asymptotic results on boosting.
In the MW model, Fpop(x) is non-additive in x while boosting with stumps yields an estimate
f̂(x) which is additive in x. We think that this is the main reason why some of the figures
in MW lead to “contrary” evidence: with our model, as illustrated below, the comparison of
stumps versus larger trees for weak learners is always in favor of stumps, i.e. stumps yield
better performance and larger trees are more heavily overfitting which is the opposite finding
to Figures 1, 2, and 11 in MW. MW’s model in Section 4 involves only a single component
of x and hence it is additive also on the logit-scale for the probabilities. But our own model
described below does not confirm MW’s statement that their findings “do not depend on a
particular simulation model”.

Other issues in MW concerning “contrary” evidence cannot be easily explained by the
nature of the model.

Figure 3 intends to show that LogitBoost is worse than AdaBoost. The MW finding might
seem relevant at 1000 iterations. But one doesn’t need to go that far for both methods by
early stopping. 100 or so iterations seems enough for stumps and 400 for 8-node trees. The
performance difference is then less than 1%. Thus, having some computation savings in mind,
early stopped LogitBoost is preferable.

Figure 4 tries to make the point that early stopping could hurt to lose about 1% performance
when the total Bayes error is 20% and there is no structure to be learned. However, the 1000
iteration model undoubt-fully gives the wrong impression that something is there, while the
early stopped model gives the correct impression that not much is to be learned. Hence we
think early stopping is not hurting here. In addition, the starting value of boosting matters but
this issue is ignored in standard AdaBoost. A (gradient) boosting algorithm should be started
with Finit = F0 ≡ 0.5 log(p̂/(1 − p̂)) where p̂ is the empirical frequency of Y = 1, cf.

2

Bühlmann and Hothorn (2007). That is, boosting would (try to) improve upon the MLE from
the “pure noise” model. Then, it is expected - and we checked this using gradient LogitBoost
on the unbalanced example corresponding to Figure 4 in MW - that boosting will overfit from
the beginning because the underlying structure is pure noise. The same idea could be applied to
AdaBoost as well: in contrast, standard AdaBoost and MW start with the naive value Finit =
F0 ≡ 0.

Shrinkage and small step-sizes: another dimension for regularization

MW makes some claims about additional shrinking using small step-sizes. As we understand
Friedman (2001), he never intended to say that a shrinkage factor would avoid overfitting.
Instead, he argued that introducing a shrinkage factor may improve the performance. Later,
Efron et al. (2004) made the connection, in the setting of linear models, that boosting with
an infinitesimally small shrinkage step is equivalent to the Lasso under some conditions, and
for general situations, Zhao and Yu (2007) showed that appropriate backward steps need to be
added to boosting to get Lasso. This intriguing connection shows again that the shrinkage factor
cannot eliminate overfitting. All what it achieves is a different, usually more powerful solution
path (with a new regularization dimension through the step-size) than without shrinkage.

Our own findings with an additive model for logit-probabilities

Now we devise our own simulation model to clarify some issues regarding overfitting, choice of
weak learner and the estimation of probabilities via boosting. Arguably, as emphasized above,
examples should not be over-interpreted. However, in view of many reported findings similar to
what we show here, we feel that our examples are rather “representative” and we are reporting
major instead of slight differences.

Our model is in the spirit of MW but on the logit-scale:

logit(p(x)) = 4
5∑

j=1

(xj − 0.5)

Y ∼ Bernoulli(p(x)),

where p(x) = P[Y |X = x]. This model has Bayes error rate approximately equal to 0.1 (as in
the MW paper). We use this model as it is additive on the logit-scale for the probabilities since
the population minimizer of (gradient) AdaBoost and (gradient) LogitBoost is 0.5logit(p(x)).
We use n = 100, d = 20 (i.e. 15 ineffective features), x as in MW and we show the results
for one representative example with test set of size 2000. We skipped the repetition step over
many realizations from the model: again, we think that one realization is representative and it
mimics somewhat better the situation of analyzing one real data set.

We consider the misclassification test error, the surrogate loss test error (e.g. the test set

3

0 200 400 600 800 1000

0.
15

0.
25

0.
35

0.
45

misclassification test error

iterations

0 200 400 600 800 1000

0.
7

0.
8

0.
9

1.
0

surrogate test error

iterations

0 200 400 600 800 1000

0.
1

0.
2

0.
3

0.
4

0.
5

absolute error for probabilities

iterations

Figure 1: Gradient boosting with exponential loss (gradient AdaBoost). Left panel: Test set
misclassification error; Middle panel: test set surrogate loss; Right panel: test set absolute error
for probabilities. Black: stumps; Red: larger tree; Blue dashed line: naive estimator.

average of exp(−yf̂) for AdaBoost) and the absolute error for probabilities

1
2000

2000∑
i=1

|p̂(Xi)− p(Xi)|,

where averaging is over the test set.
All our computations have been done with MW’s code for AdaBoost and the R-package

mboost from Bühlmann and Hothorn (2007): we used stumps and larger trees as weak learn-
ers. By the way, MW’s code is not implementing 8 node trees but trees which have on average
about 6-8 terminal nodes (during the boosting iterations for this model). The results are dis-
played in Figures 1- 3. A comparison is also made to the naive estimator with p̂(x) ≡ 0.5.

From this very limited experiment we find all facts that we view as important and typical
for boosting:

1. Overfitting can be a severe issue when considering the test surrogate loss or for estimating
conditional probabilities. In fact, overfitting is seen clearly for all three methods, that is
gradient AdaBoost, LogitBoost and AdaBoost. In addition, the misclassification loss is
much more insensitive with respect to overfitting. This has been pointed out very clearly
in Bühlmann and Yu (2000)) and in the rejoinder of Friedman et al. (2000).

2. Estimating conditional probabilities is quite reasonable when stopping early: as in point
1 above, we see very clearly that early stopping is absolutely crucial for all three meth-

4

0 200 400 600 800 1000

0.
15

0.
25

0.
35

0.
45

misclassification test error

iterations

0 200 400 600 800 1000

0.
6

0.
7

0.
8

0.
9

1.
0

surrogate test error

iterations

0 200 400 600 800 1000

0.
1

0.
2

0.
3

0.
4

0.
5

absolute error for probabilities

iterations

Figure 2: Gradient boosting with Binomial log-likelihood (gradient LogitBoost). Left panel:
Test set misclassification error; Middle panel: test set surrogate loss; Right panel: test set
absolute error for probabilities. Black: stumps; Red: larger tree; Blue dashed line: naive
estimator.

0 200 400 600 800 1000

0.
15

0.
25

0.
35

0.
45

misclassification test error

iterations

0 10 20 30 40 50

0
1

2
3

4
5

surrogate test error

iterations

0 200 400 600 800 1000

0.
1

0.
2

0.
3

0.
4

0.
5

absolute error for probabilities

iterations

Figure 3: AdaBoost (as in MW). Left panel: Test set misclassification error; Middle panel: test
set surrogate loss; Right panel: test set absolute error for probabilities. Black: stumps; Red:
larger tree; Blue dashed line: naive estimator. More details are described in point 4 of our
summary of findings.

5

ods. And LogitBoost with early stopping gives the best misclassification error and best
probability estimate among the three.

3. Regarding the weak learner, larger trees are worse than stumps for our model where
the conditional probability function is additive on the logit scale. The “statistical view”
reveals the model behind AdaBoost and LogitBoost: we have to consider the logit-scale
(the MW model is not additive in terms of the logit of conditional probabilities; note that
for the decision boundary the scale doesn’t matter while it does play a role for conditional
probabilities).

Larger trees do overfit more heavily for probability estimation or with respect to surrogate
test loss. For non-additive models (for probabilities on the logit-scale), the overfitting will
kick in later for large trees as the the underlying model requires a more complex fit to
balance approximation (“bias”) and stochastic error (“variance”).

4. Somewhat more in line with the MW paper, the original AdaBoost has less a tendency
to overfit than the gradient boosting version. The reason why AdaBoost with the larger
tree in Figure 3 is staying constant after a while is due to the fact that the algorithm gets
“stuck”: it alternates back and forth and hence, the amount of overfitting is limited. At
this stage of alternating behavior the estimated conditional class probabilities are very
much concentrated around either zero or one (not shown but similar to Fig. 18 in MW),
i.e. overfitting has kicked in severely. We are not convinced that this “getting stuck”
property of the algorithm is desirable, despite the consequence that a bound on overfit-
ting is then obviously in action. The surrogate loss function in AdaBoost explodes much
earlier (w.r.t. boosting iterations) and one needs to implement an upper bound in the pro-
gram in order to avoid NA values (MW’s code needs this little some small modification
here!).

Our general understanding about Boosting and it’s success

Instead of going through all issues in MW, we choose instead to repeat several general under-
standings about boosting which were incorrectly questioned by the paper under discussion:

A. Overfitting does matter, and it is a function of the both the “bias” and “variance”. Large
trees do not overfit heavily in terms of classification error because:
(i) the misclassification loss is very insensitive to overfitting (see Bühlmann and Yu
(2000) and the rejoinder of Friedman et al. (2000));
(ii) larger trees are not as “complex” as the number of nodes in them indicates since they
are fitted in a greedy fashion (e.g. 8-node trees fitted by boosting are not 4 times as
complex as stumps with two nodes).

Most probably, the difference between plain vanilla AdaBoost and a gradient version of
AdaBoost (as in MW) will not play a crucial role in terms of overfitting behavior; but

6

gradient-based boosting seems somewhat more exposed to overfitting while AdaBoost
can get stuck which naturally limits the amount of overfitting (on a single data-set).

B. Early stopping, particularly for probability estimation, is very important (because of over-
fitting) and brings computational savings. The supporting theory is given in, for example,
Zhang and Yu (2005), Bühlmann (2006), Bartlett and Traskin (2007) and Bissantz et al.
(2007).

C. Estimating probability via boosting is often quite reasonable. It is essential though to
tune the boosting algorithm appropriately: a good choice is to do early stopping with
respect to the log-likelihood test score (see next point regarding surrogate and evaluating
loss).

D. It is important to distinguish between surrogate loss (implementing loss) and loss (eval-
uating loss) function. For example, there is no surprise that it can happen with AdaBoost
that the training misclassification error is zero while the test set misclassification still de-
creases: the explanation is that the surrogate loss (exponential loss) can still be far away
from

The usage of boosting as we have advocated in our works, and this is very much in line
with Friedman et al. (2000) and their subsequent works, has proven to be very competitive
and successful in applications. Gao et al. (2006) describe a successful application of boosting
to a language transliteration problem. Lutz (2006) has won the performance prediction chal-
lenge of the world congress in computational intelligence in 2006 (WCCI 2006): he was using
early-stopped LogitBoost with stumps. Part of his success is probably due to careful choice of
choosing the stopping iteration: according to personal communication (he has been a former
PhD student of the first author of this discussion), he stopped before reaching the minimal value
of a cross-validation scheme. In summary, he did not take any of the findings from MW into
account (he didn’t know the paper at that time, of course). Maybe his success is more con-
vincing evidence that LogitBoost with (i) its “natural” loss function for a binary classification
problem, and using (ii) early stopping, (iii) simple weak learners and (iv) a small step size (i.e.
shrinkage factor) often works surprisingly well. Other references about successful applications
of gradient-based boosting can be found in Bühlmann and Hothorn (2007) which includes the R
package mboost (standing for model-based boosting) for numerous application areas ranging
from classification, regression, generalized regression to survival analysis.

References

[1] Bartlett, P.L. and Traskin, M. (2007). Adaboost is consistent. In Advances in Neural Infor-
mation Processing Systems 19 (eds. B. Schölkopf, J. Platt, and T. Hoffman), pp. 105-112.
MIT Press.

7

[2] Bissantz, N., Hohage, T., Munk, A. and Ruymgaart, F. (2007). Convergence rates of gen-
eral regularization methods forstatistical inverse problems and applications. To appear in
SIAM Journal of Numerical Analysis.

[3] Breiman, L. (1998). Arcing classifiers. Annals of Statistics 26, 801–824.

[4] Breiman, L. (1999). Prediction games & arcing algorithms. Neural Computation 11,
1493–1517.

[5] Bühlmann, P. (2006). Boosting for high-dimensional linear models. Annals of Statistics
34, 559–583.

[6] Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: regularization, prediction and
model fitting (with discussion). To appear in Statistical Science.

[7] Bühlmann, P. and Yu, B. (2000). Invited Discussion on ”Additive logistic regression: a
statistical view of boosting (Friedman, Hastie and Tibshirani)”. Annals of Statistics 28,
377–386.

[8] Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression (with
discussion). Annals of Statistics 32, 407–451.

[9] Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine.
Annals of Statistics 29, 1189–1232.

[10] Friedman, J.H., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a statis-
tical view of boosting (with discussion). Annals of Statistics 28, 337–407.

[11] Gao, J., Suzuki, H. and Yu, B. (2006). Approximation Lasso methods for language mod-
eling. Proceedings of the 21st International Conference on Computational Linguistics and
44th Annual Meeting of the ACL, pp. 225–232, Sydney.

[12] Lutz, R.W. (2006). LogitBoost with trees applied to the WCCI 2006 performance pre-
diction challenge datasets. Proceedings of the International Joint Conference on Neural
Networks (IJCNN 2006)).

[13] Meir, R. and Rätsch, G. (2003). An introduction to boosting and leveraging. In Advanced
Lectures on Machine Learning (eds. S. Mendelson and A. Smola). Lecture Notes in Com-
puter Science, Springer.

[14] Rätsch, G., Onoda, T. and Müller, K.R. (2001). Soft margins for AdaBoost. Machine
Learning 42, 287–320.

[15] Zhang, T. and Yu, B. (2005). Boosting with early stopping: convergence and consistency.
Annals of Statistics 33, 1538–1579.

[16] Zhao, P. and Yu, B. (2007). Stagewise Lasso. To appear in Journal of Machine Learning
Research.

8

