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I congratulate the authors for their excellent contribution covering practical and
non-standard mathematical aspects of inference. Quantifying uncertainty belongs
to the core of statistics: the standard (and overly simplified) measure for classifi-
cation accuracy is an estimated test set or generalization error. Laber and Murphy
address a much more appropriate and more challenging task, namely to construct
accurate confidence intervals for the test set error. I very much agree that quantify-
ing accuracy should be pursued with measures taking uncertainty into account.

Laber and Murphy present thorough mathematical analysis and arguments show-
ing that with low sample size, the asymptotic framework should be chosen care-
fully. I concur with their views and mathematical argumentation. In the following,
I am trying to make a few selective cross-connections to related issues which have
been worked out in the past.

1 The local view, bagging and subsampling

One of the key issues in L&M is a careful analysis when the points are near the clas-
sification boundary, formalized as distinguishing whether P[Xtβ∗ = 0] is strictly
positive or not. The idea is then to look more closely at what happens at the bound-
ary Xtβ∗ = 0. The approach considering “local alternatives” (L&M Section 3.3)
is instructive and I am following up on it by re-using a toy example from Bühlmann
and Yu (2002).

Consider a scenario where we have a general estimator θ̂n for an unknown
parameter θ∗n = θ∗ + Γ/

√
n which is “moving” as sample size n changes, see

formula (11) in L&M. For simplicity, assume that the value of the parameter is
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1-dimensional (p = 1). Consider the indicator decision (or classification) function

d̂ = d̂n = 1(θ̂n < θ∗) = 1(
√
n(θ̂n − θ∗n) < −Γ).

Assume that we are in a nice situation where
√
n(θ̂n − θ∗n)⇒ N (0, σ2∞) (n→∞) (1)

for some asymptotic variance σ2∞. We can then rewrite the estimator as (see also
Section 2 in L&M)

d̂n = 1(θ̂n < θ∗) = 1(
√
n(θ̂n − θ∗n)/σ∞ < −Γ/σ∞) ≈ 1(Z < −Γ/σ∞),

where Z ∼ N (0, 1). For any Γ (including Γ = 0, which is slightly different
from formula (11) in L&M), the indicator decision function does not converge to a
constant since the variance is not converging to zero:

E[d̂n] = E[1(θ̂n < θ∗)]→ Φ(−Γ/σ∞) (n→∞),

Var(d̂n) = Var(1(θ̂n < θ∗))→ Φ(−Γ/σ∞)(1− Φ(−Γ/σ∞)) (n→∞),

where Φ(·) is the cdf of N (0, 1). We simply recover here aspects of what Laber
and Murphy have discussed in detail.

Next, let us look at the bootstrap. The bootstrap is typically consistent for
asymptotic normally distributed estimators (Giné and Zinn, 1990): we assume

√
n(θ̂(b)n − θ̂n)⇒ N (0, σ2∞) (n→∞) in probability. (2)

Thus, the bootstrapped indicator decision function becomes:

1(θ̂(b)n < θ∗) = 1(
√
n(θ̂(b)n − θ̂n)/σ∞ <

√
n(θ∗ − θ̂n)/σ∞)

= 1(
√
n(θ̂(b)n − θ̂n)/σ∞ < −

√
n(θ̂n − θ∗n)/σ∞ − Γ/σ∞)

Now, let us look at the first two moments again, with respect to the bootstrap dis-
tribution:

E(b)[1(θ̂(b)n < θ∗)]

= P(b)[
√
n(θ̂(b)n − θ̂n)/σ∞ < −

√
n(θ̂n − θ∗n)/σ∞ − Γ/σ∞]

≈ Φ(−
√
n(θ̂n − θ∗n)/σ∞ − Γ/σ∞) ≈ Φ(−Z − Γ/σ∞), (3)

where Z ∼ N (0, 1). The first approximation is due to bootstrap consistency in (2)
while the second approximation holds because of (1). For the variance, we then
obtain

Var(b)(1(θ̂(b)n < θ∗)) ≈ Φ(−Z − Γ/σ∞)(1− Φ(−Z − Γ/σ∞)).
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The bootstrap is not picking up the first two moments in a consistent way, that is:

E[1(θ̂n < θ∗)]

E(b)[1(θ̂
(b)
n < θ∗)]

− 1 6= oP (1),
Var(1(θ̂n < θ∗))

Var(b)(1(θ̂
(b)
n < θ∗))

− 1 6= oP (1),

where the first statement about expectations only holds for Γ 6= 0. Thus, clearly,
the bootstrap does not provide confidence intervals for E[d̂n] or similar quantities.
However, the bootstrap can be used to stabilize.

Instead of using the estimator d̂ = 1(θ̂n < θ∗), we can use bagging (Breiman,
1996). Consider the bagged version which is simply the bootstrap expectation:

d̂bag = E(b)[1(θ̂(b)n < θ∗)] ≈ Φ(−Z − Γ/σ∞),

see formula (3). Figure 1 shows the asymptotic behavior of the decision function d̂
and the (substantial) smoothing effect when using d̂bag, as a function of the random
variable Z ∼ N (0, 1) for the value Γ = 0 (which corresponds to the most unstable
point with maximal variance for d̂) and using w.l.o.g. θ∗ = 0. The figure may be
compared to Figure 1 in L&M.
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Figure 1: Asymptotic behavior of d̂ ≈ 1(Z < 0) and d̂bag ≈ Φ(−Z) as a function
of Z ∼ N (0, 1), for Γ = 0 and w.l.o.g. θ∗ = 0.

The smoothing operation (see Figure 1) introduces some bias but reduces vari-
ance:

E[d̂bag] ≈ E[Φ(−Z − Γ/σ∞)], E[d̂] ≈ Φ(−Γ/σ∞),

Var(d̂bag) ≈ Var(Φ(Z − Γ/σ∞)), Var(d̂) ≈ Φ(−Γ/σ∞)(1− Φ(−Γ/σ∞)).

The easiest comparison is for Γ = 0 which corresponds to the most “unstable” case
where d̂ has highest variance. Then, we can use the simple fact that Φ(−Z) is a
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Uniform([0, 1]) random variable and hence:

E[d̂bag] ≈ 1/2, E[d̂] ≈ 1/2,

Var(d̂bag) ≈ 1/12, Var(d̂) ≈ 1/4.

In words, this means: there is approximately no bias of the bagged decision d̂bag
while it enjoys a variance reduction of a factor 3. One can compute the mean
squared error (for the target E[d̂]): the bagged procedure has lower MSE than the
non-bagged estimator for a large range where |Γ| ≤ 2.3 and the biggest gain (by a
factor 3) is at the most unstable value where Γ = 0. The whole presented analysis
hinges on asymptotic normality and bootstrap consistency in (1) and (2).

For more complicated estimators θ̂n where (1) and (2) do not hold, I do not
know how the argument above carries through. From a methodological point of
view, the bootstrap is still doing some sort of smoothing of the indicator (decision)
function. Bühlmann and Yu (2002) have therefore looked at subsampling, using
subsample size m < n, instead of bootstrap resampling. The analogue of d̂bag is
then

d̂subag(m) = E(s)[1(θ̂subs(m)
n < θ∗)]

where we aggregate over subsampled estimators (E(s) is with respect to subsam-
pling, and in fact is a finite sum over all

(
n
m

)
different subsamples of size m). One

can then prove that there is again a substantial gain in terms of MSE when us-
ing d̂subag(m) instead of d̂. A generic and good choice of the subsample size is
m = bn/2c. For further details we refer to Bühlmann and Yu (2002).

2 Sample splitting

As indicated above, subsampling with subsample sizem = bn/2c has the potential
to stabilize and improve the decision function d̂. Subsampling with such a subsam-
ple size is very closely related to sample splitting with two half-samples indexed
by I1 = {1, . . . , bn/2c} and I2 = {1, . . . , n} \ I1. One can pursue a very different
route with sample splitting than what we discussed before.

2.1 P-values and confidence intervals based on sample splitting

L&M make a connection to Yang (referenced by L&M) and raise the issue that
Yang’s approach lacks rigorous mathematical justification. Other work by van de
Wiel et al. (2009) and Meinshausen et al. (2009) present mathematical theory when
using (multiple) sample splitting for constructing p-values.

4



The problem studied by van de Wiel et al. (2009) is to test whether two methods
exhibit a significant difference in terms of their misclassification error, a question
closely related to the results in L&M (see also Section 6 in L&M). One can use
the first half-sample I1 to train two different classifiers and then use I2 to test on
|I2| sample points the difference in performance for misclassification leading to
a p-value (conditional on training data from I1). The approach suffers from the
problem that the resulting p-value depends very heavily on the (random) sample
split which is used and hence, the result is not really reproducible. Aggregating
over multiple (random) sample splits is a useful idea (van de Wiel et al., 2009;
Meinshausen et al., 2009), and we briefly outline in (5) below how to aggregate
p-values from such multiple sample splits.

As an alternative to the approach by Laber and Murphy, we could use sample
splitting as follows. On I1, we train the method f̂ = f̂I1 and build the classifier
sign(f̂I1(x)) for a new covariate x. We can then look at the performance on the
other (test) sample: ∑

i∈I2

1(sign(f̂I1(Xi)) 6= Yi). (4)

Conditionally on the data from I1, the expression in (4) has a Binomial(|I2|, πI1)
distribution where πI1 = P[sign(f̂I1(X)) 6= Y ], where (X,Y ) is a new test data
point (e.g. a sample point from I2) and the probability is conditional on the samples
from I1.

This then allows one to do significance testing. The null- and alternative hy-
potheses are formalized when conditioning on training data I ⊂ {1, . . . , n} with
|I| = bn/2c:

H0 : πI ≤ π0 for all I ⊂ {1, . . . , n} with |I| = bn/2c.

Usually, we are interested in one-sided testing and the alternative would be HA :
πI > π0 for some (training) set I . We note that π0 is a fixed value, not depending
on I . Using the summary statistics in (4), with its corresponding Binomial(|I2|, π0)
distribution under H0, we obtain a p-value

pI1(π0)

which is conditional on the training half-sample I1.
As indicated above, this p-value might be very sensitive to the sample split

and its corresponding sets I1 and I2 = {1, . . . , n} \ I1. The remedy is to use B
(random) sample splits yielding p-values

p
I
(j)
1

(π0), j = 1, . . . , B,
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where B is “large” such as B = 100 − 500. We can aggregate these (dependent)
p-values using empirical quantiles. Denote by

qγ(π0) = qγ
I
(1)
1 ,...,I

(B)
1

(π0) = γ-quantile of {p
I
(j)
1

(π0)/γ; j = 1, . . . , B}. (5)

Then, qγ(π0) controls the type I error:

PH0 [qγ(π0) ≤ α] ≤ α (0 < α < 1),

corresponding to the rejection of H0 if and only if qγ(π0) ≤ α. We note that
the aggregation of the p-values with the γ-quantile involves an additional factor
1/γ; e.g., when using the median with γ = 1/2, we have to multiply the p-values
p
I
(j)
1

(π0) by the factor 2 in order to obtain error control. The proof of such p-
value aggregation under no additional assumptions (other than that the p-value has
a Uniform([0, 1]) distribution under the null-hypothesis) can be adopted from The-
orem 3.1 in Meinshausen et al. (2009). The latter reference also provides a method
to estimate a good value of γ while still providing error control. When making
additional assumptions, one can drop the correction factor 1/γ, see van de Wiel
et al. (2009).

From the p-values qγ(π0) we can construct a confidence interval via duality:

I(1− α) = {π0; qγ(π0) > α} (0 < α < 1).

Thus, we have constructed a confidence interval for “some kind of” conditional
misclassification error. The words “some kind of” refers to the issue that we are
conditioning on all subsets I ∈ {I(1)1 , . . . , I

(B)
1 } which arise when doing B (ran-

dom) sample splitting operations. And this may be an unusual view point and an
issue which should be addressed in a more elegant and aesthetical way.

2.2 Pros and cons, and some remarks

The confidence interval I(1−α) does not require any asymptotic approximations, it
is applicable in e.g. high-dimensional problems with p� n, and it is very generic
and easy to compute, i.e., as easy as bootstrapping or subsampling where we only
need to program an additional outer loop which repeats the same calculations B
times. Moreover, such an approach enjoys the conceptual advantage of separating
clearly between training and test set, whereas the bootstrap as employed in L&M
involves the data which has been used for training the classifier. Does this lead
to overly optimistic results, especially in more complex problems? And would an
out-of-bag bootstrap (Breiman, 2001) be beneficial?
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The drawbacks and potential disadvantages of the sample splitting approach
are: (i) it operates on training sample size bn/2c which, despite aggregation after-
wards, is a potential loss of efficiency; (ii) the p-value aggregation in (5) is conser-
vative (note the additional factor 1/γ in (5)) and hence again, a potential loss of
power.

It is worth pointing out that subsampling and sample splitting often lead to
“stable” results: in various contexts of high-dimensional problems, we have found
that subsampling and sample splitting can be tremendously useful for the tasks of
structure estimation (Meinshausen and Bühlmann, 2010) or assigning (conserva-
tive) p-values in generalized regression (Meinshausen et al., 2009). The gain in
stability when randomizing over different subsamples (and/or subsets of the fea-
ture space) is only partially understood (Lin and Jeon, 2006; Meinshausen and
Bühlmann, 2010): nevertheless, Leo Breiman, the “inventor” of this kind of think-
ing, has provided utterly convincing examples that these methods have the potential
to provide very competitive answers and results (Breiman, 1996, 2001), perhaps in
a much broader range than his fundamental contributions in “improving” regres-
sion or classification methods.

3 Conclusions

Subsampling has an interesting potential to stabilize the indicator or decision func-
tion as outlined in Section 1. The related concept of sample splitting can be used –
in principle – to construct confidence intervals for the misclassification error or for
many other problems about assigning uncertainty, see Section 2.

Laber and Murphy have presented an impressive path of ideas and results. My
remarks do not diminish in any sense their beautiful contribution, and they should
be interpreted as an attempt to provide some complementary thoughts about the
issue of constructing uncertainty measures for the misclassification error or other
quantities of interest.
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