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1. INTRODUCTORY REMARKS

I congratulate all the authors for their insightful papers with wide-ranging
contributions. The articles demonstrate the power and elegance of the Bayesian
inference paradigm. In particular, it allows to incorporate prior knowledge as
well as hierarchical model building in a convincing way. Regarding the latter, the
contribution by Raftery, Alkema and German is a very fascinating piece as it
addresses a set of problems of great public interest and presents predictions for
the world populations and other interesting quantities with uncertainty regions.
Their approach is based on a hierarchical model, taking various characteristics
into account (e.g. fertility projections). It would have been very difficult to come
up with a “better” solution which would be as clear in terms of interpretation
(in contrast to a “black-box machine”) and which would provide (model-based)
uncertainties for the predictions into the future.

2. UNCERTAINTY, STABILITY AND BAGGING THE POSTERIOR

Many of the papers quantify in one or another form various notions of un-
certainties. In the Bayesian framework, this is usually based on the posterior
distribution. An old “debate” is how much the results are sensitive to the choice
of the prior, and I believe that some reasonable sensitivity analysis can lead to
much insight. The sensitivity with respect to “perturbed data” though is not
easily captured by the Bayesian framework. In the context of prediction, Leo
Breiman (Breiman, 1996a,b) has pointed to issues of stability with respect to
perturbations of the data, Bousquet and Elisseeff (2002) provide some mathe-
matical connections to prediction performance while Meinshausen and Bühlmann
(2010) present some theory and methodology for controlling the frequentist error
of expected false positives.

As an example, the (frequentist) Lasso (Tibshirani, 1996) is very unstable for
estimating the unknown parameters in a linear model, in particular if the corre-
lation among the covariates is high (for two highly correlated variables where at
least one of them has a substantially large regression coefficient, the Lasso selects
either one or the other in an unstable fashion). Thus, the MAP for a Gaussian
linear model with a Double-Exponential prior for the regression coefficients is
unstable. The posterior distribution is probably more stable but presumably, it
is still “rather” sensitive with respect to perturbation of the data: if the data
would look a bit different, the posterior might be “rather” different. The situa-
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tion becomes more exposed to stability problems when using spike and slab priors
(Mitchell and Beauchamp, 1988), due to increased sparsity.

We can stabilize the posterior distribution by using a bootstrap and aggre-
gation scheme, in the spirit of bagging (Breiman, 1996b). In a nutshell, denote
by D∗ a bootstrap- or sub-sample of the data D. The posterior of the random
parameters θ given the data D has c.d.f. F (·|D), and we can stabilize this using

FBayesBag(·|D) = E∗[F (·|D∗)],

where E∗ is with respect to the bootstrap- or sub-sampling scheme. We call it
the BayesBag estimator. It can be approximated by averaging over B posterior
computations for bootstrap- or sub-samples, which might be a rather demanding
task (although say B = 10 would already stabilize to a certain extent). Note
that when conditioning on the data, the posterior F (·|D) is a fixed c.d.f. but
when taking the view point that the data could change, it is useful to consider
randomized perturbed versions F (·|D∗) which are to be aggregated.

The following simple and rather stable example shows that such a bagging
scheme outputs a larger uncertainty which is perhaps more appropriate.

Location model with conjugate Gaussian prior. Consider the model

θ ∼ N (0, τ2),

conditional on θ : X1, . . . , Xn i.i.d. ∼ N (θ, σ2).

It is well known that the posterior distribution equals

θ|Xn ∼ N (

∑n
i=1Xi

n+ σ2/τ2
, (

1

τ2
+

n

σ2
)−1).

Denote by F (·;Xn) the c.d.f. of the posterior distribution, i.e.,

F (u;Xn) = Φ(u,mean =
nXn

n+ σ2/τ2
, var = (

1

τ2
+

n

σ2
)−1),(2.1)

where Φ(u,mean = m, var = s2) = Φ((u −m)/s) and Φ(·) denotes the c.d.f. of
N (0, 1). We can either use the nonparametric bootstrap, with resampling the data
with replacement, or a parametric bootstrap (assuming here that σ2 is known):

X∗
1 , . . . , X

∗
n i.i.d. N (θ̂, σ2), θ̂ = Xn.(2.2)

With the parametric bootstrap in (2.2), we can easily calculate the BayesBag
estimator:

E∗[F (u;X
∗
n)]

=

∫
Φ(

u− r√
( 1
τ2

+ n
σ2 )−1

)ϕ(r,mean =
nXn

n+ σ2/τ2
, var =

nσ2

(n+ σ2/τ2)2
)dr,(2.3)

where ϕ(r,mean = m, var = s2) = s−1ϕ((r −m)/s) and ϕ(·) denotes the p.d.f.
of N (0, 1). We consider the posterior credible region by computing the 2.5% and
97.5% quantiles of F (·;Xn) and we compare these quantiles with the correspond-
ing ones from the BayesBag E∗[F (·;X∗

n)] above in (2.3). We only consider here
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sample size (2.5%,97.5%) posterior (2.5%,97.5%) BayesBag

n = 1 (-0.69, 2.81) (-1.30, 3.41)
n = 10 (0.10, 1.32) (-0.16, 1.56)

Table 1
2.5% and 97.5% quantiles of the posterior F (·|Xn) in (2.1) and of the BayesBag (bagged
posterior) in (2.3). The data was generated once using a single realized value of θ = 1.31.
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Fig 1. 1000 bootstrapped cumulative distribution functions F (u|X∗
n) of θ|X∗

n. The BayesBag
(i.e., mean) E∗[F (u|X∗

n)] in (2.3) (thick red line) and the cumulative distribution function
F (u|Xn) of the classical posterior of θ|Xn in (2.1) (blue line). Left panel for n = 1 and right
panel for n = 10, and note the different scales for the x-axis. The data is as in Table 1.

the case with σ2 = 1 and τ2 = 4, and the results are given in Table 1. Of course,
we can also look at the variability of the posterior via the bootstrapped c.d.f.’s
F (·|X∗

n), instead of considering the bootstrap mean (BayesBag) only. Figure 1 il-
lustrates that variability can be rather high, but the situation obviously improves
as sample size increases.

It is worth pointing out that in general, one could use a parametric bootstrap
when using θ̂ as the MAP of the posterior distribution, and such a scheme could
be used in models with complex hierarchical and dependence structures.

The frequentist approach usually does not address stability issues either and
in addition, assigning p-values and confidence intervals in complex scenarios is
a non-trivial problem. Recent progress has been achieved for high-dimensional
sparse models (Minnier et al., 2011; Bühlmann, 2013; Zhang and Zhang, 2011;
van de Geer et al., 2013; Bogdan et al., 2013, cf.); regarding the issue of con-
structing “stable p-values”, an approach based on sub-sampling and appropriate
aggregation of p-values is described in Meinshausen et al. (2009). Yet, much more
work in frequentist inference would be needed to cope with e.g. high-dimensional
hierarchical models in non-i.i.d. settings such as space-time processes or clustered
data, or as another example, the population dynamic model in the beautiful paper
by Kuikka, Vanhatalo, Pulkkinen, Mäntyniemi and Corander in this issue.
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3. NETWORKS AND GRAPHICAL MODELS

The paper by Johnson, Abal, Ahern an Hamilton presents an interesting ap-
plication by using Bayesian inference for a Bayesian networks (as is well known,
the term “Bayesian network” does not require Bayesian inference at all – and
it is somewhat confusing). The arrows in the directed acyclic graph often indi-
cate causal relations (Spirtes et al., 2000; Pearl, 2000) and as such, the model
allows for causal conclusions. Great care is needed, of course, when the DAG is
mis-specified or estimated from observational data since causal conclusions are
depending in a very “sensitive way” on the underlying DAG. A lot of work exists
regarding identifiability of the DAG from observational data (Spirtes et al., 2000;
Pearl, 2000; Shpitser and Pearl, 2008; Hoyer et al., 2009; Peters and Bühlmann,
2013, cf.), and obviously, there are ill-posed situations such as with a bivariate
Gaussian distribution where one cannot identify the causal direction between
two variables. In the Bayesian framework, the problem of identifiability does not
exist in a “direct sense”: but I believe it must come in through another chan-
nel, presumably by a high sensitivity with respect to prior specifications. Due
to severe identifiability problems, causal inference based on observational data is
ill-posed or depends on non-testable assumptions. However, one can nevertheless
(under some assumptions) derive lower bounds on absolute values of causal effects
(Maathuis et al., 2009). As lower bounds, they are conservative and a Bayesian
average bound would be interesting.

In view of non-testable assumptions, causal models should be validated with
randomized experiments. Often though, this cannot be done due to limited re-
sources or ethical reasons. The field of molecular biology with simple organisms
is an interesting application where causal model validation is feasible thanks to
gene knock-out or other manipulation methods. We pursued this in the past,
for estimated causal structures and models based on frequentist approaches, for
the organisms yeast (Maathuis et al., 2010) and arabidopsis thaliana (Stekhoven
et al., 2012). These two papers indicate that it is indeed possible to predict to
a certain extent lower bounds of causal strength and relations based on obser-
vational (and very high-dimensional) data. Such a conclusion can only be made
post-hoc, after validation – and validation has nothing to do whether a Bayesian
or any other inference machine has been used.

Acknowledgments. I thank Nicolai Meinshausen for interesting comments and
suggesting the name BayesBag.
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Meinshausen, N., Meier, L., and Bühlmann, P. (2009). P-values for high-dimensional regression.
Journal of the American Statistical Association, 104:1671–1681.

Minnier, J., Tian, L., and Cai, T. (2011). A perturbation method for inference on regularized
regression estimates. J. of the American Statistical Association, 106:1371–1382.

Mitchell, T. and Beauchamp, J. (1988). Bayesan variable selection in linear regression. Journal
of the American Statistical Asssociation, 83:1023–1032.

Pearl, J. (2000). Causality: models, reasoning and inference. Cambridge Univ. Press.
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