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Abstract

We propose a new method for stationary nonlinear time series analysis which dy-
namically combines models, either parametric or nonparametric, by using mixture
probabilities from so-called variable length Markov chains. The approach is very gen-
eral and flexible: it can be used for modelling conditional means, conditional variances
or conditional densities given the previous lagged values, and the methodology can be
applied to dynamically combine almost any kind of models. Parameter estimation
(finite or infinite-dimensional) and model selection can be done in a fully data-driven
way. We demonstrate the predictive power of the method on finite sample data and
an asymptotic consistency result is presented.

Heading: Dynamic combination of models



1 Introduction

Nonparametric modeling for stationary nonlinear time series has often been developed by
transferring methodology from nonparametric regression to nonparametric autoregression,
see for example the overview by Tjgstheim (1994). We adopt here a very different approach
which combines flexible Markov modelling for finite spaces with traditional time series
models for real-valued data. It can be viewed as a powerful strategy to generalize the
finite-valued variable length Markov chains (VLMC), introduced by Rissanen (1983), to
real-valued processes. The simplest approach is given by discretizing a real-valued time
series which is then modelled with a VLMC (Buhlmann, 1999). The new method here
is a substantial improvement over such a discretization scheme and is a hybrid between
discretization and “mixture of experts” (Jordan and Jacobs, 1994).

For example, our new modelling approach for the conditional expectation of a sta-
tionary time series variable Y; given its past F;_1, the sigma-algebra generated by the
variables Y;_1,Y;_9,..., evolves by using a finite-valued variable X; € {0,1,...,N — 1}
and the straightforward identity

N—-1
E[Y,|Fia] = Y BV X, = 2, F_1]P[X; = 2| Fpa]. (1.1)
z=0

We always construct the variable X; to depend on Y; via a discretization scheme, indi-
cating to which discretization interval Y; belongs to. We can then view the conditional
expectation E[Y;| Xy = z,F;_1] as a local conditional mean of Y; given the past and we
interpret the probabilities IP[X; = z|F;_1] as mixture or combination weights associated
to the local conditional means. When specifying a local model for E[Y;| X; = z, F;_1], for
example

p
B[V X =2, F 1] =pa + Y a0V (1.2)
j=1

in a local AR(p) model, we see that (1.1) can be viewed as dynamic combination of (local)
models (DCM), where the word “dynamic” emphasizes that the mixture weights depend
on F;_1 and hence (indirectly) on time ¢. We propose to model the mixture probabilities
P[X; = z|F;_1] as functions of lagged X-variables P[X; = z|X;_1, X;_2,...] and model
the latter by VLMC’s. For choosing a reasonable local model for conditional means, we
have (almost) arbitrary flexibility. Particularly, we investigate the local AR model in (1.2)
but also show how nonparametric local models can be used. The special model in (1.1) and
(1.2) has some connections to autoregressive threshold models in the general form as indi-
cated in Tong and Lim (1980) in their last paragraph on p.285: their thresholding function
for different “regimes” could be very general, although most of the implementations are
deterministic in terms of lagged values. When choosing in our approach the degenerate
case with X; =Ty, . for some d € N and c € R, the probabilities P[X; = z|F;_1] take
values in {0, 1}, and our model in (1.1) and (1.2) becomes a self-exciting autoregressive
threshold model (Tong, 1990). But usually, our method relies on combining rather than
selecting a model whose form depends on the previous observations.

Our methodology for dynamic combination of models can also be used to model the
conditional variance given the past Var(Y;|F;—1). This, or the volatility as its square root,



are key quantities in econometrics and financial time series. We present in section 5.2 some
empirical results about dynamic combination of (local) GARCH models, demonstrating
that it often outperforms the popular GARCH(1,1) (Bollerslev, 1986) benchmark model.
Further applications of our dynamic combination of models scheme includes estimation
of the conditional distribution or density of Y; given its past F;—;. The methodology
is very general and it can be tested out on data whether an (almost) arbitrary model
for conditional moments or distributions can be improved via localization and dynamic
combination.

2 Discretization and variable length Markov chains

We first elaborate how to determine the dynamically changing mixture probabilities P[X; =
x| Fi—1] in (1.1), assuming stationarity of the observation process {Y; : t € Z}. The variable
X takes values in a finite set X = {0,1,..., N —1} and is constructed from quantile-based
discretization of the real-valued observation Y;

aw=4 , (21)
N -1, if Fl(an_1) < g(y) < o

where 0 < a1 < ag < ...ay-1 < 1, g(-) is a real-valued transformation (not necessarily
invertible) and F' is the cumulative distribution function of ¢(Y;) or its empirical version.
For example, with o; = ¢/N and using the empirical cumulative distribution of {g(Y;);t =
1,...,n}, we have approximately equal number of occurrences of {X; = z} for all z €
X. The most often used transformations are the identity g(y) = y or the quadratic
transform g(y) = y?: formula (2.1) then corresponds to discretizing the variables Y; or
Y}, respectively.

Stationarity of {X; : ¢ € Z} is inherited by {Y; : ¢ € Z}. Moreover, as the discretiza-
tion in (2.1) becomes finer, we can approximate P[X; = z|F;_1] in (1.1) by P[X; =
z|X¢—1,X¢—1,...], see (Bithlmann, 1999). Variable length Markov chains (VLMC), which
we will define in the next section, then yield consistent approximations for any suitably
regular stationary process {X; : t € Z} (Ferrari and Wyner, 2002) and thus of the mixture
weights in (1.1), assuming that the discretization in (2.1) becomes finer.

2.1 Variable length Markov chains

Variable length Markov chains (VLMC) have their origin in information theory (Rissanen,
1983) and became recently more established in statistics (Biihlmann and Wyner, 1999).

Denote by z! = zj,zj_1,...,%; (i < j, i,j € ZU{—00,}) a vector whose components
are written in reverse order, and wu = (Weard(w); - - - » W2, W1, Ucard(u) - - - » U2, U1) 1S the
concatenation of the vectors w and u; here and in the sequel, card(-) denotes the cardinality
of a vector or a set. Also, capital letters X are usually used for random variables and small
letters = for deterministic values.



The main idea of a VLMC is that the time-homogeneous transition probabilities
]P[Xt = $|Xt_1,Xt_2, .. ] = ]P[Xt = .’1}|Xt_1, .. ,Xt,g], L= K(Xt_l, Xt_g, .. .),

with varying values of £(-), depending on the past lagged values X; 1, X} o,... The formal
definition requires more terminology.

Definition 2.1 Let {X; : t € Z} be a stationary process with values Xy € X. Denote by
Cpre t X% — U207 U X (X% =0) a (variable projection) function which maps

Cpre : x(ioo > a:(l“_l, where £ is defined by
=10z ) = min{k; P[X; = 21|X° =2 ] =P[X; = :v1|X9k+1 = wgkﬂ] for all z1 € X},
where £ = 0 corresponds to independence.

(P[X1 = 21| X%, = 2% ] is assumed to be continuous in z° . with respect to the product

topology). The function cyre(-) is called the preliminary context function.

Additional structure on the preliminary context function cpre(-) s then built in as
follows. The final form of a context function c(-) allows to lump some of the values of
Cpre(-) whose second last symbols are the same (see Ezample 2 below). Then, c(-) is called
a context function and for any t € Z, c(z'7}) is called the context (the relevant past) at
time t. In the sequel, a context function c(-) is always meant to be of final form. Let
0 <p < 0 be the smallest integer such that

card(c(7% o)) = £(z° o) < p for all 2° o € X*™.

—0oQ

The number p is called the order of the context function c(-), and if p < oo, {X; : t € Z}
is called a stationary variable length Markov chain [VLMC] of order p.

Due to stationarity of {X; : ¢t € Z}, transition probabilities are homogeneous in time and
the restriction to indices 0,—1,... in the definitions above is without loss of generality.
Clearly, a VLMC of order p is a Markov chain of order p, with the additional structure
of having a memory of variable length £. If the context function c(-) of order p is the full
projection 2% _ :I:(lp 41 for all 7%, the VLMC is a full Markov chain of order p. A
VLMC has an important representation as a graphical tree model, see Figure 1.

Definition 2.2 Let ¢(-) be a context function of a stationary VLMC. The context tree T
is defined as

T="Tc= {’U);’U) = C(x(ioo)a :L'(ioo € Xoo}

The context function ¢(-) can be reconstructed from 7.. The context tree 7., which does
not have to be complete with card(X) offsprings per internal node, is nothing else than the
minimal state space of the VLMC.

Ezample 1. X = {0,1}, order p = 3.
The function

0, if zg =0, x:éo arbitrary
c(xo ) = 1,0,0, ifzg=1,z_1=0,z_9 =0, m:io arbitrary
/7 ) 1,0,1, ifzg=1,2_1 =0,2_9 =1, z_>_ arbitrary
1,1, ifxg=1,2_1=1, m:go arbitrary
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can be represented by the tree (read top down) 7. = {0,100,101,11} on the left hand side
in Figure 1.

Ezample 2. X = {0,1,2,3}, order p = 2.
Consider first the preliminary context function

(0 if o = 0, x_L_ arbitrary
1 if zo = 1, z7%, arbitrary

2 if xg = 2, x:éo arbitrary

cpre(t0o0) =< 3,0 ifzg =3,z =0, 2, arbitrary
3,1 ifzg=3,2_1=1, .’E:go arbitrary
3,2 ifzg=3,2z_1=2, x:go arbitrary
(3,3 ifzog =3,z 1 =3, 272, arbitrary

Assume now the additional structure that the contexts 30,31,32 are to be viewed as
the same and lumped to 3[0,1, 2], where [-] denotes regular expression. The (final form)
context function is then

0 if zg =0, x:éo arbitrary
1 if zg =1, :c:})o arbitrary
ez ) =< 2 if zg = 2, 2" arbitrary
3,[0,1,2] ifxy =3,z 1 €{0,1,2}, ~2 arbitrary
3,3 ifzg=3,z_1=3, :v:go arbitrary

This context function can be represented by the tree (read top down) 7. = {0, 1, 2, 3]0, 1, 2],
33} on the upper right hand side in Figure 1. An alternative tree representation, which
is notationally and algorithmically more efficient and which we will use from now on, is
given by the tree 7. = {0, 1,2, 3,33} on the lower right hand side in Figure 1, where the
context 3[0,1,2] is represented by the internal node 3.

0,12 3

Figure 1: Tree representations of the variable-length memories in Examples 1 and 2.



2.2 The context algorithm for fitting VLMC’s

Fitting a VLMC involves a version of the tree structured context algorithm (Rissanen,
1983) for estimating the variable length memory, described by the context function ¢(-),
and for the set of transition probabilities. Estimation of 7. is a highly complex model
selection problem; due to the extremely large number of possible models, a natural tree
hierarchy is employed.

One tuning parameter needs to be specified, the so-called cutoff denoted by K. Asymp-
totically, the cutoff should be of the form K = K, ~ Clog(n) with C > 2card(X) + 3 a
suitable constant. The choice of the cutoff parameter K = K, in practice is often more
intuitive on the scale of y?-quantiles, see Biihlmann and Wyner (1999):

K = X?V—I;Q/za half of the Qth quantile of a x%_; distribution, (2.2)

where @ has to be chosen.

The algorithm yields then estimates é(-) (or 7) of the context function (context tree)
and estimated transition probabilities IP[X; = z|¢(X!™1)] for the target P[X; = z|c(X'3))].
These estimates are consistent for the true context tree and transition probabilities (and
also for marginal distributions) of suitably regular, stationary X-valued processes which
do not necessarily need to be a VLMC, see Bithlmann and Wyner (1999) and Ferrari and
Wyner (2002).

A detailed description of the algorithm is given in Appendix A. The context algorithm
is implemented in the statistical computing language R, freely available from the download
section of http://www.r-project.org/. On-line help is available in R with library(VLMC).
A more detailed tutorial for fitting and modelling with VLMC’s is given in Méchler and
Biithlmann (2002).

2.3 Quantized variable length Markov chains

Quantized variable length Markov chains are real-valued processes {Y; : ¢ € Z} which
evolve rather directly from variable length Markov chains, see Buhlmann (1999). Their
conditional densities, assuming they exist, are of the form

P W) = 3 fal)PIX, = ale(X* )],

=0

where fz(-) are univariate densities. The conditional expectation for such models is then
of the form

N—-1
B[V, Fia] = Y 0, P[X; = zfe(X )],
=0

where 0, = [yfz(y)dy can be interpreted as a quantization value corresponding to the
discretized z. Comparing this with (1.1), we see that this is a dynamic combination of
constants. Our new methodology will be much more flexible by allowing more complex
(local) models instead of just constants.



3 Dynamic combination: models and estimation

Dynamic combination of models can be set-up in a wide variety of settings such as for con-
ditional means, variance or distributions. In the sequel, we abbreviate by P; , = P[X; =
z|c(X' )] the transition probabilities in a VLMC and by P, = P[X; = z|¢(X]1)] its
estimates from the context algorithm.

3.1 Examples of models

3.1.1 Conditional mean models

Consider the general homoscedastic error model
Y = p + o€y, (3.1)

where {g;;t € Z} is an ii.d. innovation sequence with E[e;] = 0, Var(e;) = 1 and ¢
independent from {Y; : s < t}. The conditional mean is modelled with DCM

M = Z Mg (Fi—1)Pry

with local models m,(F;—1). For example, they can be parametric autoregressive,

p
mw(]:tfl) = m(ezca Y;ft:pl) = ¢w,0 + Z ¢w,jY;57ja 0, = (¢w,03 s ¢w,p)la (3-2)
j=1

or they can be additive of order p

p
mz(]:t—l) = mw(y;:t__pl) =g+ Z fz,j(Y;f—j)’ (3'3)
Jj=1

with identifiability constraints E[f; ;(Y1)] = 0 for all j and z.

3.1.2 Conditional variance models

Consider the stochastically changing heteroscedastic error model

Y = pe(y) + over, (3.4)

where ¢; are as in (3.1) and for simplicity, we assume that p;(y) =E[Y;|F;—1] is of simple
parametric form such as p;(7) = 7Y;_1. The conditional variance o7 given F; ; is modelled
by DCM, for example with local GARCH(1,1) models,

N-1
07 =) vg(Fi-1)Pra,
=0

'U:E(]:t—l = Qg0+ aw,ly:tal + 13.',50-13717 (3'5)

where a0, 051,08, > 0 for all .



3.2 Estimation

We describe now parameter or curve estimation in the homoscedastic and heteroscedastic
models (3.1) and (3.4), respectively. For a given discretizer ¢(-) and a given structure of
the local model, we use maximum likelihood for finite-dimensional parameter estimation.
For the nonparametric DCM in (3.3), a weighted backfitting method is proposed.

3.2.1 Conditional mean: local parametric models and Gaussian DC-AR

For the homoscedastic model (3.1), we focus for expository simplicity to the case where the
local model is parametric and Markovian of order p (the non-Markovian case is analogous
to the heteroscedastic model described in section 3.2.2). The conditional mean can then
be parameterized as

N-1
pe(0) = > m(02;Y) ) Prg, 0= (o, --.,0n_1)" (3.6)

z=0

see also (3.2).
We denote by

N—

;_A

m(6 Yt P, ,, (3.7)

z=0

where If’m is the estimate from the context algorithm. The conditional log-likelihood,
given the first s = max{p, d} observations Y}, with d the order of the VLMC, is then

Z 10 Mt(a)))’

t=s+1

where f.(-) denotes the density of the innovation ;. Now, replacing the variance o2 with
the estimate 62(0) = Y°i .| (Y; — fi¢(0))?/(n — s) yields for the conditional log-likelihood

n

£a(0) = —(n — 5)log(62(6)) + ) log (f=(6~ 1 (8)(Y: — 2u(6)))) - (3-8)

t=s+1

The maximum-likelihood estimator is 65/7 5 = argming — £, ().
In case of standard Gaussian innovations €, the maximum likelihood estimator coin-
cides with least squares

n
Ors = argming »  (Y; — 1(6))”, (3.9)
t=s+1

Furthermore, if the local model is autoregressive as in (3.2), the least squares estimator
is linear and can be solved explicitly. To make the model identifiable we use instead of
13757 ~N—1 the equivalent quantity 1 — Zivz_(f Pt,z- This induces a re-parameterization: the
(old) parameter vector 6 = (6p,...,0n_1) in (3.2) becomes in the new representation

01 = (061 Il, RN ?V—l)a
= (a,N—=1, P2,0 — Po,N—1,P2,1 — Pa,N—1,---,Pe,N—2 — Pzn—-1)-  (3.10)



The least squares estimate of ' of dimension N (p + 1) is then
éILS,n = (ATA)_IAT 57—L|—1’ (311)

where A is an (n —s) X N(p+ 1) matrix with full rank N(p+ 1) whose exact form is given

PN

in Appendix B. This estimate 0} 4 can be efficiently computed via the QR decomposition.

3.2.2 Conditional variance: DC-GARCH models

For the stochastically heteroscedastic model, we focus on the local GARCH(1,1) model in
(3.5) as an interesting example. The conditional log-likelihood in the model (3.4)-(3.5),
given the first s observations and an initial conditional variance o2, then becomes

£(057) = _En: log (atto)fg (Yt;ég)(w))

where 0 = {a;0, 04,1, 8;¢ =0, ..., N—1} whose components are positive. The maximum-

likelihood estimator is defined as (8,4)mrE = argming , — £,(6,7)-

3.2.3 Weighted backfitting for nonparametric local mean models

We consider now conditional mean models (3.1), where the local models m,(-) are non-
parametric but additive as in (3.3). When focusing on least squares, a weighted backfitting
can be used to estimate the local functions my(-).

Our weighted backfitting algorithm then proceeds as follows:

Step 1 Initialize the functions mg‘))(-) =n Y0, Y

Step 2 Cycle through the components k=0,1,...,N-1,0,1,. ..

P
g (-) minimizes over my = ay, + Z fx,;(+) the criterion:
j=1
n N-1
D0 (= 30 Vi) Pre — mk(Vi) Pug)’

t=s+1 r=0,x#£k

n N—-1

= Y PRy —mi(Y): Rip = Y= D (Y50 P

t=s+1 r=0,z#k

where the minimization respects smoothness constraints. The method requires that
the additive function estimation routine for 72 can be used in a version respecting
weights Pfk.

Step 3 Continue until the relative change of the least squares criterion falls below a given
tolerance such as 1076.

In case of local additive models as in (3.3), we use smoothing splines for every component
fz,j(+) but other smoothers could be used as well.



3.3 Theoretical properties for local autoregressions

We show here for the DC-AR model in (3.2), that the least squares estimator in (3.9) (or
in (3.11)) converges to a unique 6,.

Theorem 3.1 Under the assumptions (B1)-(B3) and (C) described in Appendiz B, the
least squares estimator (3.11) for the DC-AR(p) model is consistent:

éILS,n = 6>’k + OP(l) (n — OO),

where 6, is the unique minimizer of B[(Y; — us(8'))?] with respect to 6', and where (6"
is specified by (3.2) but with the parameterization in (3.10).

A proof'is given in Appendix B. Theorem 3.1 establishes consistency for the best parameter
0, in a DC-AR model with specified quantizer and order of the local AR-models: the
specified DC-AR model with parameter 6, is the closest to the true data-generating process
with respect to the Kullback-Leibler divergence, among all such DC-AR’s with other
parameters 6. If the data-generating process is of the specified DC-AR model form with
parameter 6y, Theorem 3.1 then establishes convergence to the true 6. Due to convexity of
the least squares optimization problem, the parameter 8* and the least squares estimator
f.s are unique, a property which typically does not hold for complex nonparametric
procedures such as projection pursuit (auto-) regression (Friedman and Stuetzle, 1981).
The convergence rate of éLS is typically slower than 1/4/n, because the generally infinite-
dimensional mixture probabilities P; , have to be estimated.

Already the quantized variable length Markov chains from section 2.3 have been shown
to be dense in the set of stationary processes (Biithlmann, 1999). Essentially under the con-
ditions from Theorem 3.1, estimated quantized variable length Markov chains consistently
approximate all finite-dimensional distributions of the data-generating process (Ferrari and
Wyner, 2002); and the same can be shown for estimated DC-AR or estimated dynamic
combination of many other models.

4 Choice of discretization and model selection

Choosing a discretizer as in (2.1) and selecting a structure in a class of local models, for
example the order p in local autoregressions in (1.2), amounts to a discrete optimization
problem and typically cannot be solved by exhaustive search. Two search strategies among
the possible discretizers are proposed which are then combined with local model selection.
As an overall criterion to be minimized, we focus on penalized likelihoods.

For conditional mean models, we always choose the discretizer in (2.1) with the identity
g(y) = y while for conditional variance models, we always use g(y) = y? reflecting the
second moment structure of a variance.

4.1 Balanced and recursive discretizers

The balanced discretizer is as in (2.1) with «; = i/N and F the empirical cumulative
distribution function of {g(Y;);t = 1,...,n}, resulting in approximately equal number of
occurrences of {X; = z}. The best balanced discretizer is thus specified by the optimal
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number N of discretization values. Balanced discretizers work well for conditional mean
models and if the data do not exhibit any special ranges in R, such as negative or positive
extremes, which would affect the dynamics of the process very much.

There are noticeable cases, where extreme events strongly influence the dynamics of the
underlying process: a prime example are time series of returns from financial instruments,
see also section 5.2. We then propose a recursive discretization scheme which works as
follows.

Step 1 (initialization): Start with no discretization, corresponding to N = 1. Set
A=R and m = 0.

Step 2: Refine the selected partition interval from A, say R* into two disjoint intervals
Riesir Ryight (R* = Riep U Ryigne) such that the total negative log-likelihood (requires
estimation of parameters in local model) is minimal. This refinement is performed on a grid
of quantile values of the empirical cumulative distribution function of {g(Y;);t = 1,...,n}.
Set A=A\ R* U{R},f,Ry;;n} and increase m by one.

Step 3: Repeat Step 2 until m reaches a pre-specified level M.

This method is a recursive binary tree-structured search for N = M + 1 partition
intervals or equivalently, N — 1 = M quantiles in the discretizer (2.1); and again, only N
needs to be selected. Note that we implicitly assume here that a local model structure is
given for evaluating the log-likelihood.

4.2 Model selection

Having chosen the class of local models and the function g(-) in the discretization scheme
(2.1) we need to choose the amount of discretization and the dimensionality of the local
model. We propose to minimize the AIC statistic

AIC = -2 log-likelihood + 2(N dim(local model) + (N — 1)card(7)),

where 7 is the estimated state space of the VLMC for the dynamic mixture weights.
Minimization is either over a balanced or recursive discretizer as described in section 4.1
and typically with a hierarchy over local models such as the order of a local AR model.

Of course, estimation of the VLMC involves the cut-off K as a further tuning param-
eter. We can also incorporate this into the search with AIC: then, the log-likelihood as
well as 7 depend also on K.

5 Numerical examples

5.1 Simulations for estimating conditional means

The main objective here is to compare the DC-AR model with the parametric AR model
(AR), with projection pursuit (PPR) (Friedman and Stuetzle, 1981) and with nonpara-
metric additive modelling (AM) (cf. Hastie and Tibshirani, 1990), both of the latter using
lagged values as predictors.

We simulate data from the following nonlinear model:

YE = [t + o€y,

11



pe = [1.05 — 2.15cos(nY;_1) exp(—0.5Y;2|)]Y; 1
—[0.15 — 0.90 sin(7Y;_o) exp(—0.5(Y;2; + Y;2,)]Vi_o
—[0.55 — 1.60 exp(—0.5(Y;2 | + p2_)]pe1, (5.1)

where {g;;t € Z} is an i.i.d. innovation sequence, &; ~ N(0,1) independent from {Y;; s <
t}, and 0? = 0.5,1,2 or 4. Note that this model is non-Markovian while all the fitting
techniques yield Markovian models for ;. We choose (training) sample size n=2000 and
generate a test set of size 2000 with the subsequent values Y,i1,...,Ys,. We always
simulate over 100 realizations from model (5.1).

For fitting DC-AR models, we use model selection as in section 4.2 for the balanced
discretizer in section 4.1 and for the local model order which was forced to be the same
for all local models. Also, the cut-off parameter K in the Context Algorithm has been
set equal to X3 _1.9.95/2, see also (2.2), which is a reasonable ad-hoc value. For all other
models, namely AR, PPR and AM, the selection was also done by minimizing the AIC
statistic, using the equivalent degrees of freedom for the nonparametric methods.

The resulting outsample mean squared prediction errors 2000~ 2?2%%01(1@ — fir)? are
summarized in Figure 2. Overall, additive modelling has a slight edge over DC-AR,
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Figure 2: Mean squared prediction errors in model (5.1). In lexicographic order: o? =

0.5,1,2,4.
and DC-AR is a bit better than PPR; the parametric AR is not competitive for the

nonlinear model (5.1) except when the innovation variance is large. Similar findings,
described in detail in Ferrari (2002), have been obtained when looking at t,-distributed
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innovations (v = 4, 6,8) or stochastically changing variances o2 = o2 in model (5.1); also,

the results were similar when looking at the mean absolute prediction error. Although
additive modelling performed here best, we show in section 5.1.2 that we can sometimes
improve it further by using dynamic combination of additive models as described in section
3.2.3. Thus, as mentioned before, the potential of DCM is not restricted to local AR
models, although the simple DC-AR was found to perform well in model (5.1) and in a
variety of other processes

5.1.1 Computational efficiency

To give a crude idea about computational efficiency, Table 1 shows the CPU times needed
to compute the mean squared prediction errors for the 100 model simulations in (5.1),
including all elements of tuning and model selection. For AR, PPR and AM, we use the
implementation in R (http://www.r-project.org) and the results are based on a Linux
machine with Pentium III processor, 930MHz and 256 MB RAM. Fitting DC-AR models
was 2-5 times faster than AM and much faster than PPR. The same applies with other
datasets. Note that fitting the parameters in a DC-AR amounts to estimating a VLMC
and a convex optimization problem which has a unique and explicite solution.

02=05|02=1|062=2|0%2=4
AR 587 589 591 594
DC-AR 2668 2663 3450 1664
PPR 31678 25278 18057 | 448030
AM 6040 8293 8240 8175

Table 1: CPU times for model (5.1).

Thus, the DC-AR models work similarly well as PPR (a little better) and as AM
(a little worse), see section 5.1, but are fitted remarkably faster than these other two
nonparametric methods.

5.1.2 Dynamic combination of nonparametric additive models

We exemplify here how to improve an additive model by dynamic combination with a
recursive discretizer as in section 4.1 with NV = 2. Consider a nonlinear random coefficient
model

Y, = UY; 1+ Uiy o+ ogey,
o = 0.1+0.25Y72, (5.2)

where {Uy; : t € Z} and {Us; : t € Z} are independent i.i.d. sequences, uniformly
distributed on (—1,1) and e; as in (5.1). As before, (training) sample size is chosen as
n = 2000 and 2000 subsequent values serve as a test sample.

The strategy employed here for model fitting is to first select (and estimate) a AM
using AIC for order selection; we then try to improve it by estimating a DC-AM of the
same (local) order for N = 2 quantization intervals. The value a; = 0.9 in (2.1) turned
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out to be a good discretizer and the cut-off parameter of the context algorithm is again
used with the “default” value K = x% ..95/2-

Figure 3 displays the mean squared prediction error for 100 simulations from (5.2). We
find for this model, that DC-AM also yields an improvement over an optimally AIC-tuned
AM.

DC-AM
012 3 45 6 7 8 9 1011 12 13

DC-AM
02 04 06 08 10 12 14 16 18
1

0.2 0.4 06 0.8 10 12 14 16 18

Figure 3: Top: Mean squared prediction error of DC-AM versus mean squared prediction
error of AM for 100 simulations from model (5.2). Bottom: Zoom of top panel.

5.2 Volatility estimation for daily stock returns

The value of DCM is not primarily for homoscedastic error models where quite many
standard nonparametric techniques work reasonably well. When it comes to estimating
the important conditional variance for financial time series in multiplicative models, log-
transformed nonparametric additive modelling has been found to predict rather poorly
(Audrino and Bithlmann, 2001), and DCM offers here an interesting way to improve the
parametric ARCH or GARCH models.

Consider the daily log-returns Y; = log(P;/P;—1) of the prices P; of a financial asset.
The volatility is defined as /Var(Y;|F;—1), which is the conditional standard deviation
given the information up to time ¢ — 1. For such financial time series of log-returns, the
conditional expectation is not of primary importance and we consider the AR(1)-DC-
GARCH(1,1) model

Y; = vYi1 + 04(0)e (5.3)

where o7 (0) is specified in (3.5). For the innovation process {¢; : t € Z} we assume either
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of the following distributions

EtNN(Oal) 3
Et:\/(V—Q)/l/Zt, ZtNt,/.

Estimation of parameters is done as described in section 3.2.2. In case of scaled t,
distributed innovations, v is treated as one additional unknown parameter in the log-
likelihood. The discretization and model selection is done with the recursive discretizer
and AIC as described in sections 4.1 and 4.2. The context algorithm is used with fixed
cut-off tuning parameter K = X%\Ll;o.g?s /2, see (2.2): this is a relatively large value of
K to favor models which are not too far away from the GARCH(1,1) since K sufficiently
large always yields an estimated VLMC of order zero.

We measure the goodness of fit by evaluating the outsample negative log-likelihood
(OS-NLL) on a test sample. The training data Yi,...,Y,, is used for estimation only and

a test sample Y7",... Y  is used for evaluating
j L (Yi=4Yia
OS-NLL = —£,(0, % Y7',... Y, )= — log —f -
" e t_zs—i:—l a1(0)" ay(0)

where f.(-) is either the density of a standard normal or of a scaled ¢, distribution. In
the latter case, the evaluated negative log-likelihood involves also the estimated degrees
of freedom v. Others measures are the in- and outsample squared prediction errors

n

1 ~ N 2
ISL2PE = — ) (at(0)2—(n—7yt_1)2) :
t=s+1
1 n:est ’\2 9 2
OSL2PE = —— Y (/07— (% -7¥1)?)
t=s+1

where o; and o} denote the volatilities evaluated at the in- and outsample observations,
respectively.

5.2.1 The BMW stock

We consider daily negative log-returns (in percentage) of the BMW stock price from
November 23, 1988 to July 23, 1996, which correspond to a sample of 2000 data points.
The former half is the training set, the latter for model testing.

Our fitting procedure selects and estimates a AR(1)-DC-GARCH(1,1) model in (5.3)
with N = 2 quantization intervals determined by @ = 0.4 in (2.1), both for normal and
t-distributed innovations. Detailed results are given in Table 2, comparing also with an
AR(1)-GARCH(1,1) model. The gain with respect to the AIC statistic is clearly visible,
mostly for normal innovations and the improvements in terms of the outsample squared
prediction error are substantial. To appreciate this, we point out that with real financial
data, differences in the goodness of fit measures are often heavily masked due to high noise,
cf. Audrino and Bithlmann (2001); for example, for the OS-L2-PE, we replace the target
072, the true squared volatility, by the very noisy estimate (Y;* —4Y;* ;). Table 3 displays
the predictive performance for AR(1)-DC-GARCH(1,1) models on N = 2 discretization
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GARCH(1,1) | DC-GARCH(1,1) | gain
AIC 3566.4 3536.4 30
IS-L2-PE 76.472 74.959 2%
OS-NLL 1.607 1.607 0%
OS-L2-PE 12.836 11.064 16%
N - 2 -
a - 0.4 -
GARCH(1,1) | DC-GARCH(1,1) | gain
AIC 3339.2 3335.9 3.3
IS-L2-PE 76.079 75.912 0.2%
OS-NLL 1.546 1.538 0.52%
0OS-L2-PE 12.580 11.266 12%
v 3.75 3.79 -
N - 2 -
o - 0.4 -

Table 2: BMW data. Top: results for normal innovations. Bottom: results for ¢, innova-

tions.

AR(1)-DC-GARCH(1,1), N = 2,N(0,1) || AR(1)-DC-GARCH(1,1), N = 2, ¢,
a OS-NLL | OS-L2-PE | a OS-NLL | OS-L2-PE
0.1 1.608 12.335 0.1 1.540 11.667
0.2 1.658 11.219 0.2 1.550 11.530
0.3 1.812 11.676 0.3 1.602 12.555
0.4 (“AIC”) | 1.607 11.064 0.4 (“AIC”) | 1.538 11.266
0.5 1.759 11.798 0.5 1.586 12.118
0.6 1.659 11.383 0.6 1.561 11.630
0.7 1.608 12.058 0.7 1.548 11.756
0.8 1.608 11.296 0.8 1.548 11.672
0.9 1.611 12.047 0.9 1.542 11.632

Table 3: BMW data. Outsample negative log-likelihood and mean squared prediction
error. Left: normal innovations. Right: ¢, innovations. Model selected by AIC is denoted
by “AIC”.

intervals with quantiles a € {0.1,0.2,...,0.9}. The model selected by AIC in the AR(1)-
DC-GARCH(1,1) class, denoted by “AIC”, is the optimal model in the sense that its
OS-NLL and OS-L2-PE are overall the smallest.

From the volatility plots in Figure 4, we see that the structure of the volatility does
not change significantly by building dynamic combinations. Both models detect periods
of large movements in the log-returns, the main difference being that the AR(1)-DC-
GARCH(1,1) model does not reach so large values as the AR(1)-GARCH(1,1) model.
An interesting aspect of our model is its capability to sometimes descend more rapidly, or
being less persistent, and also to reach low values (see for instance the outsample volatility
around sample point 900), in contrast to the AR(1)-GARCH(1,1) model. In Figure 5 we
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Test sample
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Figure 4: BMW data. From top to bottom: log-returns in test sample, outsample volatility
for AR(1)-DC-GARCH(1,1), outsample volatility for AR(1)-GARCH(1,1). Both of the

latter with normal innovations.
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Figure 5: BMW data. Top: normal QQ-plots of outsample residuals. Bottom: autocorre-
lation function of absolute values of outsample residuals. Left: AR(1)-DC-GARCH(1,1)
with normal innovations. Right: AR(1)-GARCH(1,1) with normal innovations.
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display graphical diagnostics for the residuals of the selected AR(1)-DC-GARCH(1,1)
model and for the AR(1)-GARCH(1,1) model, both for standard normal innovations. The
DC-model exhibits more normally distributed residuals while the serial correlations of
absolute residuals are low for both models.

More empirical results are given Ferrari (2002). In particular, for daily log-returns from
the “Deutscher Aktien-Index” (DAX), our data-driven approach selected the standard
AR(1)-GARCH(1,1) over the new AR(1)-DC-GARCH model. This selection turned out
to be reasonable because the best AR(1)-DC-GARCH model which minimizes out-sample
performance was only slightly better than the AR(1)-GARCH(1,1) fit.

6 Conclusions

We proposed a new method for stationary nonlinear time series analysis which combines
local models, either parametric or nonparametric, by using mixture probabilities from
variable length Markov chains. The approach is very general and flexible: it can be used
for modelling conditional means, conditional variances or conditional densities, and the
methodology can be applied to almost any kind of local model. It can thus be viewed also
as a method which has the potential to improve a given model class, for example ARMA,
nonparametric additive autoregressive or GARCH, via dynamic combination.

We present a fully data-driven approach for estimation, discretization (localization)
and model selection. Various empirical results illuminate the competitiveness or superior
predictive performance of the new method for conditional mean and conditional vari-
ance estimation given the previous lagged values. For the former, our Gaussian DC-AR
amounts to estimating a VLMC and a convex parameter optimization having a unique
solution which can be computed efficiently, in contrast to say projection pursuit as a so-
phisticated nonparametric alternative. Comparisons are made on synthetic data and with
nonparametric techniques such as additive modelling or projection pursuit. For condi-
tional variance models, we consider volatility estimation for a real financial time series
and compare it with the GARCH(1,1) model predictions. Finally, a consistency result for
dynamic combination of autoregressive models represents some asymptotic aspects.

A generic part of our method is the fitting of variable length Markov chains for which
our software is publicly available in the statistical computing language R (http://www.r-
project.org).
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Appendix A: The context algorithm

The tree structured context algorithm uses the notion of terminal node context trees

TT:sz{w;weTc and wu ¢ 7. for all u € X'}.

In Example 2, 77 = {0,1,2,33} is the set of terminal nodes in the tree in Figure 1, whereas
7 = 77 U{3}. In Example 1, 77 and 7 coincide. The information of 77 is equivalent to the
information in 7: the terminal node tree thus yields a more compact representation. Denote by

n—card(w)+1
oo

N(’LU) = Z 1[Xt+card(w)_1:w]: w e Um:1Xm7
t=1 ¢
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the number of occurrences of the string w in the sequence X' and let N_(w) be the same but
summing from ¢ = 1,2,...,n — card(w). Moreover, let

so that ), P(z|w) = 1.

The algorithm below constructs the estimated context tree 7 as the biggest context tree (with
respect to the order ‘<’ defined in Step 1 below) such that

Apy = Z P(z|wu) log(M)N(wu) > K for all wu € 7 (u € X)
eyt P(z|w)

where K is the cutoff tuning parameter.

Step 1 Given X-valued data Xj,...,X,, fit a maximal context tree, i.e., search for the context

function ¢y,q,(-) with terminal node context tree representation 7.. . where 7.L  is the

biggest tree such that every element (terminal node) in 7.5,  has been observed at least
twice in the data. This can be formalized as follows:

71, is such that w € 71, implies N(w) > 2, and such that for every 77, where w € 77

implies N(w) > 2, it holds that 77 < 7.1,

max*
Here, m < 7 means: w € 13 = wu € 7» for some u € USP_ X™ (X0 =0).

Set T(TO) =75 .
Step 2 Examine every element (terminal node) of 7'(76) as follows (the order of examining is irrele-
vant). Let ¢(-) be the corresponding context function of T(TO) and let

-0 (0 _ _ 0
wu =3y =@ ), u=Togpr, W=7 4y,

where wu is an element (terminal node) of 7(7(;), which we compare with its pruned version

w=1°,,, (if =1, the pruned version is the empty branch 0, i.e., the root node).
Prune wu =%, , tow =2°,,, if

Ay = Z P(z|wu) log(%)N(wu) < K,

TEX (l)

with K = K, ~ Clog(n), C' > 2card(X) + 3 and P(-|-) as defined in (A.1). Decision about
pruning for every terminal node in 75, yields a (possibly) smaller tree 71y < 7(j,. Construct

the terminal node context tree T(q;).

Step 3 Repeat Step 2 with T(,-),T({) instead of T(ifl),T(qul) (i = 1,2,...) until no more pruning is
possible. Denote this maximal pruned context tree (not necessarily of terminal node type)
by 7 = 7z and its corresponding context function by &(-).

Step 4 If interested in probability distributions, estimate the transition probabilities P(z1|c(z% )
by P(21]é(z° ), where P(-|-) is defined as in (A.1).

More details and motivation can be found in Bithlmann and Wyner (1999).
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Appendix B: Proofs

Form of the design matriz A for frs in (3.11):

1 Peyr1po ... Peyan—2 Y YsPst1,0

1 Psyao ... Psyan—2 Ysy1 Ysp1Psyopo

1 Puo eo. P n—o Yo-1 Ya-1Php
YsPsy1,n-2 R €1 Y1Pst10 ... YiPeypin2
}/s+1Ps+2,N—2 - Y2 Y2P5+2,0 e Y2P5+2’N_2
YnPn,N—2 . Yn—s Yn—sPn,O e Yn—sPn—s,N—Z

Proof of Theorem 8.1:
In the sequel, we often write for a probability measure P on X%, P(z) = Pp[X? = z] (x € X?) [abbreviating
P@(z)] and P(zjw) = P(zw)/P(w) (z,w € US2,X7). The following assumptions are used for proving
Theorem 3.1.

(B1) The data-generating process {Y; : t € Z} is strictly stationary and geometrically S-mixing with
B(k) < Cgp" for some constants Cg >0 and 0 < p < 1.

(B2) E|Y;|*™ < oo for some & > 0.
(B3) For the discretized process { X+ = q(Y3);t € Z}, consider the sequence of truncated context functions

0 )= {c(x(lco) if w = c(2° ) has length card(w) < d,,

on(® oo 2%, 41 if card(e(2% o)) > dn ' (A-2)

for an increasing sequence {d, : n € N}. The corresponding context and terminal node context
trees (see section 2.2) are denoted by 7,, and 7.0, respectively. We then assume:
(a) For all n sufficiently large
d, <n’, for some d € (0,0),

where o € (0,1) is specified in assumption (B3(b)).
(b) For some 6 > 0, some o € (0,1) and some v € (0, (1 —o)/2), for all n sufficiently large,

, 1
Ly = iy Pw) 2 =,
1 146
YTo= min Y |P(zlwu) - P(zlw)|, T3> %I_U.
qur,T,uEX ceXx (nl—\sll*"')/2)

(c) For the minimal transition probabilities, for all n sufficiently large,

Poin(t) = it Plelu)2

S|

(C) The context algorithm is used with the estimated context function &, but truncated at d, as in
(A.2). Moreover, the cutoff tuning parameter satisfies K = K,, ~ Clog(n), C > 2card(X) + 3.
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Assumptions (B3(a))-(B3(c)) are all probabilistic conditions about the sparseness and the growth rate of
the truncated context tree 7, and the corresponding set of terminal nodes 7.1 .

They may be hard to check, but Ferrari and Wyner (2000) give an example where they hold. For
general stationary processes with finite memory (being therefore VLMC’s), it suffices to assume

min  P(z|w) >0
rEX, WET

which implies assumptions (B3(a)) - (B3(c)).

Proof of Theorem 8.1. The least squares criterion is

n

R 1 R
L) = —— > (Y- u(®)*
t=s+1
Consider also the auxiliary functions
1 n
L) = —— 3 (¥i— m(®)’
t=s+1

which replaces the estimated ﬁt,m by the true underlying P; ., and
L(6) =E[(Y: — p(6))’].

Also note that the best projected parameter 6. is unique due to convexity of L(§) (see Nocedal and
Wright (1999)). Since rs, is the minimizer of Ly (6), it suffices to show

sup | L, (8) — L(8)| = op(1). (A.3)
0o

See for example van der Vaart (1998, Th. 5.7). By the triangle inequality we have
sup | L. (6) — L(6)|
6o

< sup|Ln(8) — Ln(6)| + sup |Ln(6) — L(B)| = I + II. (A.4)
(C) 6co
A first order Taylor expansion yields for the first term I,
1 n—s B N-1 P .
I=sup|-2— ;(Yt — (6 P.a)) Z;)(eﬁ,o + Zlew,mfj)(a,x —Pia)l|,
— o= j=

p
pe(8; Po) = (Boo+ Y 02,5Yij) Pra.

=1

where |P; ; — Pi | < |Pio — Pio|. This expression can be bounded as

. 1 n—s B N-1 P
1< 25p P — Pral o= D (lm +sup Iut(G;P-,m)|> sup D | 16zl + 3 10l Vil )
@ T =1 =0 j=1

It is shown in Ferrari and Wyner (2000) that sup, , |Pio — Pig| = op(1). Thus, due to the fact that
O is compact and the moment assumption in (B2) which ensures a law of large numbers, it follows that
I=o0p(1).

In order that the second term in (A.4) satisfies 17 = op(1), it suffices to show that the following conditions
for me(Yi,...,Yi—s) = (Yi — pe(9))? hold (see for example van der Vaart (1998, Th. 19.4 and Ex. 19.8)
and Yu (1994)):

(D1) The function § — mg(Y3,...,Y;_,) is continuous for every (Y3,...,Y;_,) € R°T!,

(D2) For the family, there {mg : 8 € O}, there exists an integrable envelope function b(-) such that
Supgeo [mo (Y, ..., Yis)| < b(Yy, ..., Yies).

The condition (D1) holds since u(t,0) is linear in 8. For the condition (D2), define the envelope function
b(Y;a s 7Yf*3) = sup(Y't - P/t(e))Z
0co

Since O is compact and due to the moment assumption (B2), the envelope function b(-) is integrable. O
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