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Abstract

Background: The joint analysis of several categorical variables is a common task in many areas of biology, and is

becoming central to systems biology investigations whose goal is to identify potentially complex interaction

among variables belonging to a network. Interactions of arbitrary complexity are traditionally modeled in

statistics by log-linear models. It is challenging to extend these to the high dimensional and potentially sparse

data arising in computational biology. An important example, which provides the motivation for this article, is

the analysis of so-called full-length cDNA libraries of alternatively spliced genes, where we investigate

relationships among the presence of various exons in transcript species.

Results: We develop methods to perform model selection and parameter estimation in log-linear models for the

analysis of sparse contingency tables, to study the interaction of two or more factors. Maximum Likelihood

estimation of log-linear model coefficients might not be appropriate because of the presence of zeros in the

table’s cells, and new methods are required. We propose a computationally efficient ℓ1- penalization approach

extending the Lasso algorithm to this context, and compare it to other procedures in a simulation study. We

then illustrate these algorithms on contingency tables arising from full-length cDNA libraries.

Conclusions: We propose regularization methods that can be used successfully to detect complex interaction

patterns among categorical variables in a broad range of biological problems involving categorical variables.
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Background

One of the most striking discoveries of the genomic era is the unexpectedly small number of genes in the

human genome. This amount has decreased from more than 100000 [1] to an estimated number of roughly

between 20000 and 25000 ( [2, 3]), tens of thousands less than initially expected and essentially the same

number as found in phenotypically much simpler organisms. A question of overriding biological significance

is, how complex phenotypes of higher organisms arise from limited genomes. Part of the explanation may

be that many genes undergo a process called alternative RNA splicing, which can generate many distinct

proteins from a single gene.

RNA splicing is a post-transcriptional process that occurs prior to mRNA translation. After the gene has

been transcribed into a pre-messenger RNA (pre-mRNA), it consists of intronic regions destined to be

removed during pre-mRNA processing (RNA splicing), as well as exonic sequences that are retained within

the mature mRNA. After transcription occurs the actual splicing process, where it is decided which exons

are retained in the mature message and which are targets for removal. In general, exons and introns are

retained and deleted in different combinations to create a diverse array of mRNAs from a common coding

sequence. This process is known as alternative RNA splicing. Depending on the source, the percentage of

alternatively spliced genes lies between 35% and 60% ( [4–10]). By screening many full-length cDNAs it is

possible to record the complete cDNA from a mature RNA for the same gene again and again and a

full-length cDNA library, also known as single-gene library (SGL), builds up. The library contains detailed

information about how specific exon combinations go together. This information is directly related to the

functional regions of the proteins as they are grouped in domains which in many cases correspond to a

single exon which encodes these domains. For example a transcription factor consists of a DNA binding

domain and a regulatory domain. Thus the alteration of the exon structure corresponds to an alteration in

the function of this particular domain. The central premise is that a dependency in the domains points to

a functional association. If domains interact functionally then their splicing should be co-regulated. And

this co-regulation has direct biological significance because it shows us which variable components also

interact in the expressed protein. Because the polypeptide is intricately folded and tightly packed,

segments that are separated by dozens of introns in the primary transcript may encode domains that

interact functionally within the protein. These domains need not be structural neighbors even in the folded

protein, but may interact through electrical or van der Waals forces, effects of global conformational

changes, or even associations with other proteins. Because of these intricacies, there are no inherent

distance restrictions, or limits on the number of interacting sites, and separate domains may combine their
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functional effect in unpredictable ways.

Due to the large number of potential combinations in highly alternatively spliced genes, any library will

only comprise a small portion of the total theoretically possible inventory of combinations. Statistically,

this leads to sparse contingency tables in which dimensions represent exons and cells represent variants.

The investigation of interactions among categorical variables where not all possible combinations are

observed, means addressing a model selection problem that is challenging both inferentially and

computationally.

As far as alternative splicing is concerned, there is an important reason to determine this interaction

structure: searching for intrapeptide interactions in functional assays is a very difficult, open-ended

problem, where statistical analysis of the splicing interaction structure in the transcriptome can simplify

this task enormously by identifying the sets of interacting domains. And as more investigators become

interested in this type of information, and large-scale single-gene libraries become available, there is a

strong need for reliable statistical methods for analyzing the resulting datasets.

We develop different statistical methods to analyse sparse contingency tables in order to determine the

underlying interaction pattern and we use graphical models to visualize these patterns. The methods are

compared in a simulation study and illustrated on full-length cDNA libraries.

Results
Algorithm

General introduction to contingency tables and Log-linear Models

In this section we provide general definitions and notations.

Assume we have q categorical random variables or factors, C = {C1, . . . , Cq}, where each Cj can take on a

finite number gj of possible values, called levels. The vector (c1, . . . , cq) represents a particular combination

of levels of the joint random variable C = {C1, . . . , Cq}. The total cardinality of C is m =
∏q

j=1
gj , which

corresponds to the m different combinations of levels (m = 2q when all Cj are dichotomous, as in our

splicing example).

We simplify the notation by mapping each configuration of C to a unique natural number i ∈ {1, ...,m}

with a (bijective) function f :

f : (c1, . . . , cq) ↔ i ∈ {1, . . . ,m},

so we may write ci = (c1, . . . , cq). For n observations of C, the corresponding q-way contingency table has
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m cells, each listing the frequency of a particular configuration ci:

nc1,...,cq
= ni,

m∑

i=1

ni = n.

A general introduction to contingency tables can be found in [11].

If the observations are independent, with pi the probability of sampling configuration ci, the distribution of

the cell counts (n1, . . . , nq)
t is multinomial with probability p = (p1, . . . , pq).

In the splicing example, we may consider the Cj as dichotomous random variables representing q sites of

alternative splicing, each with two levels, denoted by cj ∈ {1,−1}, corresponding to the presence or

absence of exon j in a transcript. The contingency table therefore has m = 2q cells, with each cell

represented by the q-dimensional binary vector ci = (c1, . . . , cq). A log-linear model for the cell

probabilities can be written the following way:

log pi = β∅ +
∑

l∈{1,...,q}

βlcl +
∑

j,k
j<k∈{1,...,q}

βjkcjck + . . . + β12...qc1c2 · · · cq. (1)

A general log-linear model represents p as:

log (p) = Xβ, (2)

where β is a vector of unknown coefficients and X a suitable design matrix as indicated below.

Let’s assume that the cell probabilities are expressed in the following way:

log pc1,...,cq
= δ∅ + δC1

c1
+ . . . + δCq

cq
+ δC1,C2

c1,c2
+ . . . + δC1,...,Cq

c1,...,cq
, (3)

where δ∅ is the global mean, δC1

c1
is the main effect of the first variable and only depends on the

distribution of C1. Similarly δC1,C2

c1,c2
is the first order interaction between the first two variables and its

value only depends on the joint distribution of these two variables.

We now look for a suitable parametrization X̃Ci of the vector spaces spanned by the main effects δCi , a

parametrization X̃Ci,Cj for the vector spaces spanned by the first order interactions δCi,Cj and so on. To

ensure identifiability, we impose constraints on these matrices and denote the resulting matrices by XCi ,

XCi,Cj and so on. The design matrix X finally consists of these submatrices. The constitution of the

design matrix X for factors with two levels can directly be derived from (1). The derivation of the design

matrix X from (3) in the case of more than two levels per factor is basically an analysis of variance

(ANOVA) parametrization with poly-contrasts. Details can be found in the Additional file Section 1.
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Sometimes we may assume a smaller model without some of the interaction terms. It is of the form as in

(2) with some columns removed from the design matrix X. We denote matrices of the form XCj1
,...,Cjk by

Xa, with a = {Cj1 , . . . , Cjk
} ⊆ C. The corresponding subvector of β is denoted by βa.

Graphical Models

A powerful way for visualizing conditional dependencies among variables is given by a graph. A graph

G = (V, E) consists of a finite set V of vertices and a finite set E of edges between these vertices. In our

context, the vertices correspond to the different discrete random variables. We form the so-called

Conditional Independence Graph by connecting all pairs of vertices that appear in the same generator, that

is the maximal terms a ⊆ C which are present in the model. To translate a vector β into a graphical model

we look for βa 6= 0 with βb = 0 ∀a ⊂ b (where b is a strict super-set of a and |a| > 1) and we draw edges

between all vertices corresponding to a. From this graph we can directly read off all marginal and

conditional independences by the global Markov property for undirected graphs which states: if two sets of

variables a and b are separated by a third set of variables c then a and b are conditionally independent

given c (a⊥⊥b|c), where for three subsets a, b and c of V, we say c separates a and b if all paths from a to b

intersect c. For details, see [12].

Model selection - Non-Hierarchical versus hierarchical models

In the following subsections we introduce different model selection strategies for log-linear models. We first

develop an ℓ1-regularization model selection approach, which is then expanded to the new so-called

level -ℓ1-regularization approach. In addition, different Bayesian model selection strategies, which we use

for comparisons, are explained in the Additional file 2 Section. Hierarchical models are a subclass of

models such that if an interaction term βa is zero, then all higher order interaction terms βb for b ⊇ a are

also zero. If we consider the example above with 2 levels, this means for example that if the first order

interaction coefficient βij = 0 then all higher order interaction coefficients including i and j are also zero,

i.e. βijk = 0,∀k. While it is possible that the true underlying interaction model may not be hierarchical

from a biological standpoint, a difficulty in the use of non-hierarchical models arises from the fact that they

are not invariant under reparametrization. We have chosen the design matrix X with some constraints to

ensure identifiability, and we used a specific, namely an orthonormal basis. In terms of ANOVA, this choice

is equivalent to choosing a poly-contrast. We could have imposed different constraints or have chosen a

different basis, and this would have resulted in a different design matrix X or in terms of ANOVA, a
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different choice of contrast. Suppose we have found an interaction vector β for one parametrization of the

log-linear model and that this vector corresponds to a non-hierarchical model, meaning there is at least one

lower order interaction term βa equal to zero, while βb 6= 0 for at least one b ⊇ a. If we reparametrize the

model, using a different design matrix, the coefficient for the model term a may no longer be zero. On the

other hand, by reparametrizing a hierarchical model, all zero terms remain zero after reparametrization.

Therefore, hierarchicity is preserved after reparametrization while non-hierarchicity depends on the

parametrization. This is a distinct advantage of working within the hierarchical class. In a hierarchical

model, all zero coefficients can directly be interpreted in terms of conditional independence, while this is

not true for non-hierarchical models.

ℓ1-Regularized model selection

The Lasso, originally proposed by [13] for linear regression, performs regularized parameter estimation and

variable selection at the same time. The Lasso estimate is defined as follows:

β̂
λ

= argmin
β




∑

i

(Y − Xβ)2i + λ
∑

j

|βj |



 ,

where Y = (Y1, . . . , Yn) is the response vector. This can also be viewed as a penalized Maximum

Likelihood estimator, as
∑

i(Y − Xβ)2i is proportional to the negative log-likelihood function for Gaussian

linear regression. While the MLE for the general regression model is no longer uniquely defined and very

poor in the case of more variables than observations, the Lasso estimator is still reasonable as long as

λ > 0. For our analysis, we have a similar problem, namely that the MLE does not exist in case of zero

counts in the contingency table: a detailed description of the existence of the MLE in general log-linear

interaction models is given in [14]. Inspired by the Lasso, we estimate our parameter vector β by the

following expression:

β̂
λ

= argmin
β



−l(β) + λ
∑

j

| βj |



 , (4)

where l(β) is the log-likelihood function l(β) = log Pβ[n] ∝

∑m

i=1

nn

n
(Xβ)n. This minimization has to be

calculated under the additional constraint that the cell probabilities add to 1:

m∑

i=1

exp {(Xβ)i} = 1. (5)

A problem of the optimization (4) is that the solution is no longer independent of the choice of the

orthogonal subspaces Xa. That is, if any set of orthogonal columns Xa of X is reparametrized by a
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different orthogonal set, we get a different solution. To avoid this undesirable outcome we use a penalty

that is intermediate between the ℓ1- and the ℓ2-penalty. This penalty, called group-ℓ1-penalty, has the

following form:
∑

a⊆C

‖βa‖ℓ2 , where ‖βa‖
2
ℓ2

=
∑

j

(βa)2j

Originally, this has been proposed by [15] for the linear regression problem with factor variables. The

estimator of β then becomes

β̂
λ

= argmin
β



−l(β) + λ
∑

a⊆C

a6=∅

‖βa‖ℓ2



 , (6)

subject to the constraint in (5). By imposing a penalty function on the coefficients of the log-linear

interaction terms, overfitting as it might occur by using MLE is reduced. Furthermore, the ℓ1-penalty

encourages sparse solutions for the single components of β, the group ℓ1-penalty encourages sparsity at the

interaction level, meaning that the vector βa, which corresponds to the interaction term a is either present

or absent in the model as a whole. In case of factors with only 2 levels, the group ℓ1-penalty and the

ℓ1-penalty are equivalent.

For both the ℓ1-, and the group ℓ1-regularization, the parameter λ can be assessed by cross-validation: we

divide the individual counts into a number of equal parts and in turn leave out one part for the rest to

form a training contingency table with cell counts ntrain. The solution for an array of values for λ, the

so-called solution path, is calculated according to an algorithm described in the following Implementation

section. The corresponding vectors of cell probabilities are denoted by p
(
β̂

λ
)
. We then use the remainder

of the cell counts ntest to calculate the predictive negative log-likelihood score

−
∑m

i=1
ntest,i · log

(
pi(β̂

λ
)
)

∑m

i=1
ntest,i

, (7)

which is proportional to the out-of-sample negative log-likelihood. This score is on the same scale when

varying the number of observations and may therefore be used to compare contingency tables of the same

dimension but with different numbers of cell entries. The parameter λ is chosen as the value which

minimizes the cross-validated score in (7). We use a ten-fold cross-validation in our example.

The resulting model does not necessarily have to be hierarchical and if we consider the hierarchical model

induced by this procedure, it might happen that the final model is large for example if a single high order

interaction is estimated to be active. To address this, we set up an algorithm described in the next Section.
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Level-ℓ1-regularized model selection

In order to prevent the procedure from choosing single high-order interactions, we alter the ℓ1-regularized

algorithm described in the previous Section: we do not exclusively apply it to the fully saturated model

but also to submodels with lower order interactions. Precisely, a model is fitted with main effects only, and

the predictive negative log-likelihood score (7) is calculated for the best main effects model (level 1). The

same is done for the model including all main effects and first order interactions (level 2). Proceeding

accordingly, we get |C| log-likelihood scores corresponding to the |C| levels. The level with minimal score

(7) is then chosen (and within this selected level, we have an ℓ1-regularized estimate).

With this procedure the tendency of including a single high-order interaction while most of its lower order

interactions are absent is decreased, and the inclusion is only forced if the predictive negative log-likelihood

score strongly speaks in favour of the inclusion. Therefore we tend to select sparser models which can be

better hierarchized and interpreted in terms of conditional independence, in contrast to the ordinary

ℓ1-model selection procedure.

Algorithm for ℓ1-regularization for factors with two levels

For the regularization approaches we calculate β̂
λ

over a large number of values of λ in order to do some

cross-validation using (7). For this purpose, an efficient algorithm is required. As one can easily verify by

introducing Lagrange multipliers, finding the solution to (6) under the constraint (5) is equivalent to

minimizing an unconstrained function g(β):

g(β) = −l(β) +
m∑

i=1

exp (µi) + λ
∑

a⊆C

a6=∅

‖βa‖ℓ2 , (8)

with µ = Xβ and l(β) ∝

∑
i

ni

n
(Xβ)i. Here, g is a convex function. If each factor has two levels only, as in

our application with single-gene libraries, we can set up an algorithm, which efficiently yields the estimates

for a whole sequence of parameters λ. Let A denote the set of active interaction terms, which means for

a ∈ A it holds that βa 6= 0; XA is the corresponding sub-matrix of X,βA the corresponding sub-vector of

β and gA is g restricted to the subspace βA. We restrict ourselves to the currently active set A, where

∇gA and ∇2gA are well-defined:

∇gA(βA, λ) = −Xt
A{

n

n
− · exp (XAβA)} + λ(0, sign(βA))t

∇2gA(βA, λ) = Xt
Adiag {exp (Xβ)}XA.

The algorithm, which is an adaption of the path following algorithm proposed by [16], is set up as follows:
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(1) Start with β̂ = (− log (m), 0, . . . , 0)

(2) Set: λ0 = 1,A = {∅} and t = 0.

(3) While (λt > λmin)

(3.1) λt+1 = λt − ǫ

(3.2) A = A ∪ {j /∈ A : |[Xt · n

n
− exp

(
Xβ̂

)
]j | > λt+1}

(3.3) β̂ is updated as β̂t+1 = β̂t −∇2gA(β̂t, λt+1)
−1

· ∇gA(β̂t, λt+1).

(3.4) A = A \ {j ∈ A : |β̂t+1,j | < δ}

(3.5) t = t + 1

The pairs (β̂t, λt), obtained from the algorithm above, represent the estimates from (6) under the

constraint (5) for a range of penalty parameters λt e.g. (t = ǫ, 2ǫ, . . .). The choice of the step length ǫ

represents the tradeoff between computational complexity and accuracy. To increase accuracy, one can

perform more than one Newton step (3.3) if the gradient starts deviating from zero. The coefficient δ is

also flexible. Typically it is chosen in the order of ǫ. The lowest λ for which one wants the solution to be

calculated is denoted by λmin.

Technical details concerning the algorithm can be found in the Appendix.

Testing

Data

We choose the true underlying interaction vector β consisting of 5 factors of 2 levels. By enumerating the

factors from 1 to 5, the generators of the model are 345 + 235 + 234 + 135 + 123 + 14, which means that all

third and fourth order interactions are absent, only five of ten second order interactions and all first order

interactions are present. The corresponding coefficients of β are independently simulated using a normal

distribution with mean zero and variance one.

Then, 250 draws from a multinomial distribution with probability vector p where log (p) = Xβ, are taken.

This corresponds to a reasonable number of cDNAs in a single-gene library. This is then repeated 10 times.

With our choice of β, the resulting contingency tables are sparse. With the simulated cell counts, β̂ is

estimated with different methods described in the previous sections and these methods are then compared

as follows:
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Criteria

As a model selection score (MSS), we consider the fraction of correctly assigned model terms:

MSS = 1 −
1

m

m∑

i=1

|1{βi 6=0} − 1{bβi 6=0}|.

Moreover, we consider the root mean squared error for the interaction coefficients,

RMSE =

√√√√ 1

m

m∑

i=1

(β̂i − βi)2.

For assessing how much the estimation of β varies over multiple datasets, we calculate for every coefficient

β̂i the estimated standard deviation σ̂i. The means of these standard deviations are reported as

SPREAD =
1

m

m∑

i=1

σ̂i,

a measure of variability.

To compare the different procedures for estimation of probabilities p = exp (Xβ), we calculate the negative

log-likelihood score (NLS) similar to the score in (7):

NLS(β̂) = −
m∑

i=1

pi · log
(
pi(β̂)

)
.

Results of simulation study

The results of the simulation study are summarized in Table 1, where we also include the MAP estimators

of the Bayesian approaches described in the Additional file Section 2. We notice that the penalty-based

regularization approaches proposed in this article leads to comparable or better results than the Bayesian

approaches with respect to the NLS-score, RMSE and the variation (SPREAD), though the results of

Bayesian approaches vary with the prior and the set of possible priors has not been extensively explored.

The level- ℓ1-regularization and the relaxed ℓ1-regularization (see below) are both competitive and can be

better than MCMC for model selection.

The results of the MCMC procedures are sensitive to the choice of the prior value or the prior distribution

for σ2. A flat prior for αa (σ2 = 2) results in worse performance than that of a prior that shrinks the

coefficients more towards zero (σ2 = 1/2). This suggests that specification of this prior hyperparameter

may be difficult in practice, while we can easily optimize λ in the regularization approach by

cross-validation.
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The MCMC approaches without model selection perform poorly, as should be expected from data generated

by a sparse model. MCMC methods based on a non-hierarchical model selection are also clearly inferior to

the hierarchical counterpart. This is not surprising, as we have simulated data from a hierarchical model.

In Table 1 we have also added an additional approach, denoted by ℓ2, the equivalent to the

ℓ1-regularization but using an ℓ2-penalty instead of an ℓ1-penalty on the coefficients of the log-linear

model. This method is equivalent to the MAP estimator with Gaussian priors on βa, with the parameter of

the distribution optimized by cross-validation. This Ridge-type method does not perform variable

selection, but it is competitive for all other criteria that we assessed.

In addition we consider the relaxed ℓ1-regularization approach. Rather than using a single penalty

parameter λ, the idea of this method is to control variable selection and parameter estimation by

incorporating two penalty parameters. For linear regression it has been proven theoretically as well as

empirically [17] that under suitable conditions the relaxed ℓ1-regularization is better than Lasso.

Overall, the level-ℓ1-regularization has good model selection performance (high MSS score) in combination

with low negative log-likelihood score (NLS) and a low mean squared error for the true β (RMSE). In

addition, it is feasible to optimize the tuning parameter λ by cross-validation as the computational cost is

very low compared to the MCMC approaches. On the other hand, posterior distributions of estimates from

MCMC methods provide additional information about uncertainty in the model space, compared to point

estimates from ℓ1− or ℓ2− regularization.

Implementation

Dataset

We estimate the splicing interaction pattern for a dataset corresponding to the itpr1 gene, one of three

mammalian genes encoding receptors for the second messenger inositol 1,4,5-trisphosphate (InsP3 ). This

gene is subject to alternative RNA splicing, with seven sites of transcript variation, 6 of these within the

ORF and among these, q = 5 were completely assessed in the single-gene libraries. Five single-gene

libraries were built, one for adult rat cerebrum as well as four for different stages of postnatal cerebellar

development, namely on days 6, 12, 22 and 90, the latter being considered as adult. Each library consists

of between 179 and 277 transcripts which were assessed, i.e.
∑m

j=1
nj ∈ [179, 277]. This gene is 89%

identical at the cDNA level and 95% identical at the amino acid level with the human receptor gene. The

complete dataset can be found in [18].
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Results of application to Single-Gene Libraries

Unless stated differently, we report the results using the level ℓ1-penalization method. We display the

interaction vector β̂ graphically by plotting the components β̂j for the different tissue and development

stages in Figure 1. Our results suggest that the exons interact mainly in pairs and there is no reliably

estimated higher order interaction in the splicing interaction pattern of rat cerebellum. We further notice

that the main interaction pattern is very well conserved over different developmental stages. A strong

mutual interaction between exons number three, four and five can be observed in all development stages of

rat cerebellum as well as in the cerebral tissue. The biggest changes in the interaction pattern during

development of rat cerebellum occur from postnatal day six to day 12. This can be seen at position

number 10 on the x-axis in Figure 1, and it corresponds to the first order interaction between exons two

and three, and from day 12 to day 16, the first main effect changes in sign and magnitude. The first main

effect decreases progressively from day 6 to adult, reversing in sign between day 12 and 22. Between day 22

and 90, the interaction pattern is strongly conserved. Comparing the splicing interaction patterns between

cerebellum and cerebrum in the adult rat, we see a much more complex pattern in the cerebrum, involving

several second order interactions, and therefore a clear distinction from that of the cerebellum.

The conditional independence graphs for the estimated log-linear models are drawn in Figure 2, where the

thickness of the edges are proportional to the corresponding coefficient of the interaction vector β̂ (the

largest, if there are several giving rise to the same edge) and the radius of the vertices are chosen

proportional to the corresponding main effect coefficient. Figure 2 graphically exploits the strongly

conserved interactions between exons three, four and five. Except for a rather strong interaction between

exon two and three on day six, all other interactions appear to be rather small. The graphical

representation of the interaction pattern of adult rat cerebrum reveals a more complex interaction pattern

with no conditional independences.

The approaches and results presented here can provide valuable insight into the underlying processes in

alternative splicing in general, and specifically in the brain development experiments considered here. Most

striking is the strong conservation over developmental stages at day 12, 22 and 90 (adult); some differences

are showing between postnatal day six and day 12. Also, the conservation between the cerebellum and

cerebrum is less pronounced than over developmental stages. Finally, second- or higher-order interaction

terms seem to be of minor relevance, suggesting that in this gene/tissue combination, direct interaction

mainly happens between pairs of exons, but not combinations of three or more exons.

We have also estimated β with the hierarchical Bayesian approach using MCMC. For the choice of σ2 = 1
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this resulted in very similar interaction patterns as for the level ℓ1-penalization method. For σ2 = 2 it led

to remarkably different results. In addition to this, a further dataset was analyzed where the details can be

found in the Additional file Section 3.

Conclusions

We have developed an efficient method for identifying interaction patterns of categorical variables. This

can be used to fit a graphical model which is a valuable tool to visualize the conditional dependence

structure among the random variables. In a simulation study, the results of the new level-ℓ1-regularization

method are superior in comparison to ℓ1-regularization and slightly better than the MAP estimator from

some of the MCMC methods we considered. With real data, the level ℓ1-regularization and hierarchical

Bayesian approach led to similar results, subject to a specific choice of priors for the Bayesian method. An

important computational advantage of the level-ℓ1-method in comparison to MCMC, is that

cross-validation becomes feasible which in turn allows for an empirical choice of the tuning parameter.

While the methodology described in this article is motivated by the study of exon splicing interactions in

single-gene transcriptomes, it provides a general and flexible toolbox for regularization analysis in relatively

high dimensional, sparse contingency tables. Model selection in high dimensional contingency tables has

been a traditionally challenging area, and we hope that our generalization of regularization methodologies

to this context will prove useful in a variety of areas of computational biology and biostatistics. Several

technologies generate categorical data: these include SNP chips that provide genotype and copy number

information at the DNA level, sequencing technologies, assays that study binding properties of proteins

and binding of RNA to DNA, a variety of disease phenotypes, and more. In most of these contexts the

interactions among the variables are critical features in systems biology investigations that aim at studying

how the components of complex systems work together in influencing biological outcomes. For example,

the log-linear models described here provide a natural approach for fitting very general classes of networks

to discrete data. The level-ℓ1-regularization is a general tool which can be applied to a wide variety of

problems involving sparse contingency tables.

An R package called logilasso will be available for download on the Comprehensive R Archive Network

(CRAN).
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Appendix

We note that if β is a minimum of g, then βA is a minimum of gA.

In our application with single-gene libraries, all factors have two levels only, which allows to construct an

efficient algorithm. Since the gradient

∇



−l(β) +

m∑

j=1

exp (µj)



 = −Xt · (
n

n
− exp (Xβ)),

where exp(Xβ) is understood as the componentwise exponential function, it follows that for a minimum

βA of gA, the following equation holds:

∇gA(βA) = −Xt
A · (

n

n
− exp (XAβ)) + (0, sign(βA))t · λ = 0 (9)

Without loss of generality, we can restrict ourselves to the subspace β ∈ R
− × R

m−1, because the

constraint (5) can only be satisfied for β∅ < 0 as is proved in the following Lemma 1. Therefore β∅ ∈ A.

Lemma 1. β∅ < 0 for a minimum of g(β) for all λ ∈ R
+.

Proof.

log (p) = Xβ < 0 which yields (1, . . . , 1)Xβ = mβ∅ < 0 this implies β∅ < 0.

This holds because (1, . . . , 1) is orthogonal to all columns of X except for the first one.

Additionally for β being a minimum, a necessary condition is:

|(Xt · (
n

n
− exp (Xβ)))j | < λ,∀j /∈ A. (10)

Conditions (9) and (10) are sufficient for β being a minimum of (8). To find the β’s that solve these

equations for an array of values for λ, we set up a so-called path following algorithm. The idea is to start

from an optimal solution βλ0 for λ0, and follow the path for decreasing λ, using a second-order
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approximation for βA. In the following, we restrict ourselves to the currently active set A, omitting the

index A. It then holds:

∇g(βt+1, λt+1) = 0 ≈ ∇g(βt, λt+1) + ∇2g(βt, λt+1)δβ. This implies (11)

δβ = −∇2g(βt, λt+1)
−1∇g(βt, λt+1).

The algorithm tries to follow the optimal path as close as possible. At each step, it aims to meet the

conditions (9) and (10). In step (3.2), the active set A is identified, which forces β̂ to meet the condition

(10). In step (3.3), a Newton step as described in (11) is performed. Starting from a solution which meets

condition (9), the new β̂
λ

approximately meets (9) again.
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Figure legends
Figure 1 - Graphical display of interaction vector

The upper panel shows the estimated splicing interaction vectors β̂ of rat cerebellum tissues at postnatal

days six, 12 and 22. The lower panel shows the splicing interaction vector β̂ of rat cerebellum tissues at the

age of 90 days, which is considered adult, as well as the splicing interaction vector β̂ of rat cerebral tissue

at the age of 90 days. Within an interaction degree, the sequence of coefficients is ordered from left to right

as follows: e.g. for 2nd order interactions, 123, 124, 125, . . . , 345, where 1, . . . , 5 represent exons 12, 23B, 40,

41, and 42 in the rip3r1 gene, as described in [18].

Figure 2 - Conditional Independence Graphs

Conditional independence graphs for the estimated log-linear models for the itpr1 gene. For each graph,

the predictive probability score (7) is reported as a goodness of fit measure. Note the strong mutual

interaction between exons three, four and five.
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Tables
Table 1 - Performance of different algorithms

Table 1: Performance of different algorithms

MSS NLS RMSE SPREAD
Penalty-based regularization methods:

ℓ1-regularization 69.7% 2.20 0.228 0.144
Level-ℓ1-regularization 89.7% 2.22 0.237 0.179
Relaxed ℓ1-regularization 82.2% 2.22 0.233 0.154
ℓ2-regularization - 2.20 0.238 0.130

MCMC without model selection:
σ2 = 2 - 2.32 0.747 0.401
σ2 = 1 - 2.27 0.467 0.287
σ2 = 1/2 - 2.24 0.294 0.201

MCMC with model selection:
σ2 ∼ Γ−1(2, 3) 81.5% 2.23 0.294 0.231

σ2 = 2 76.6% 2.25 0.431 0.342
σ2 = 1 78.4% 2.24 0.331 0.265
σ2 = 1/2 76.6% 2.23 0.281 0.225

MCMC with hierarchical model selection:
σ2 ∼ Γ−1(2, 3) 84.1% 2.22 0.255 0.180

σ2 = 2 80.6% 2.29 0.415 0.284
σ2 = 1 83.4% 2.26 0.308 0.221
σ2 = 1/2 83.4% 2.24 0.247 0.178
σ2 = 1/10 86.3% 2.20 0.236 0.097
σ2 = 1/100 69.7% 2.28 0.420 0.033

Comparison of different methods to estimate the interaction
strength vector β. MSS, NLS, RMSE and SPREAD are described
in the Implementation section. The additional methods relaxed ℓ1-
regularization and ℓ2-regularization listed in the Table are explained
in the Results Section.
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Description of Additional files
Additional files 1 to 3

The AdditionalFiles.pdf file consists of 3 sections. Section 1 - Additional file 1 contains details concerning

the parametrization of the log-linear model. The Additional file 2 section describes some Bayesian model

selection approaches, which were used for comparison with our algorithm. In the Additional file 3 section a

further dataset on which we tested our algorithm is introduced and the results are given on that dataset.
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