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1. High-dimensional data

(X1,Y1),...,(X,,Y,) iid.  orstationary

"

e.g. times series

X; € RP predictor variable
Y; univariate response variable, e.g. Y; € RorY; € {0,1}
high-dimensional: p > n

areas of application: astronomy, biology, imaging, marketing research, text

classification,...

. K




High-dimensional linear models

p
5”@0+MQQN&CV+QQ 1=1,....n
j=1

p>n

How should we fit this model?

approaches include:

Ridge regression (Tikhonov regularization); variable selection via AIC, BIC, gMDL
(in a forward manner); Bayesian methods for regularization, ...

Boosting

N
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2. Greedy is “quite good” for p > n: LyBoosting

boosting has been advocated as an ensemble method

(multiple prediction and aggregation)

specify a base procedure (“weak learner”):

base procedure A . .
data — 6(-) (afunction estimate)

e.g. tree (CART)

principle:

use many base procedure estimates from “reweighted data” to improve prediction
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2.1. L,Boosting

with base procedure 6(-)

~~ amounts to repeated fitting of residuals

m

1: (X3, Yi)y ~01(), i= v 01 ~ resid U; =Y; — fi(X;)

m=2: (X;, U)oy ~ 02(), fo=Ffi +vhy  ~ resid U; =Y; — fo(X;)

A

,NMSS%A.V =v > "7 0. () (greedy fitting of residuals)

Tukey (1977): twicing for mgtop = 2and v =1
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base procedure: componentwise linear least squares

2.1. LyBoosting for linear models

linear OLS regression against the one predictor variable which reduces residual

sum of squares most

=1 =1 )

J =1

first round of estimation: selected predictor variable N‘Aw; (e.g. = N@v
corresponding @wH ~ fitted function f1 (z)
second round of estimation: selected predictor variable NAWMV (e.g.= NGCV
corresponding mwm ~ fitted function fo ()

etc.

/ yields linear model fit, i.e. structured model fit




; v = 1, this is known as /

Matching Pursuit (Mallat and Zhang, 1993)
Weak greedy algorithm (deVore & Temlyakov, 1997)
a version of Boosting (Schapire, 1992; Freund & Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gaussin 1803

“Princeps Mathematicorum”

R.V. Southwell in 1933

/ Professor in engineering, Oxford K
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Properties

variable selection

shrinkage towards zero for coefficients of selected variables
~~ often much better performance than OLS on selected variables

(“more stable” in Breiman’s terminology)

computational complexity:

O(npmsiop) = O(p) if p > n, i.e. linear in dimension p
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statistically consistent for very high-dimensional, sparse problems

Theorem (PB, 2004)
LsBoosting with comp. linear LS regression is consistent (for suitable number of
boosting iterations) if:
ep, = O(exp(Cn'=¢)) (0 < £ < 1) (high-dimensional)
essentially exponentially many variables relative to n

o sup,, > "y |Bjn| < o0 ¢1-sparseness of true function

l.e. for suitable, slowly growing m = m,,:
Ex|frmnn(X) = f2(X)]> = 0p(1) (n = o)

analogous result also for multivariate autoregressive time series (Lutz & PB, 2005)

(assuming some polynomial decay for a-mixing coefficients)
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binary lymph node classification in breast cancer using gene expressions:
a high noise problem

n = 49 samples, p = 7129 gene expressions

7 L2Boosting 7 FPLR 7 Pelora

27.8%

7 1-NN 7 DLDA 7 SVM
7 43.25%

CV-misclassif.err. 7 17.7% 7 35.25% 36.12% 7 36.88%

LsBoosting selected 42 out of p = 7129 genes

for this data-set: not good prediction, with any of the methods

but LoBoosting may be a reasonable(?) multivariate gene selection method

N

multivariate gene selection best 200 genes from Wilcox.
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3. Lasso and L,;Boosting

Efron et al. (2004): intriguing relation between LoBoosting and Lasso

for linear model satisfying a positive cone condition for the design matrix: roughly,

LBoosting with comp.wise linear LS and “infinitesimally” small v
yields a path (as iterations increase)

which contains all Lasso solutions when varying A

~~ computationally interesting to produce all Lasso solutions in

one sweep of boosting

for linear models: LARS (Efron et al., 2004) is computationally very clever and

efficient for computing all Lasso solutions

N
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Boosting is algorithmically much more generic than Lasso

other loss function than Lo, nonparametric models, qualitative constraints, ...
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\moomz:@ with nonparametric first-order interactions /

base procedure: pairwise smoothing splines Q%w — R) which selects the pair of
predictors such that corresponding spline smooth reduces RSS most (fixed d.f.)

~~ nonparametric model fit with first-order interactions (structured model fit!)

p=20, p—eff=10, n=50

MARS

Friedman #1 model:
Y = 10sin(nX{X9) 4+ 20(X3 — O.mvw +

10X4 4+ 5X5 + N(0,1)

MSE

X = A»vﬂu_.u ey, NNOV ~ C::.AﬁOg HQMQV
Sample size n = 50

Dimension p = 20, peff = 9

AIC_c stopped
(o]

L2Boost

T T T T T T
0 100 200 300 400 500

/ boosting iterations K
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4. Sparser than Boosting

consider linear model Y = X3 + ¢

for orthonormal design: XX =T

LBoosting with comp.wise linear LS yields the soft-threshold estimator

Is soft-thresholding a good thing?

guite a few “yes”-answers (Donoho & Johnstone)

a different story in the very high-dimensional sparse case

~~ very slow convergence rates for soft-thresholding (Meinshausen, 2005)

N
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D_ocomm that p. ¢ ¢ (number of effective predictors) is small but p very large /
need large threshold parameter to control the non-effective predictors

~~ strong bias of soft-thresholding

threshold functions

--- hard-thresholding
— nn-garrote
- - - soft-thresholding

oLs

/ and “analogously” for non-orthogonal design K
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4.1. SparseLoBoosting

(PB and Yu, 2005)

instead of minimizing RSS in every iteration,

minimize a final prediction error (FPE) criterion: we propose gMDL,

0,, = arg min MG\@ — fre1(X5) — 0(X)) %+ gMDL-penalty
o(- — . -~ o
D= requires d.f. for boosting

d.f. for boosting via trace of hat-matrices

. K
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; orthonormal linear model:

Sparse L5 Boosting with componentwise linear least squares yields

Breiman’s nonnegative garrote estimator (PB & Yu, 2005)

threshold functions

e Sparse LyBoosting yields sparser solutions than LoBoosting

e Sparse LyBoosting still very generic (although less generic than LoBoosting)

N

e.g. honparametric problems, non-quadratic loss functions
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sample size n = 50, dimension p = 50

model

Linear modeling: LyBoosting with componentwise linear LS

Sparse LBoosting 7 LoBoosting

Y =14+5XM +2x3) 4 X6 4 A(0,1)

X = ANA:“..;NTK@V 2>\.%©AO“.NV

0.16 (0.0018) 7 0.46 (0.0041)

Y =53, 5,X6) + N (0,1)

B1,-..,050 ~ Double-Exponential; X as above

.

3.64 (0.188) 7 2.19 (0.083)

K
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\ Nonparametric first-order interaction modeling

interaction modelling: p = 20, effectivep =5

— L2Boosting
--- SparselL2Boosting
--- MARS

\\\\\\\\\\\\\\\\\\\\\\\\\

boosting iterations

Friedman #1 model;

Y = 10sin(w X1 Xg) + 20(X3 — 0.5)2 +

10X4 + 5X5 + N (0, 1)
X = A;vﬂ”_.g e, NMOV ~ C::.Aﬁov HQMOV
Sample size n = 50

Dimension p = 20, peff = 9

k
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5. Conclusions

Boosting can be used as an estimation and regularization method

within some structured models
® Boosting is generic
® Boosting is computationally attractive, in particular in complex situations

e Boosting has some good asymptotic properties
consistency in very high-dimensional problems

minimax rate optimal for one-dimensional curve estimation (PB & Yu, 2003)

e SparseL,Boosting can be very worthwhile if the truth is very sparse

N
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