

1. High-dimensional data

 $(X_1,Y_1),\ldots,(X_n,Y_n)$ i.i.d. or stationary

e.g. times series

 $X_i \in \mathbb{R}^p$ predictor variable

 Y_i univariate response variable, e.g. $Y_i \in \mathbb{R}$ or $Y_i \in \{0,1\}$

high-dimensional: $p\gg n$

classification,... areas of application: astronomy, biology, imaging, marketing research, text

High-dimensional linear models

$$Y_i = \beta_0 + \sum_{j=1}^p \beta_j X_i^{(j)} + \varepsilon_i, \ i = 1, \dots, n$$

 $p \gg n$

How should we fit this model?

approaches include:

(in a forward manner); Bayesian methods for regularization, ... Ridge regression (Tikhonov regularization); variable selection via AIC, BIC, gMDL

Boosting

2. Greedy is "quite good" for $p \gg n$: L_2 Boosting

boosting has been advocated as an ensemble method

(multiple prediction and aggregation)

specify a base procedure ("weak learner"):

base procedure

data

 $\hat{ heta}(\cdot)$

(a function estimate)

e.g. tree (CART)

principle:

use many base procedure estimates from "reweighted data" to improve prediction

2.1. L_2 Boosting

with base procedure $ilde{ heta}(\cdot)$

---- amounts to repeated fitting of residuals

Tukey (1977): twicing for $m_{stop}=2$ and u=1

2.1. L_2 Boosting for linear models

base procedure: componentwise linear least squares

sum of squares most linear OLS regression against the one predictor variable which reduces residual

$$\hat{\theta}(x) = \hat{\beta}_{\hat{S}} x^{(\hat{S})}, \ \hat{\beta}_{j} = \sum_{i=1}^{n} Y_{i} X_{i}^{(j)} / \sum_{i=1}^{n} (X_{i}^{(j)})^{2}, \ \hat{S} = \arg\min_{j} \sum_{i=1}^{n} (Y_{i} - \hat{\beta}_{j} X_{i}^{(j)})^{2}$$

first round of estimation: selected predictor variable $X^{(\hat{\mathcal{S}}_1)}$ (e.g. $=X^{(3)}$) corresponding $eta_{\hat{\mathcal{S}}_1} \leadsto$ fitted function $f_1(x)$

second round of estimation: selected predictor variable $X^{(\hat{\mathcal{S}}_2)}$ (e.g.= $X^{(21)}$) corresponding $eta_{\hat{\mathcal{S}}_2} \leadsto$ fitted function $f_2(x)$

etc.

yields linear model fit, i.e. structured model fit

for u=1, this is known as

Matching Pursuit (Mallat and Zhang, 1993)

Weak greedy algorithm (deVore & Temlyakov, 1997)

a version of Boosting (Schapire, 1992; Freund & Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gauss in 1803 "Princeps Mathematicorum"

R.V. Southwell in 1933

Professor in engineering, Oxford

Properties

variable selection

shrinkage towards zero for coefficients of selected variables

---- often much better performance than OLS on selected variables ("more stable" in Breiman's terminology)

computational complexity:

$$O(npm_{stop}) = O(p) \; \mbox{ if } p \gg n \mbox{, i.e. linear in dimension } p$$

statistically consistent for very high-dimensional, sparse problems

Theorem (PB, 2004)

boosting iterations) if: L_2 Boosting with comp. linear LS regression is consistent (for suitable number of

- $p_n = O(\exp(Cn^{1-\xi})) \ (0 < \xi < 1)$ (high-dimensional) essentially exponentially many variables relative to \boldsymbol{n}
- $\bullet \sup_n \sum_{j=1}^{p_n} |eta_{j,n}| < \infty \ \ell^1$ -sparseness of true function

i.e. for suitable, slowly growing $m=m_n$:

$$\mathbb{E}_X |\hat{f}_{m_n,n}(X) - f_n(X)|^2 = o_P(1) \ (n \to \infty)$$

analogous result also for multivariate autoregressive time series (Lutz & PB, 2005) (assuming some polynomial decay for lpha-mixing coefficients)

binary lymph node classification in breast cancer using gene expressions:

a high noise problem

n=49 samples, p=7129 gene expressions

	CV-misclassif.err.	
multivariate gene selection	17.7%	L_2 Boosting
	35.25%	FPLR
	27.8%	Pelora
best 200 genes from Wilcox.	43.25%	1-NN
	36.12%	DLDA
	36.88%	SVM

 L_2 Boosting selected 42 out of p=7129 genes

for this data-set: not good prediction, with any of the methods

but L_2 Boosting may be a reasonable(?) multivariate gene selection method

3. Lasso and L_2 Boosting

for linear model satisfying a positive cone condition for the design matrix: roughly, Efron et al. (2004): intriguing relation between L_2 Boosting and Lasso

 L_2 Boosting with comp.wise linear LS and "infinitesimally" small uwhich contains all Lasso solutions when varying λ yields a path (as iterations increase)

computationally interesting to produce all Lasso solutions in one sweep of boosting

efficient for computing all Lasso solutions for linear models: LARS (Efron et al., 2004) is computationally very clever and

Boosting with nonparametric first-order interactions

base procedure: pairwise smoothing splines ($\mathbb{R}^2
ightarrow \mathbb{R}$) which selects the pair of predictors such that corresponding spline smooth reduces RSS most (fixed d.f.) → nonparametric model fit with first-order interactions (structured model fit!)

Friedman #1 model:

$$Y = 10\sin(\pi X_1 X_2) + 20(X_3 - 0.5)^2 + 10X_4 + 5X_5 + \mathcal{N}(0, 1)$$

$$x=(x_1,\dots,x_{20})\sim \mathsf{unif.}([0,1]^{20})$$

Sample size $n=50$

Dimension
$$p=20,\,p_{eff}=5$$

4. Sparser than Boosting

consider linear model $Y=X\beta+\varepsilon$

for orthonormal design: $\mathbf{X}^T\mathbf{X} = I$:

 L_2 Boosting with comp.wise linear LS yields the soft-threshold estimator

Is soft-thresholding a good thing?

quite a few "yes"-answers (Donoho & Johnstone)

a different story in the very high-dimensional sparse case

→ very slow convergence rates for soft-thresholding (Meinshausen, 2005)

suppose that p_{eff} (number of effective predictors) is small but p very large need large threshold parameter to control the non-effective predictors

and "analogously" for non-orthogonal design

4.1. Sparse L_2 Boosting

(PB and Yu, 2005)

instead of minimizing RSS in every iteration,

minimize a final prediction error (FPE) criterion: we propose gMDL,

$$\hat{\theta}_m = \arg\min_{\theta(\cdot)} \sum_{i=1}^n (Y_i - \hat{f}_{m-1}(X_i) - \theta(X_i))^2 +$$

gMDL-penalty

requires d.f. for boosting

d.f. for boosting via trace of hat-matrices

for orthonormal linear model:

Breiman's nonnegative garrote estimator (PB & Yu, 2005) Sparse L₂ Boosting with componentwise linear least squares yields

- ullet Sparse L_2 Boosting yields sparser solutions than L_2 Boosting
- Sparse L_2 Boosting still very generic (although less generic than L_2 Boosting) e.g. nonparametric problems, non-quadratic loss functions

Linear modeling: L_2 Boosting with componentwise linear LS

sample size n=50, dimension p=50

$eta_1,\dots,eta_{50} \sim ext{ Double-Exponential; } X$ as above	$Y = \sum_{j=1}^{50} \beta_j X^{(j)} + \mathcal{N}(0,1)$	$X = (X^{(1)}, \dots, X^{(49)}) \sim \mathcal{N}_{49}(0, I)$	$Y = 1 + 5X^{(1)} + 2X^{(2)} + X^{(3)} + \mathcal{N}(0, 1)$	model
3.64 (0.188)	_	0.16 (0.0018)		Sparse L_2 Boosting
2.19 (0.083)		0.46 (0.0041)		L_2 Boosting

Nonparametric first-order interaction modeling

Friedman #1 model:

$$Y = 10\sin(\pi X_1 X_2) + 20(X_3 - 0.5)^2 +$$

$$10X_4 + 5X_5 + \mathcal{N}(0,1)$$

$$X = (X_1, \dots, X_{20}) \sim \text{Unif.}([0, 1]^{20})$$

Sample size
$$n=50$$

Dimension $p=20, p_{eff}=5$

5. Conclusions

Boosting can be used as an estimation and regularization method within some structured models

- Boosting is generic
- Boosting is computationally attractive, in particular in complex situations
- Boosting has some good asymptotic properties consistency in very high-dimensional problems minimax rate optimal for one-dimensional curve estimation (PB & Yu, 2003)
- ullet Sparse L_2 Boosting can be very worthwhile if the truth is very sparse