
Conjugate direction boosting for regression

June 2, 2004

Abstract

Boosting in the context of linear regression has gained additional attraction by the
invention of least angle regression (LARS), where the connection between the lasso
and forward stagewise fitting (boosting) was established. Earlier it has been found
that boosting is a functional gradient optimization. Instead of the gradient method,
we propose a conjugate direction method to minimize the residual sum of squares as
a function of the regression coefficients. The result is a fast forward variable selection
algorithm (CDBoost).

The addition of shrinkage (small step-sizes) is only possible with an adjustment
in form of a restart condition. For infinitesimal shrinkage this leads to an algorithm
between forward stagewise fitting (boosting) and least angle regression. In particular,
it also employs variable selection.

While least angle regression seems to be restricted to linear regression, we can
easily generalize our approach to arbitrary learners (fitting methods) like trees or
splines, as for boosting. The learner is used to produce vectors of fitted values which
can then be linearly fitted by CDBoost.

The different methods are compared on simulated and real datasets. CDBoost
achieves the best predictions mainly in complicated settings with correlated covariates,
where it is difficult to assign how much a covariate contributes to the response. The
gain of CDBoost over boosting is especially high in low and mid noise problems.

Key words: conjugate direction optimization, high-dimensional linear regression,
least angle regression, non-parametric regression.

1 Introduction

Boosting is one of the most successful machine learning ideas introduced in the last decade
(Schapire 1990, Freund 1995, Freund and Schapire 1996). It combines the output of many
weak (or base) learners to a strong committee. The original idea was to use the output
from the weak learner to weight the data. In the next iteration, the weak learner is fitted
to the weighted data and so on. Later it has been found that boosting is a functional
gradient descent method (Breiman 1999, Friedman 2001). Thus, boosting exhibits a con-
nection between statistics and numerical minimization. In numerics, there are faster and
better optimization methods than gradient descent. Examples are conjugate gradient or
conjugate direction optimization, which usually lead to faster convergence. In statistics,
fast convergence on the training set is nice to have, but the main goal of a fitting method
is to achieve good out-of-sample performance. It is not obvious whether these two aims
go together or not.
Boosting, when viewed as a functional gradient descent, tries to optimize in the direction
of the negative gradient of a loss function. Because each update must be a base learner,

1

this can only be done approximately. Because of this approximation, it is unclear whether
and how a more sophisticated technique like conjugate gradient works.
In a first part, we propose a conjugate direction method for boosting (CDBoost) in the
context of linear models with the squared error loss (L2-loss). This method yields sparse
estimates and employs variable selection. We compare our method to boosting, forward
variable selection, lasso (Tibshirani 1996) and least angle regression (Efron, Hastie, John-
stone and Tibshirani 2004). CDBoost outperforms the other methods mainly in compli-
cated settings, where it is not obvious how much a covariate contributes to the response.
In a second part, we generalize CDBoost to arbitrary learners like trees and smoothing
splines. This generalization, while also being feasible for boosting, seems not to be easily
possible for lasso and least angle regression.

2 Linear Regression

In univariate linear regression we assume a continuous response y ∈ Rn and a set of d
covariates X = (x1,x2, . . . ,xd) ∈ Rn×d. Here n denotes the sample size. The response
y is modeled as a linear combination of the covariates plus a random error. In matrix
notation:

y = Xβ + ε, β ∈ Rd, ε ∈ Rn,

ε1, . . . , εn i.i.d. withE [εi] = 0, Var (εi) = σ2.

Parameter estimation is most often done by least squares, minimizing the loss function

L(β) =
1
2
‖y −Xβ‖2.

Assuming d < n and X of full rank d, we find the unique solution

β̂ = (XTX)−1XTy.

2.1 Forward variable selection

For d > n, the matrix (XTX) becomes singular and the least squares solution is not
unique. For d < n fairly large, the least squares solution will often over-fit the data. In
both cases we need another strategy.
One way is forward variable selection which is also computationally feasible if d is very
large. We start with the intercept or empty model and sequentially add the covariate
which most reduces the loss function L. We stop if no significant improvement can be
achieved anymore. Forward variable selection is a very greedy method. Covariates which
are highly correlated with variables already included in the model have a small chance to
be chosen.

3 Boosting with L2-loss

Boosting is a very general, iterative method. It uses a simple fitting method, called the
weak or base learner. Boosting then combines many outputs of the simple method to a
strong committee.

2

The general regression problem with L2-loss is to estimate a function F : Rd → R min-
imizing the expected loss E

[
(Y − F̂ (X))2/2

]
. Boosting builds the function F̂ step by

step: in each move a base learner function estimate h(x, θ̂) is added. Due to the L2-loss,
boosting is especially simple and amounts to iterative fitting of residuals (Friedman 2001,
Bühlmann and Yu 2003).

Boosting algorithm with L2-loss :

Step 1 (initialization): F̂ (0)(.) ≡ ȳ and m = 1.
Step 2 : Compute current residuals ri = yi − F̂ (m−1)(xi) (i = 1, . . . , n) and fit the base
learner to them using the predictor variables. The fit is denoted by f̂ (m)(x) = h(x, θ̂(m)),
based on {(xi, ri); i = 1, . . . , n}. Update F̂ (m)(.) = F̂ (m−1)(.) + f̂ (m)(.).
Step 3 (iteration): Increase iteration index m by one and go back to Step 2.

The number of iterations is usually estimated using a validation set or with cross validation.

3.1 Shrinkage or small step size

Boosting can often be improved by shrinkage: in each boosting step, only a small fraction
ν (for example 0.1) of the fitted base learner is added. We can modify Step 2 of the
boosting algorithm to F̂ (m)(.) = F̂ (m−1)(.) + ν · f̂ (m)(.).

3.2 Boosting with componentwise linear least squares

We consider now boosting for the linear regression problem. Our base learner is a linear re-
gression with only the one selected covariate which reduces the loss L most: h(x, θ̂) = β̂k̂xk̂

with θ̂ = (k̂, β̂k̂) the selected covariate and estimated coefficient, where β̂k = xT
k r/xT

k xk,
k̂ = arg mink

1
2‖r− β̂kxk‖2 and r denoting the current residuals.

The first iteration is the same as forward variable selection. But the further iterations are
not. The main difference to forward variable selection is that we do not use ordinary least
squares for the coefficients of the variables already included in the model. In particular, it
is possible with boosting to choose a covariate again. This gives us the chance to adjust
a coefficient which was badly estimated in an earlier step.

3.3 Gradient descent

Now we take a look at linear regression from another point of view. We can minimize the
loss function

L(β) =
1
2
βTXTXβ − yTXβ +

1
2
yTy

with the gradient method. For a given β, the negative gradient

−∇L(β) = −(XTX)β + XTy = XT (y −Xβ)

gives the direction in the β-space in which L decreases most rapidly. It seems obvious to
optimize in that direction by performing a one dimensional minimization, a so called line
search. This yields a new β vector and we can repeat the procedure.
Now we come back to boosting which can be seen as a functional gradient descent method
(Breiman 1999, Friedman 2001), where the loss L is viewed as a function of F (x). Notice

3

that we use a slightly different approach for the linear regression problem because we work
entirely in the β-space and take L as a function of β. But the main idea remains the same:
we perform a line search in the direction, which is most parallel to the negative gradient
and which is a base learner.
When using componentwise linear least squares as base learner (linear regression with only
one selected covariate) we update only one component of β̂ in each step. So we cannot
take a step in the negative gradient direction, because this usually changes all coefficients.
So we look for the k̂ for which | < −∇L, ek̂ > | becomes maximal, where ek̂ ∈ Rd is the
unit vector with entry 1 at position k̂. We shall call ek̂ gradient approximation and k̂ is
just the component of the negative gradient with highest absolute value. Then we perform
a step in the direction ek̂.
We have to be careful here: ek̂ is the coordinate direction with steepest descent. But there
can be another coordinate direction eĵ which leads to a smaller minimum than ek̂ when
performing the line searches. And that’s what we really want: we want to choose the
covariate which reduces L most and not the coordinate direction with steepest descent.
Roughly speaking: a long flat descent is better than a short steep descent. Obviously this
depends on the scales of the covariates. The solution is to standardize the covariates to
have unit length (xT

i xi = 1). Then the “steepest descent coordinate” is also the “smallest
minimum coordinate”. This can be seen as follows:
For each covariate we compute the reduction of L that we can achieve by updating its
coefficient. The best update for component k ∈ {1, . . . , d} is

∆β̂k =
rTxk

xT
k xk

= rTxk

with r = y −Xβ̂ denoting the residuals. This update reduces L by

∆L =
1
2
rT r− 1

2

(
r− xk(rTxk)

)T (
r− xk(rTxk)

)
= rTxk(rTxk)−

1
2
(rTxk)xT

k xk(rTxk) =
1
2
(rTxk)2.

On the other hand the component k of the negative gradient is xT
k r. Thus, we see that the

component with highest absolute gradient value is also the component which can reduce
the loss function L most.
For convenience we center all the covariates and the response to mean 0. So we do not
have to care about an intercept. This gives the following algorithm (notice again that we
work with β̂(m) and not with F̂ (m)(x) = xT β̂(m)):

Boosting algorithm with componentwise linear least squares:

Step 1 : Standardize xi to zero mean and unit length. Standardize y to zero mean.
Initialize β̂(0) = 0 and m = 1.
Step 2 : Compute the negative gradient

−∇L(m) = XT (y −Xβ̂(m−1))

and determine the component with highest absolute value, say component k̂(m).
Update β̂: component k̂(m) changes to

β̂
(m)

k̂(m)
= β̂

(m−1)

k̂(m)
+ ν · xT

k̂(m)(y −Xβ̂(m−1))

4

and all the other components remain unchanged.
Step 3 : Increase iteration index m by one and go back to Step 2.

For ν = 1, this algorithm is known as matching pursuit in signal processing (Mallat and
Zhang 1993).

4 Conjugate boosting

4.1 Conjugate direction and gradient optimization

Instead of the gradient method, we may want to use a conjugate direction method to
minimize a quadratic function

L(β) =
1
2
βTAβ − bT β,

A ∈ Rd×d symmetric, positive definite,b ∈ Rd.

Conjugacy is a property similar to orthogonality. A set of nonzero vectors {p1, . . . ,pd},pi ∈
Rd is said to be conjugate with respect to the symmetric positive definite matrix A if

pT
i Apj = 0 for all i 6= j.

The importance in conjugacy lies in the fact that we can minimize L in d steps by mini-
mizing along the individual directions in a conjugate set. A conjugate direction method
takes an arbitrary set of d conjugate directions and minimizes L along them. In contrast
to the gradient method we reach the minimum after d steps.
The question is now how to find a set of conjugate directions. The canonical conjugate
gradient method does it in a very efficient way during the optimization process and not in
advance. It takes the negative gradient as the first direction p1. For k > 1, pk is a linear
combination of the actual negative gradient and the previous pk−1 only:

pk = −∇L(k) +
∇L(k)TApk−1

pT
k−1Apk−1

pk−1.

We do not need to store all the previous elements p1,p2, . . . ,pk−2: pk is automatically
conjugate to these vectors. A proof of this remarkable property can be found for example
in Nocedal and Wright (1999).

4.2 Linear conjugate direction boosting (CDBoost)

We develop now some conjugate boosting method for the linear regression problem. In
our notation we have A = XTX and bT = yTX. If n < d, the matrix A is not positive
definite. This does not bother because we actually only use sub-matrices of X so that the
corresponding A is positive definite.
Similarly to boosting, we don’t want to minimize along the negative gradient (first direction
of the conjugate gradient method) because this would change all components of β̂ to non-
zero values. In fact, it can be shown that the conjugate gradient method is the same as
Partial Least Squares. But here we want to be able to do some kind of variable selection,
where in each step only one component of β̂ should change from zero to non-zero.

5

This is still possible within the framework of a conjugate direction method. The first step
is identical to gradient boosting: we look for the component of the negative gradient with
highest absolute value, say component k̂(1). The vector ek̂(1) is then the best approximation
to the negative gradient by a unit-coordinate vector, in terms of having maximal absolute
inner product. So we optimize in that direction.
In the following steps we have to determine a direction which is conjugate to all pre-
vious directions. We compute again the negative gradient and its approximation by a
unit-coordinate vector ek̂(m) . The new direction is a linear combination of the gradient
approximation and all the previous directions. It is easy to compute the coefficients of the
linear combination so that it is conjugate to all previous directions. In the m-th iteration
we have

pm =
m−1∑
j=1

λjpj + ek̂(m) .

The λ′s are determined by the m− 1 equations:

pT
i A

m−1∑
j=1

λjpj + ek̂(m)

 = 0, i = 1, . . . ,m− 1.

Using the conjugate property we have

λipT
i Api + pT

i Aek̂(m) = 0, i = 1, . . . ,m− 1,

and

λi = −
pT

i Aek̂(m)

pT
i Api

i = 1, . . . ,m− 1.

Now we can formulate the

Linear conjugate direction boosting (CDBoost) algorithm with L2-loss:

Step 1 : Standardize xi to zero mean and unit length. Standardize y to zero mean.
Initialize β̂(0) = 0 and m = 1. Set A = XTX.
Step 2 : Compute the negative gradient

−∇L(m) = XT (y −Xβ̂(m−1))

and take the component with highest absolute value, say component k̂(m). Define the
gradient approximation by ek̂(m) .
For i = 1, . . . ,m− 1 compute the coefficients for the linear combination (for m = 1 there
are no λ′s):

λ
(m)
i = −

pT
i Aek̂(m)

pT
i Api

.

Compute the new direction (for m = 1 the sum vanishes)

pm =
m−1∑
i=1

λ
(m)
i pi + ek̂(m) .

Minimize in the direction of pm , that means update β̂:

β̂(m) = β̂(m−1) +
(y −Xβ̂(m−1))TXpm

pT
mApm

pm. (1)

6

Step 3 (iteration): Increase iteration index m by one and go back to Step 2.

We have to store all the previous directions. So we have lost the simplicity of the conju-
gate gradient method. On the other hand we have an algorithm which performs variable
selection because in each step only one coefficient of β̂(m) changes from zero to non-zero.
The advantage of the conjugate direction method is its speed. For a problem with d
covariates it needs at most d steps to end up in the least squares solution and it can be
much faster than boosting.
For d very large, the computation of A = XTX becomes expensive. But we don’t have to
compute A in advance. We can do it during the iteration process, where we only compute
the elements of A which are necessary. Therefore it is possible to use CDBoost for d � n
or with an overcomplete dictionary of basis functions, since we will do at most n iterations.

4.2.1 A fast forward variable selection algorithm

Now we take a closer look at the iteration process. After m < d iterations, our conjugate
direction method has included m covariates in the model and the actual solution is the
least squares fit for these m covariates. This can be seen as follows: if we started our
algorithm again with only these m covariates, we would reach the same model after m
iterations and this is the least squares solution because we used a conjugate direction
method. That means the conjugate direction method moves from least squares solution
to least squares solution (in sub-models) and therefore, each covariate can only be chosen
once. At first sight this seems to be the same as the classical forward variable selection.
But there is a difference in how the next variable is selected.
The conjugate direction method selects the covariate which would most improve the fit
without adjusting the coefficients of the other variables. After the selection, we update β̂
by adjusting all the non-zero coefficients. On the other hand, forward variable selection
looks for the best model consisting of all the old covariates and a new one. To determine
the improvement when adding a variable, it computes the entire new model and compares
it with the old one.
Thus we have found a much faster version of a forward variable selection algorithm with
very similar performance as the classical one. Moreover, CDBoost seems to have better
prediction accuracy than matching pursuit (or boosting with ν = 1) for low or mid-noise
problems. This may be of special interest for many signal processing problems such as
imaging. However, as mentioned above, boosting often performs better with shrinkage.
So it’s obvious to include shrinkage for CDBoost too.

4.3 Shrinkage

Shrinkage means to not fully update β̂. We only add a fraction ν of the optimal ∆β̂. But
here arises a new problem: without shrinkage, each covariate can only be chosen once.
This is no longer true with shrinkage. The β̂(m) are no longer least squares solutions. It is
possible that we achieve the best improvement with changing the coefficient of a covariate
already included in the model. When a variable is chosen the second time, a normal
update as in formula (1) is not possible anymore. The linear combination between the
gradient approximation and all the previous directions would be the zero vector, because
there are only m conjugate directions in a m-dimensional space. A possible remedy is
discussed next.

7

4.3.1 Conjugate direction boosting with restart

An easy and effective way out of the problem discussed above is to restart the algorithm
when a variable is chosen the second time. We take the actual β̂(m) as the new starting
β̂, delete all the conjugate directions pi and start again. In the algorithm given below
we actually don’t delete the directions pi, but sum only over the directions since the last
restart (given by s). The final algorithm is:

Linear CDBoost algorithm with L2-loss and shrinkage:

Step 1 : Standardize xi to zero mean and unit length. Standardize y to zero mean.
Initialize β̂(0) = 0, m = 1 and s = 1. Set A = XTX.
Step 2 : Compute the negative gradient

−∇L(m) = XT (y −Xβ̂(m−1))

and take the component with highest absolute value, say component k̂(m). Define the
gradient approximation by ek̂(m) .

If m > 1 and k̂(m) ∈ {k̂(s), . . . , k̂(m−1)} restart: Set s = m.

• If m = s:
pm = ek̂(m) .

• If m > s: For i = s, . . . ,m− 1 compute the coefficients for the linear combination

λi = −
pT

i Aek̂(m)

pT
i Api

,

and compute the new direction

pm =
m−1∑
i=s

λipi + ek̂(m) .

Minimize in the direction of pm , that means update β̂:

β̂(m) = β̂(m−1) + ν
(y −Xβ̂(m−1))TXpm

pT
mApm

pm.

Step 3 (iteration): Increase iteration index m by one and go back to Step 2.

We give an illustrating example with 3 correlated covariates, β = (3, 2, 1)T , low noise and
ν = 0.005. Covariate 1 has highest absolute gradient value and therefore is chosen first.
After a tiny update in direction p1 = (1, 0, 0)T , covariate 1 is still the best choice. This
leads to a restart and we take variable 1 again followed by a step in direction p1. This
scenario repeats until β̂ = (1.03, 0, 0)T , where covariate 2 gets higher absolute gradient
value. Then we perform an update in the direction p2 = (−0.81, 1, 0)T which is conjugate
to p1. In the last two steps (directions p1 and p2) we moved the fraction ν to the least
squares solution of covariate 1 and 2. Before these two steps, covariate 1 had a higher
absolute negative gradient value than covariate 2 and the same is true after these two steps
(see the Proof of Proposition 1 below). Thus, we choose variable 1 which causes a restart

8

and a step in direction p1 followed by the choice of variable 2 and a step in direction p2

followed by another restart with variable 1. This repeats until β̂ = (1.96, 0.93, 0)T , where
variable 3 gets highest absolute negative gradient value. Then we perform an update
in the direction p3 = (−0.43,−0.48, 1)T conjugate to p1 and p2. The next choice is
covariate 1 which causes again a restart and we repeatedly find the sequence of variables
1, 2, 3, restart until we reach (theoretically after ∞ steps) the least squares solution
β̂ = (3.03, 1.94, 1.02)T .
In summary: the selected covariate indices are

1, 1, 1, 1, . . . , 1︸ ︷︷ ︸
42 times

, 1, 2, 1, 2, 1, 2, 1, 2, . . . , 1, 2︸ ︷︷ ︸
95 times the pair (1,2)

, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . .︸ ︷︷ ︸
∞ times the triple (1,2,3)

.

The fact that the restart has always been caused by covariate 1 is not a coincidence, as
described by the following result (also the repeating pattern of selected pairs and triples
is a more general fact).

Proposition 1 The linear CDBoost algorithm has the following property: It is always the
first chosen covariate xk̂(1) which causes a restart.

Proof: Suppose we have an arbitrary β̂(m) and j conjugate directions involving j covariates.
Now we restrict everything (L, ∇L, β̂) to these j covariates (denoted with ·|j). We
can minimize L|j (find the least squares solution for these j covariates) by j individual
minimizations along the j conjugate directions. For each of the j minimizations we only
take ν of the optimal step length and therefore we only move the fraction ν from β̂(m)

to the least squares solution of the j covariates. The new negative gradient after these j
steps is

−∇L(m+j)|j = X|Tj
(
y −X|j

(
β̂(m)|j + ν(β̂(OLS)|j − β̂(m)|j)

))
= X|Tj

(
νy − νX|j β̂(OLS)|j + (1− ν)y − (1− ν)X|j β̂(m)|j

)
= (1− ν)(−∇L(m)|j)

because the negative gradient at the least squares solution is 0. We see that the involved
components of the negative gradient are scaled by the factor 1− ν and therefore it is the
same component which has highest absolute value before and after the j updates.
Proposition 1 follows from the fact above. Suppose the covariate with index k̂(1) has
highest absolute gradient value and is chosen at the beginning and CDBoost yields the
sequence k̂(1), . . . , k̂(j), where all k̂(i), i = 1, . . . , j are different. In these last j steps we
moved the fraction ν to the least squares solution of these j covariates. It follows from
the fact above that the variable with index k̂(1) has higher absolute gradient value than
k̂(2), . . . , k̂(j). In the next iteration we choose therefore either k̂(1) (restart) or a completely
new covariate (no restart necessary). �

For higher d there will be less restarts, because we can choose among a greater set of
covariates. Only when n and d both are large, CDBoost becomes slow. A possibility to
speed up the computation is to force a restart after a certain number of iterations. This
yields an algorithm between boosting and CDBoost. We don’t pursue this possibility any
further.
Without shrinkage we have a proper conjugate direction method and are much faster than
boosting. This isn’t true anymore with shrinkage.

9

5 Connections to LARS

Each iterative method generates a path from the intercept model to the full least squares
solution (n > d) or to a perfect fit (n ≤ d). The general question for the linear regression
problem is which path to choose.
Efron et al. (2004) developed recently a new efficient algorithm called LAR(S) (least an-
gle regression). It is a cautious version of forward variable selection, where the selected
covariates build the so called active set. They call XT (y −Xβ(m)) the vector of current
correlations and we call it the negative gradient. A slight modification of LAR leads to the
lasso and another modification yields forward stagewise fitting (boosting with infinitesi-
mal shrinkage). When we use boosting with a small shrinkage parameter ν, we almost
reproduce the forward stagewise fitting path. The bigger we take ν, the more we depart
from this path.
For the rest of this chapter we assume infinitesimal shrinkage for boosting and CDBoost.
LAR and boosting yield the same path, when all the β-coefficients move monotonically
away from zero. In this case also CDBoost leads to that path. For more general cases,
turnarounds of coefficients (for example decreasing after increasing) are possible with
LAR. Forward stagewise fitting behaves different in such a case: it drops that variable
from the active set and leaves its coefficient unchanged in the next step. The CDBoost
algorithm performs intermediate, depending on the turning coefficient. Two examples with
3 covariates demonstrate this behavior. The following tables show the traces (endpoints
of linear pieces) of the β-coefficients from zero to the least squares solutions.
Example 1: LAR/CDBoost Boosting/Stagewise

β̂1 β̂2 β̂3 β̂1 β̂2 β̂3

2.0 0.0 0.0 2.0 0.0 0.0
4.9 2.9 0.0 4.9 2.9 0.0
1.8 10.2 6.0 4.9 6.1 3.2

1.8 10.1 6.0

Example 2: LAR Boosting/Stagewise/CDBoost
β̂1 β̂2 β̂3 β̂1 β̂2 β̂3

7.4 0.0 0.0 7.4 0.0 0.0
12.8 5.4 0.0 12.8 5.4 0.0
18.5 2.8 4.6 15.2 5.4 2.4

18.5 2.8 4.6
LAR finds the least squares solution always after 3 fairly large steps (in principle we
can also evaluate intermediate models between two steps). For forward stagewise fitting
immediate turnarounds of coefficients are not possible. Therefore covariate 1 in example 1
and covariate 2 in example 2 is dropped after step 2, its coefficient rests and forward
stagewise fitting needs one more step.
CDBoost behaves like LAR in the first example and like forward stagewise fitting in the
second. Remember that CDBoost takes a lot of tiny steps to produce one LARS-step.
At the beginning it always takes covariate 1 until the first LARS-step is reproduced, then
covariate 1 and 2 in an alternating fashion. In example 1 it is the first chosen vari-
able which turns around and CDBoost behaves like LAR. This is because covariate 1
is always chosen after a restart and its coefficient is adjusted in each step. In exam-
ple 2 it is not the first chosen variable which turns around and CDBoost behaves like
forward stagewise fitting. The selected variable indices with CDBoost in example 2 are:

10

1, 1, . . . , 1, 1, 2, 1, 2, . . . , 1, 2, 1, 3, 1, 3, . . . , 1, 3, 1, 3, 2, 1, 3, 2,

6 Simulations with linear regression

The performance of the CDBoost method is assessed first by a simulation study. The
advantage of a simulation is that we know the true model and therefore can easily evaluate
the performance of the different methods. The CDBoost method is compared to boosting,
forward variable selection and the three LARS methods (least angle regression, lasso and
forward stagewise fitting).
In our simulation study, the data is split into three parts: a training set, a validation set,
both of equal size n and a test set of size 1000. The training set is used to fit the model.
The training error, which is the loss L on the training data, decreases with each boosting
iteration. When there are more covariates than observations, the training error will finally
reach zero giving a perfect fit. The validation set is used to stop the iteration process. We
use the model fitted to the training set to predict on the validation set. The validation
error is then the prediction error on the validation set. The number of iterations for the
final model is chosen to minimize the validation error. Finally we have the test set to
measure the prediction error on the test set:

1
|testset|

∑
over testset

(F̂ (xi)− F (xi))2,

where F (x) = xT β is the true underlying regression function. Both the validation and the
test set error decrease during the first iterations and later increase due to over-fitting.
Boosting and CDBoost both have a second tuning parameter, the shrinkage factor ν, which
is typically less crucial than the number of iterations. To compare CDBoost to boosting
we can fix ν and compare the methods. To compare CDBoost and boosting to forward
variable selection and the three LARS methods, we have to choose a ν. We decided to
validate over ν using a small set of different shrinkage factors. For each ν, the sequence
of models was computed and the final model is the one with smallest validation error.
Because ν = 1 usually leads to bad models, we excluded this model sequence from the
validation.
In practice, a validation over ν is hardly ever done and ν = 0.1 is often reasonable. But
here it is fairer than to choose the best ν after we tried different values. Furthermore these
computations can easily be done in parallel if needed in practice.
Forward variable selection and the LARS methods use large steps and yield only a small
set of models. We also used the validation set to choose the final model. For the LARS
methods one could not only evaluate the models at the end of a step, but also intermediate
ones. We don’t give detailed results for that.
In the next two subsections we give some results from simulations where the model is
always chosen to be linear with normally distributed errors.

6.1 Model 1: n = 100,d = 10,deff = 5

6.1.1 Setup for model 1

The size of the training set is n = 100 and the number of covariates is d = 10. The number
of covariates with effective influence on y is only deff = 5.

11

We draw the covariates from a multivariate normal distribution. This is done in two steps
by first producing xi i.i.d. ∼ N d(0, I) and then multiplying X with the d × d matrix B
(blank entries correspond to zero):

B =

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1

1 1
1

.

Finally we arbitrarily permute the columns of X. This leads to a correlation matrix with
each third entry equal to zero. The other two thirds of the correlations range from 0.2 to
0.9.
The next step is to choose the true β-vector. We set the first five components of β to
values around five, more precisely, β1, . . . , β5 i.i.d. ∼ N (5, 1). The other five components
are zero.
The last question is how to choose the variance for the normal distributed errors ε. We
choose it via the more meaningful signal-to-noise ratio which we define as

stnr =
Var (F (X))

Var (ε)
.

We select the desired signal-to-noise ratio and determine then the corresponding Var (ε). A
signal-to-noise ratio of 1 corresponds to a “population” R2 equal to Var (F (X)) /Var (Y) =
0.5.
To compare the methods we take various signal-to-noise ratios and simulate 100 datasets
from each setting. The performance is the mean over the 100 test errors resulting from
the 100 simulated datasets.
We report on the test error in a standardized form. We divide it by the test error of
the best constant (location) model. Each fitting method should be better than the best
constant model and therefore achieve a value below 1. This standardized test error makes
it possible to compare different settings. For convenience we still refer to it as test error.

6.1.2 Results for model 1

Table 1 shows the comparison of boosting and CDBoost. Given the same shrinkage,
CDBoost performs most of the time better than boosting. The percentage gain increases
with higher stnr.
The effect of shrinkage is substantial in this example. Without shrinkage both methods
perform badly. Because the covariates with influence are often positively correlated and
have a positive influence on y, the coefficient of the first selected variable is estimated
too high. Although this coefficient is (CDBoost) or can be (boosting) adjusted in later
steps, we often get a bad model. So it is not surprising that shrinkage improves the fits
drastically. The choice of the ν is not so crucial, the important thing is the usage of some
shrinkage.

12

stnr = 9 stnr = 4 stnr = 1
test error gain test error gain test error gain

boo ν = 1 0.0133 0.0291 0.0956
ν = 0.3 0.0120 0.0244 0.0763
ν = 0.1 0.0120 0.0244 0.0750
ν = 0.03 0.0120 0.0244 0.0746
ν = 0.01 0.0120 0.0244 0.0749

cdb ν = 1 0.0120 10.1 0.0281 3.6 0.0985 −3.1
ν = 0.3 0.0108 9.8 0.0224 7.9 0.0739 3.2
ν = 0.1 0.0109 9.5 0.0227 7.0 0.0742 1.0
ν = 0.03 0.0109 8.8 0.0228 6.9 0.0753 −1.0
ν = 0.01 0.0109 9.3 0.0228 6.6 0.0747 0.2

Table 1: Comparison of boosting (boo) and conjugate direction boosting (cdb) for various
signal-to-noise ratios and ν for simulation model 1. Given is the (standardized) mean of
the test error over 100 simulations. The best value for each method and signal-to-noise
ratio is in bold face. The gain of CDBoost over boosting with the same ν is given in %.

In terms of computational efficiency (not explicitly shown) CDBoost needs much less
iterations than boosting without shrinkage. This is no longer true with shrinkage where
CDBoost looses the fast convergence of the conjugate methods. For high stnr CDBoost
has been found to need less iterations, while it was the other way around for small stnr.

stnr = 9 stnr = 4 stnr = 1
test error gain test error gain test error gain

boo 0.0116 0.0239 0.0748
cdb 0.0106 8.8 0.0223 6.6 0.0735 1.8
fvs 0.0118 −1.3 0.0293 −22.5 0.0983 −31.3
lar 0.0113 3.2 0.0245 −2.4 0.0820 −9.6
las 0.0110 5.6 0.0238 0.5 0.0797 −6.5
for 0.0121 −3.9 0.0252 −5.8 0.0793 −5.9

Table 2: Comparison of boosting (boo), conjugate direction boosting (cdb), forward vari-
able selection (fvs) and the three LARS methods (LAR, lasso, forward stagewise fitting)
for simulation model 1. Given is the (standardized) mean of the test error over 100 simu-
lations. Boosting and CDBoost are validated over the shrinkage factor ν taking the values
0.3, 0.1, 0.03, 0.01. The gain over boosting is given in %.

Now we compare boosting and CDBoost (validated over ν = 0.3, 0.1, 0.03, 0.01) to forward
variable selection and the three LARS methods LAR, lasso and forward stagewise fitting.
The results are given in table 2 and figure 1. Boosting and CDBoost give most of the time
slightly better results when we validate over ν compared to a fixed ν.
CDBoost performs best. The gain compared to boosting increases for higher stnr. LAR
and lasso perform also better for high stnr. Forward stagewise fitting is always worse
than boosting. The LARS methods achieve better results in this example when we also
evaluated intermediate models, but still worse than CDBoost.
Forward variable selection leads to the worst models. It would be the perfect method, if

13

signal−to−noise ratio

ga
in

 in
 %

 o
ve

r b
oo

st
in

g

9 4 1

−1
0

−8
−6

−4
−2

0
2

4
6

8 boo
cdb
lar
las
for

Figure 1: Percentage gain of the different methods (without forward variable selection)
over boosting for signal-to-noise ratios equal to 9, 4, 1 for simulation model 1.

it selected only the five covariates with influence. But the results show that it is far from
doing that, even for stnr = 9. Its performance is similar to CDBoost without shrinkage,
as claimed in section 4.2.1.

6.2 Model 2: n = 50,d = 2000,deff = 10

6.2.1 Setup for model 2

Now we reduce the size of the training set to n = 50 and increase the number of covariates
to d = 2000, whereas deff = 10 variables have an effective influence on y. The covariates
are constructed as in section 6.1.1 but with

B =

1 1
1 1 1

1 1 1
1 1 1

.
1 1 1

1 1 1
1 1

.

and without permuting the columns of X. This leads to a correlation matrix with 2/3 in
the secondary diagonals and 1/3 in the tertiary diagonals.
The ten non-zero coefficients are β31, . . . , β35, β66, . . . , β70 i.i.d. ∼ N (5, 1). So there are
two blocks of 5 correlated covariates with real influence on y. Because this setup is much
harder than model 1 we also use stnr = 16.

14

6.2.2 Results for model 2

stnr = 16 stnr = 9 stnr = 4 stnr = 1
test error gain test error gain test error gain test error gain

boo ν = 1 0.2799 0.3038 0.3853 0.9046
ν = 0.3 0.1803 0.2452 0.3720 0.7398
ν = 0.1 0.1660 0.2294 0.3662 0.7345
ν = 0.03 0.1644 0.2296 0.3703 0.7409
ν = 0.01 0.1643 0.2295 0.3711 0.7433

cdb ν = 1 0.2375 15.1 0.2638 13.2 0.3646 5.4 0.9074 −0.3
ν = 0.3 0.1525 15.4 0.2168 11.6 0.3450 7.3 0.7158 3.2
ν = 0.1 0.1580 4.8 0.2243 2.2 0.3622 1.1 0.7312 0.5
ν = 0.03 0.1603 2.5 0.2281 0.7 0.3695 0.2 0.7397 0.2
ν = 0.01 0.1613 1.8 0.2295 −0.0 0.3715 −0.1 0.7433 0.0

Table 3: Comparison of boosting (boo) and conjugate direction boosting (cdb) for various
signal-to-noise ratios and ν for simulation model 2. Given is the (standardized) mean of
the test error over 100 simulations. The best value for each method and signal-to-noise
ratio is in bold face. The gain of CDBoost over boosting with the same ν is given in %.

Table 3 shows the comparison of boosting and CDBoost. The results are similar to the
one of model 1. CDBoost performs better than boosting, especially for high stnr and
ν = 0.3, which seems to be a good choice for CDBoost. In this model, ν shouldn’t be too
small.

stnr = 16 stnr = 9 stnr = 4 stnr = 1
test error gain test error gain test error gain test error gain

boo 0.1633 0.2260 0.3584 0.7305
cdb 0.1515 7.2 0.2164 4.3 0.3452 3.7 0.7127 2.4
lar 0.1575 3.5 0.2286 −1.1 0.3758 −4.9 0.7657 −4.8
las 0.1566 4.1 0.2268 −0.3 0.3720 −3.8 0.7678 −5.1
for 0.1643 −0.6 0.2300 −1.8 0.3731 −4.1 0.7536 −3.2

Table 4: Comparison of boosting (boo), conjugate direction boosting (cdb) and the three
LARS methods (LAR, lasso, forward stagewise fitting) for simulation model 2. Given is
the mean of the test error over 100 simulations. Boosting and CDBoost are validated over
the shrinkage factor ν taking the values 0.3, 0.1, 0.03, 0.01. The gain over boosting is given
in %.

In table 4 and figure 2 we compare boosting and CDBoost (validated over ν = 0.3, 0.1, 0.03, 0.01)
to the LARS methods. The results are again analogous to model 1.
CDBoost performs best and the gain compared to boosting increases for higher stnr. Lasso
is a bit better than LAR and they both need a high signal-to-noise ratio to be better than
boosting. Forward stagewise fitting is again always worse than boosting. In this example
the LARS methods were not better when evaluating also intermediate models. So they
are clearly worse than CDBoost.
We do without forward variable selection in this example but remind that CDBoost with
ν = 1 can be thought of a fast forward variable selection, as described in section 4.2.1.

15

signal−to−noise ratio

ga
in

 in
 %

 o
ve

r b
oo

st
in

g

16 9 4 1

−5
−3

−1
0

1
2

3
4

5
6

7
boo
cdb
lar
las
for

Figure 2: Percentage gain of the different methods over boosting for signal-to-noise ratios
equal to 16, 9, 4, 1 for simulation model 2.

7 Generalization to arbitrary learners

So far we only studied linear regression. Now we generalize our approach to any learner,
for example trees or componentwise smoothing splines (Bühlmann and Yu 2003, see also
section 8). In principle, we could use linear expansions in tree-type or B-spline basis
functions, resulting in huge, highly overcomplete dictionaries. But we rather develop an
iterative, computationally more efficient approach. The idea is to construct a matrix X̃
during the iteration process, rather than using a fixed design matrix X given in advance.
In each iteration the learner produces a vector of predicted values (which can be viewed
as an estimated basis function) and exactly that vector is taken as the next column of
X̃. Thus, X̃ grows in each step by one column. The matrix X̃ is then used for the linear
CDBoost. The following algorithm makes the idea more precise:

General CDBoost algorithm with L2-loss:

Step 1 : Standardize y to zero mean. The standardization of the xi is not necessary.
Initialize X̃ = null, β̂(0) = null and m = 1.
Step 2 : Compute the current residuals r = y− X̃β̂(m−1) and fit the learner to them using
the predictor matrix X. The fit (vector of fitted values) is denoted with f̂ (m).
Increase X̃ by one column by adding f̂ (m). Now X̃ is of dimension n×m. Extend β̂(m−1)

and all direction vectors pi, i < m, by a zero so that they all have length m. Compute
A = X̃T X̃.

16

For i = 1, . . . ,m− 1 compute the coefficients for the linear combination of pm ∈ Rm (for
m = 1 there are no λ′s):

λi = −pT
i Aem

pT
i Api

.

Compute the new direction (for m = 1 the sum vanishes)

pm =
m−1∑
i=1

λipi + em.

Minimize in the direction of pm , that means update β̂:

β̂(m) = β̂(m−1) +
(y − X̃β̂(m−1))T X̃pm

pT
mApm

pm.

Step 3 (iteration): Increase iteration index m by one and go back to Step 2.

The resulting function estimator in iteration m is then

F̂ (m) = ȳ +
m∑

i=1

β̂
(m)
i f̂ (i).

Since f̂ (i) = f̂ (i)(.) can be evaluated at any x, the resulting combined function estimator
F̂ inherits this property.
The main difference to the linear CDBoost is that we don’t compute the negative gradient,
but we fit the learner to the current residuals. The predicted values give x̃m. Loosely
speaking the “gradient approximation” is em ∈ Rm, because we “chose” x̃m. After that
we can continue as in the linear case: we compute pm ∈ Rm and optimize in that direction.
That means, we adjust the coefficients of the fitted learners already included in the model.
The addition of shrinkage is implemented as follows. In the linear case we restart when
a variable is chosen a second time. For arbitrary learners this would happen when we
receive the identical fitted values as in an earlier step. It can be numerically hard to
decide whether we have the same fitted values as before. So we propose to restart when
the absolute correlation between x̃m and a x̃i, i < m exceeds a certain threshold. This
threshold shouldn’t be too low, because we only want to restart, when it is really necessary.
We found that 0.999 works fine for sample sizes between 50 and 500.

8 Simulations with trees and splines

We compare boosting and CDBoost for a simulated model. We choose n = 100, d =
10, deff = 5 and the covariates as in section 6.1. The true function F is

F (x) = x1 + x2 + 9 ϕ(x3) + 1.4 sin(2x4) + 2.7/(1 + exp(−3x5))

where ϕ is the density of the standard normal distribution. y = F (x)+ε with ε ∼ N
(
0, σ2

)
.

For every model simulation each of the five components is additionally randomly scaled
with a factor uniformly distributed on [0.7, 1.4].
Table 5 shows the result using componentwise cubic smoothing splines with 3 degrees of
freedom as learner. This means we fit in each iteration a smoothing spline for each predic-
tor individually and take the one which reduces residual sum of squares most. Boosting

17

stnr = 16 stnr = 9 stnr = 4 stnr = 1
test error gain test error gain test error gain test error gain

boo ν = 1 0.0466 0.0621 0.0990 0.2350
ν = 0.3 0.0425 0.0562 0.0859 0.2013
ν = 0.1 0.0428 0.0564 0.0868 0.1996
ν = 0.03 0.0428 0.0565 0.0871 0.1995
validated 0.0423 0.0558 0.0851 0.1994

cdb ν = 1 0.0549 −17.7 0.0738 −18.9 0.1115 −12.7 0.2654 −12.9
ν = 0.3 0.0403 5.1 0.0528 6.0 0.0827 3.8 0.2010 0.2
ν = 0.1 0.0415 3.1 0.0536 5.0 0.0822 5.3 0.1912 4.2
ν = 0.03 0.0426 0.5 0.0559 1.2 0.0860 1.2 0.1991 0.2
validated 0.0392 7.2 0.0510 8.7 0.0798 6.3 0.1870 6.2

Table 5: Comparison of boosting (boo) and conjugate direction boosting (cdb) with com-
ponentwise cubic smoothing splines for various signal-to-noise ratios and ν (and validated
over ν = 0.3, 0.1, 0.03). Given is the (standardized) mean of the test error over 100
simulations. The best value for each method and signal-to-noise ratio is in bold face. The
gain of CDBoost over boosting with the same ν is given in %.

and CDBoost both perform better with shrinkage. While boosting is not sensitive to
changes of ν, CDBoost becomes worse when ν is too small. It performs best with ν = 0.3
or ν = 0.1 and is better than boosting. It is especially CDBoost which benefits from the
validation over ν taking the values 0.3, 0.1, 0.03 and it is then clearly better than boosting.

stnr = 16 stnr = 9 stnr = 4 stnr = 1
test error gain test error gain test error gain test error gain

boo ν = 1 0.1645 0.2005 0.2764 0.5316
ν = 0.3 0.0966 0.1126 0.1479 0.2711
ν = 0.1 0.0884 0.1045 0.1400 0.2644
ν = 0.03 0.0881 0.1041 0.1397 0.2637
ν = 0.01 0.0881 0.1038 0.1399 0.2637
validated 0.0882 0.1042 0.1414 0.2677

cdb ν = 1 0.1479 10.1 0.1769 11.8 0.2553 7.6 0.4897 7.9
ν = 0.3 0.0871 9.8 0.1023 9.2 0.1417 4.1 0.2652 2.2
ν = 0.1 0.0869 1.7 0.1023 2.2 0.1408 −0.6 0.2630 0.5
ν = 0.03 0.0871 1.2 0.1034 0.7 0.1412 −1.1 0.2626 0.4
ν = 0.01 0.0873 0.9 0.1034 0.4 0.1412 −0.9 0.2636 0.0
validated 0.0863 2.1 0.1014 2.7 0.1413 0.1 0.2634 1.6

Table 6: Comparison of boosting (boo) and conjugate direction boosting (cdb) with stumps
for various signal-to-noise ratios and ν (and validated over ν = 0.3, 0.1, 0.03, 0.01). Given
is the (standardized) mean of the test error over 100 simulations. The best value for each
method and signal-to-noise ratio is in bold face. The gain of CDBoost to boosting with
the same ν is given in %.

Table 6 shows the result using stumps (trees with two terminal nodes) as learners. CD-
Boost performs only slightly better than boosting. Boosting needs small ν for best per-
formance, while CDBoost gives again best results for ν = 0.3 or ν = 0.1. Because the true

18

underlying model is continuous, it is no surprise that both methods are clearly worse with
stumps than with splines.

9 Real data examples

Finally, we compare boosting and CDBoost using two real datasets.

9.1 Los Angeles ozone data

The Los Angeles ozone dataset (Breiman and Friedman 1985) consists of n = 330 complete
observations of d = 8 explanatory variables. We randomly split it into a small training
set of size 100 and a test set of 230. For larger training sets, there is hardly any differ-
ence between the methods. We use five-fold cross-validation to estimate the number of
iterations/steps. The splitting is repeated 100 times and the test errors are averaged.
We fit only main effects models: linear models with all covariates (d = 8) and linear
models with all covariates and the squared covariates (d = 16). Additionally we apply
componentwise smoothing splines with 3 degrees of freedom and stumps as learners. The
results are contained in Table 7. As a comparison we also use MARS as it is implemented
in R (interaction degree 1, no shrinkage).

Shrinkage
1 0.3 0.1 0.03 0.01 validated

boo linear 22.50 21.82 21.81 21.82 21.83 21.82
cdb linear 22.31 21.92 21.86 21.84 21.85 21.90
fvs linear 22.24
lar linear 21.91
las linear 22.05
for linear 22.14
boo quadratic 20.97 19.70 19.70 19.72 19.71 19.71
cdb quadratic 20.88 19.81 19.80 19.80 19.79 19.80
fvs quadratic 21.10
lar quadratic 19.89
las quadratic 19.90
for quadratic 19.90
boo splines 20.23 19.26 19.22 19.23 19.23 19.24
cdb splines 20.98 19.57 19.27 19.25 19.25 19.41
boo stumps 26.84 21.40 21.03 21.01 20.99 21.11
cdb stumps 26.50 21.26 21.06 21.05 21.04 21.22
mars 22.47

Table 7: Comparison of the different methods using the ozone dataset. Given is the mean
of the test error over 100 random splits. The best values for boosting and CDBoost are
in bold face. Boosting and CDBoost are also validated over the shrinkage factor ν taking
the values 0.3, 0.1, 0.03, 0.01.

There are differences between the learners but there are almost no differences between the
methods. Only forward variable selection (fvs) and MARS fall behind. In contrast to the
simulated models, CDBoost doesn’t get worse when ν becomes smaller. But most of the

19

time, ν = 0.1 is small enough to give good results and the validation over ν does not pay
off.

9.2 Leukemia data

The Leukemia dataset (Golub, Slonim, Tamayo, Huard, Gassenbeek, Mesirov, Coller, Loh,
Downing, Caligiuri, Bloomfield, and Lander 1999) is from a microarray experiment with
72 samples and 3571 genes. It is actually a binary classification problem, but we treat it
as a regression problem with outcome 0 and 1 and L2-loss. We use the fitted values to
classify the samples with cut-point one half and compute the misclassification rate. We
average again over 100 random splits with 50 training cases and 22 test cases. The number
of iterations is estimated with five-fold cross-validation. Table 8 shows the results.

Shrinkage
1 0.3 0.1 0.03 0.01 validated

L2-loss
boo linear 0.1001 0.0459 0.0430 0.0431 0.0432 0.0441
cdb linear 0.0985 0.0418 0.0413 0.0413 0.0412 0.0413
lar linear 0.0470
las linear 0.0448

Misclassification rate
boo linear 9.2% 5.2% 5.5% 5.3% 5.2% 5.3%
cdb linear 9.0% 4.6% 4.3% 4.3% 4.1% 4.5%
lar linear 5.3%
las linear 5.2%

Table 8: Comparison of the different methods using the leukemia dataset. Given is the
mean of the test error (L2-loss and misclassification rate) over 100 random splits. The
best values for boosting and CDBoost are in bold face. Boosting and CDBoost are also
validated over the shrinkage factor ν taking the values 0.3, 0.1, 0.03, 0.01.

In this example CDBoost performs better than boosting, lasso and is much better than
LAR. Shrinkage improves the fits dramatically and the choice of ν is again not crucial.

10 Discussion

We propose a new conjugate direction boosting method (CDBoost) and show that it can
outperform boosting, LAR and lasso. It works especially well in complicated settings
with correlated covariates where it is not obvious how much a covariate contributes to the
response.
The main idea is to use a conjugate direction method instead of a simple gradient descent
as in boosting. This leads to a fast forward variable selection method which is of interest
for very large datasets (n and d large). However, it is well known that forward variable
selection is too greedy, taking too long steps. The inclusion of shrinkage (small step sizes)
is possible with a restart condition which substantially increases the performance, as is
the case also for boosting (compare also with Friedman 2001).
The three LARS methods all describe a different path from the intercept model to the
full least squares fit. CDBoost with infinitesimal shrinkage leads to a path between LAR

20

and forward stagewise fitting. The first chosen covariate plays a special role and is, using
the LARS language, always in the active set. Other variables can be dropped during the
iteration process.
When we use a real (non-infinitesimal) shrinkage factor, we depart from the idealised
(infinitesimal shrinkage) conjugate direction boosting path. The departure is proportional
to the shrinkage factor ν. In some cases, e.g. in our simulation model 2 in section 6.2, the
shrinkage factor ν shouldn’t be to small for CDBoost. While the LARS methods use in
some sense infinitesimal shrinkage, they are too cautious in this example. A computational
advantage of using a larger ν is that we don’t need too many iterations.
For linear models, the performance of the methods shows an interesting dependence on the
signal-to-noise ratio (stnr): compared to boosting, the gain of CDBoost increases with
higher stnr. LAR and lasso are worse than boosting for low stnr and better for high
stnr. Forward variable selection is much worse than boosting for low stnr and almost
equal for high stnr. Only forward stagewise fitting behaves qualitatively like boosting.
A possible explanation is that forward stagewise fitting (and boosting) is in some sense
not as flexible as LAR and forward variable selection because it may drop variables from
the active set and therefore does not adjust all the coefficients in each step. But it often
seems worthwhile to adjust all the coefficients of the terms already included in the model,
especially in low noise situations. Although also CDBoost and lasso can drop variables
from the active set, they seem to be closer to LAR than to boosting.
In the given real data examples, the choice of ν is not crucial. CDBoost gives nearly
identical results for ν between 0.01 and 0.1. While for the ozone data all methods (except
forward variable selection) perform almost equal, CDBoost performs best for the more
complicated leukemia data.
As a drawback, CDBoost is often computationally more expensive and also less generic
than boosting. For example, it is unclear how to modify CDBoost for classification using
reweighted least squares since we would need to combine reweighting with conjugacy.

References

Breiman, L. (1999). Prediction games and arcing algorithms, Neural Computation
11: 1493–1517.

Breiman, L. and Friedman, J. H. (1985). Estimating optimal transformations for multi-
ple regression and correlation (C/R: p598-619), Journal of the American Statistical
Association 80: 580–598.

Bühlmann, P. and Yu, B. (2003). Boosting with the L2-loss: Regression and classification,
Journal of the American Statistical Association 98: 324–339.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression, To
appear in Annals of Statistics.

Freund, Y. (1995). Boosting a weak learning algorithm by majority, Information and
Computation 121: 256–285.

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm, Pro-
ceedings of the Thirteenth International Conference on Machine Learning, pp. 148–
156.

21

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.,
The Annals of Statistics 29(5): 1189–1232.

Golub, T., Slonim, D., Tamayo, P., Huard, C., Gassenbeek, M., Mesirov, J., Coller, H.,
Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., and Lander, E. (1999). Molec-
ular classification of cancer: class discovery and class prediction by gene expression
monitoring, Science 286: 531–537.

Mallat, S. and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries,
IEEE Transactions on Signal Processing 41(12): 3397–3415.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization, Springer Series in Opera-
tions Research, Springer-Verlag, NY.

Schapire, R. E. (1990). The strength of weak learnability, Machine Learning 5: 197–227.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the
Royal Statistical Society, Series B, Methodological 58: 267–288.

22

	Introduction
	Linear Regression
	Forward variable selection

	Boosting with L2-loss
	Shrinkage or small step size
	Boosting with componentwise linear least squares
	Gradient descent

	Conjugate boosting
	Conjugate direction and gradient optimization
	Linear conjugate direction boosting (CDBoost)
	A fast forward variable selection algorithm

	Shrinkage
	Conjugate direction boosting with restart

	Connections to LARS
	Simulations with linear regression
	Model 1: n=100, d=10, deff=5
	Setup for model 1
	Results for model 1

	Model 2: n=50, d=2000, deff=10
	Setup for model 2
	Results for model 2

	Generalization to arbitrary learners
	Simulations with trees and splines
	Real data examples
	Los Angeles ozone data
	Leukemia data

	Discussion

