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Abstract

Boosting in the context of linear regression become more attractive with the in-
vention of least angle regression (LARS), where the connection between the Lasso and
forward stagewise fitting (boosting) has been established. Earlier it has been found
that boosting is a functional gradient optimization. Instead of the gradient, we propose
a conjugate direction method (CDBoost). As a result, we obtain a fast forward step-
wise variable selection algorithm. The conjugate direction of CDBoost is analogous
to the approximate gradient in boosting. Using this analogy, we generalize CDBoost
to: (i) include small step sizes (shrinkage) which often improves prediction accuracy;
(ii) the non-parametric setting with fitting methods such as trees or splines, where
least angle regression and the Lasso seem to be unfeasible. The role of the step size in
CDBoost can also be seen as governing the degree between `0- and `1-penalisation: in
linear regression with orthonormal design, the optimal (large) or infinitesimally small
step sizes correspond to the `0- or `1-penalty respectively. This makes CDBoost sur-
prisingly flexible. We compare the different methods on simulated and real datasets.
CDBoost achieves the best predictions mainly in complicated settings with correlated
covariates, where it is difficult to determine the contribution of a given covariate to
the response. The gain of CDBoost over boosting is especially high in sparse cases
with high signal to noise ratio and few effective covariates.

Key words: conjugate direction optimization, forward stepwise variable selection,
high-dimensional linear regression, least angle regression, non-parametric regression,
orthogonal greedy algorithm.

1 Introduction

The problem of subset selection in linear regression has been revived by the invention
of least angle regression (LARS; Efron, Hastie, Johnstone and Tibshirani 2004), where a
connection between the Lasso (Tibshirani 1996) and forward stagewise linear regression
has been established. A closely related idea of forward stagewise fitting originates from
the machine learning community under the name of boosting (Schapire 1990, Freund 1995,
Freund and Schapire 1996). As an ensemble scheme, a fitting method (called the weak or
base learner) is repeatedly applied to reweighted data and its outputs are averaged to form
the boosting estimator. Freund and Schapire’s (1996) AdaBoost for binary classification is
most popular, very often in conjunction with trees as base learner. An extensive overview
over boosting is given for example in Meir and Rätsch (2003).
Further important work (Breiman 1998, 1999, Friedman 2001, Rätsch, Onoda and Müller
2001) has revealed that boosting is a functional gradient descent method. It can be applied
in a variety of settings with different loss-functions and many fitting methods. The use of
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the squared error loss for linear and non-parametric regression was proposed by Friedman
(2001) under the name LS Boosting and further extended and analyzed by Bühlmann and
Yu (2003) under the name L2Boosting. Other work on boosting for regression include
Duffy and Helmbold (2000), Zemel and Pitassi (2001) and Rätsch, Demiriz and Bennett
(2002).
In this paper we propose CDBoost, a method for linear regression with many covariates (or
linear basis expansions with overcomplete dictionaries) which uses a conjugate direction
method instead of the gradient method. As a result, we obtain a fast method for some type
of forward stepwise variable selection in linear regression (and linear basis expansions).
It turns out that it produces the same solutions as the orthogonal greedy algorithm in
function approximation (cf. Temlyakov 2000), although the algorithms are different. It is
well known that forward stepwise variable selection algorithms can be unstable resulting
in poor predictive performance. In analogy to boosting using the concept of a conjugate
direction instead of an approximate gradient, we can include small step sizes or shrinkage
in CDBoost when moving along conjugate directions. The algorithm decelerates, becomes
more stable and the prediction accuracy can be greatly enhanced. For linear models
with orthonormal design, the optimal (large) step size yields the hard-threshold estimator
(`0-penalisation), while the infinitesimally small step size results in the soft-threshold
estimator (`1-penalty). The latter is also true for boosting. For general designs, however,
the role of the step-size in boosting is very different because we will not get a forward
stepwise variable selection method (i.e. forward `0-penalisation). Varying the step-size
thus makes CDBoost surprisingly flexible. Another advantage of conjugate directions is
that we can use our method with any fitting method such as trees and smoothing splines.
While this is analogous to boosting, it marks an essential difference to the Lasso or least
angle regression (LARS).

2 Linear Regression

In univariate linear regression we assume a continuous response y ∈ Rn and a set of d
covariates X = (x1,x2, . . . ,xd) ∈ Rn×d. Here n denotes the sample size. The response
y is modeled as a linear combination of the covariates plus a random error. In matrix
notation:

y = Xβ + ε, β ∈ Rd, ε ∈ Rn,

ε1, . . . , εn i.i.d. withE [εi] = 0, Var (εi) = σ2.

We assume w.l.o.g. that all covariates and the response are centered to have mean zero, so
we need not worry about an intercept. We always assume that rank(X) = min(n− 1, d);
note the reduced rank n−1 (if d ≥ n−1) due to the centering of the covariates. Parameter
estimation is most often done by least squares, minimizing the loss function

L(β) =
1
2
‖y −Xβ‖2 =

1
2
βTXTXβ − yTXβ +

1
2
yTy.

Assuming d ≤ n− 1 and X of full rank d, we find the unique solution β̂ = (XTX)−1XTy.

2.1 Methods for variable selection

For d > n − 1, the matrix XTX becomes singular and the least squares solution is not
unique. For fairly large d ≤ n−1, the least squares solution will often over-fit the data. In
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both cases we need a regularisation strategy. We focus here on methods that do variable
selection.

2.1.1 Forward stepwise variable selection

We start with the empty model and sequentially add that covariate to the model which
most improves the fit (most reduces the loss function L) when (re-) estimating regression
coefficients by least squares corresponding to previously and currently selected covariates.
Forward stepwise variable selection is a very greedy method. Covariates which are highly
correlated with variables already included in the model have a small chance of being
chosen.

2.1.2 L2Boosting

We present here only the key ideas of L2Boosting with componentwise linear least squares.
Technical details are given in section 3, where we show that L2Boosting is an approximate
gradient optimization. More details can also be found in Friedman (2001) and Bühlmann
and Yu (2003).
L2Boosting is an iterative method which starts with the empty model (all β-coefficients
equal to zero). In each iteration, the current residuals are fitted against the one covariate
which gives the best least squares fit (using only one single covariate). The model is
updated by adjusting only the coefficient corresponding to the chosen covariate; all other
coefficients remain unchanged. This is a main difference to forward stepwise variable
selection: one boosting update is computationally faster, but the coefficients in every
iteration are no longer least squares estimates (in sub-models). But it is possible to
choose a covariate again to adjust a coefficient which was badly estimated in an earlier
step.

2.1.3 Conjugate direction boosting

Here, we give a brief sketch of our conjugate direction boosting algorithm (CDBoost). It
turns out that our algorithm yields the same solutions as the orthogonal greedy algorithm
which is known in nonlinear function approximation (cf. Temlyakov 2000). But our
formulation with conjugate directions easily allows for extensions which include shrinkage
(small step sizes) or which are applicable to the non-parametric settings.
CDBoost is a hybrid between forward stepwise variable selection and L2Boosting. The
selection of a new covariate is as in boosting: take the one covariate which fits the cur-
rent residuals best. The coefficient update is like forward stepwise variable selection:
compute the least squares solution in the model with the previously and currently se-
lected covariates, by using a conjugate direction method. In other words: the conjugate
direction boosting selects the covariate which would most improve the fit without ad-
justing the coefficients of the other variables. But after the selection, we adjust all the
non-zero coefficients. Therefore, conjugate direction boosting (like forward stepwise vari-
able selection but unlike L2Boosting) finds the least squares solution (or a perfect fit) in
min(n−1, d) = rank(X) steps (note the reduced rank n−1 (if d > n−1) due to centering
of the covariates).
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3 L2Boosting

We denote by F (·) : Rd → R the (linear) regression function of interest. The L2Boosting
algorithm with componentwise linear least squares as briefly outlined in section 2.1.2 can
then be described as follows:

L2Boosting algorithm for linear regression (function version):

Step 1 : Center xi and y to mean zero. Initialize F̂ (0)(x) ≡ 0 and m = 1.
Step 2 : Compute current residuals ri = yi − F̂ (m−1)(xi) (i = 1, . . . , n).
Compute the coefficients of all simple linear regressions of r (∈ Rn) against each covariate
alone: β̂j = xT

j r/xT
j xj (j = 1, . . . , d).

Select the covariate which most reduces the L2-loss: k̂(m) = arg minj
1
2‖r− β̂jxj‖2.

Update F̂ (m)(x) = F̂ (m−1)(x) + β̂k̂(m)xk̂(m) .
Step 3 : Increase iteration index m by one and go back to Step 2.

The number of iterations is usually estimated using a validation set or with cross validation.
In signal processing, this algorithm is known as matching pursuit (Mallat and Zhang 1993)
and is used to decompose a signal into a linear expansion of waveforms.
The L2Boosting algorithm can also be written as an approximate gradient method. This
is not exactly the same as the functional gradient approach of Breiman (1998, 1999),
Friedman (2001) and Rätsch et al. (2001), because we work entirely in the parameter
space of β.
For a given β, the negative gradient of the loss function is

−∇L(β) = −(XTX)β + XTy = XT (y −Xβ).

The idea is to optimize in the coordinate direction (thereby changing only one entry of β)
which is most parallel to the negative gradient. This means we look for the k̂ for which
| < −∇L, ek̂ > | becomes maximal, where ek̂ ∈ Rd is the unit vector with entry 1 at
position k̂. k̂ is therefore merely the component of the negative gradient with the highest
absolute value. We shall call ek̂ gradient approximation.
Note that this alternative formulation is only equivalent to the above cited function version
when all covariates are scaled to the same variance. We can then rewrite the L2Boosting
algorithm:

L2Boosting algorithm for linear regression (gradient/coefficient version):

Step 1 : Standardize xi to zero mean and unit length (xT
i xi = 1). Standardize y to zero

mean. Initialize β̂(0) = 0 and m = 1.
Step 2 : Compute the negative gradient

−∇L(m) = XT (y −Xβ̂(m−1))

and determine the component with highest absolute value: k̂(m) = arg maxj | − ∇L
(m)
j |.

Update β̂: component k̂(m) changes to

β̂
(m)

k̂(m)
= β̂

(m−1)

k̂(m)
+ xT

k̂(m)(y −Xβ̂(m−1))

and all other components remain unchanged.
Step 3 : Increase iteration index m by one and go back to Step 2.
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4 Conjugate direction boosting

4.1 Conjugate direction and gradient optimization

Instead of the gradient method, we can use a conjugate direction method to minimize the
quadratic function

L(β) =
1
2
βTXTXβ − yTXβ +

1
2
yTy =:

1
2
βTAβ − bT β + c,

A = XTX ∈ Rd×d symmetric, positive definite,b = XTy ∈ Rd.

If d > n − 1 (note the centering of the covariates to mean zero), the matrix A is not
positive definite. This does not matter because we actually only use sub-matrices of X so
that the corresponding A remains positive definite.
Conjugacy is a property similar to orthogonality. A set of nonzero vectors {p1, . . . ,pd},pi ∈
Rd is said to be conjugate with respect to the symmetric positive definite matrix A if

pT
i Apj = 0 for all i 6= j.

The importance in conjugacy lies in the fact that we can minimize L in d (≤ n− 1) steps
by minimizing along the individual directions in a conjugate set. A conjugate direction
method takes an arbitrary set of d conjugate directions and does individual minimization
of L along these directions. In contrast to the gradient method, we reach the minimum
after d (≤ n− 1) steps.
The question is how to find a set of conjugate directions. The canonical conjugate gradient
method does the job very efficiently during the optimization process and not in advance. It
takes the negative gradient as the first direction p1. For k > 1, pk is a linear combination
of the actual negative gradient and the previous pk−1 only:

pk = −∇L(k) +
∇L(k)TApk−1

pT
k−1Apk−1

pk−1.

We do not need to store all the previous elements p1,p2, . . . ,pk−2: pk is automatically
conjugate to these vectors. A proof of this remarkable property can be found for example
in Nocedal and Wright (1999).
The conjugate gradient method is the same as Partial Least Squares (see for example
Phatak and de Hoog 2002) and does not employ variable selection.

4.2 CDBoost: conjugate direction boosting for linear regression

We now describe our conjugate direction method which employs variable selection. In
each step, only one component of β̂ should change from zero to non-zero. We achieve this
by choosing a special set of conjugate directions.
The first step is identical to gradient boosting: we look for the component of the negative
gradient with the highest absolute value, say component k̂(1). The vector ek̂(1) is then the
best approximation to the negative gradient (among all ek’s) in terms of having maximal
absolute inner product. We then optimize along that first direction p1 = ek̂(1) .
In the following steps we have to determine a direction that is conjugate to all previous
directions. Again, we compute the negative gradient and its approximation by a unit-
coordinate vector ek̂(m) . The new direction pm is a linear combination of the gradient
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approximation and all the previous directions. It is easy to compute the coefficients of the
linear combination so that the new pm is conjugate to all previous directions. In the m-th
iteration we have

pm =
m−1∑
j=1

λjpj + ek̂(m) .

The λ′s are determined by the m− 1 equations:

pT
i A

m−1∑
j=1

λjpj + ek̂(m)

 = 0, i = 1, . . . ,m− 1.

Using the property of conjugacy, we have

λipT
i Api + pT

i Aek̂(m) = 0, i = 1, . . . ,m− 1,

and

λi = −
pT

i Aek̂(m)

pT
i Api

i = 1, . . . ,m− 1.

Now we can formulate the

CDBoost algorithm with L2-loss for linear regression:

Step 1 : Standardize xi to zero mean and unit length. Standardize y to zero mean.
Initialize β̂(0) = 0 and m = 1.
Step 2 : Compute the negative gradient

−∇L(m) = XT (y −Xβ̂(m−1)) (1)

and take the component with highest absolute value: k̂(m) = arg maxj | − ∇L
(m)
j |. Define

the gradient approximation by ek̂(m) (unit coordinate vector).
For i = 1, . . . ,m− 1 compute the coefficients for the linear combination (for m = 1 there
are no λ′s):

λ
(m)
i = −

pT
i XTXek̂(m)

pT
i XTXpi

.

Compute the new direction (for m = 1 the sum vanishes)

pm =
m−1∑
i=1

λ
(m)
i pi + ek̂(m) . (2)

Minimize along the direction of pm: i.e., update

β̂(m) = β̂(m−1) +
(y −Xβ̂(m−1))TXpm

pT
mXTXpm

pm. (3)

Step 3 : Increase iteration index m by one and go back to Step 2.

The number of iterations is again estimated using a validation set or cross validation.
We can take advantage of sparse vectors when implementing the CDBoost algorithm, in
particular when d � n. The vectors pm and β̂(m) have m non-zero entries, and the unit-
coordinate vectors ek have only one non-zero entry. Thus, the terms Xek̂(m) , Xpi (i =
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1, . . . ,m) and Xβ̂(m−1) can be computed efficiently in O(nm) operations, and there is no
need to compute XTX which is of particular interest if d is (very) large.
CDBoost is not as simple as the conjugate gradient method, because we have to store all
the previous directions. On the other hand we have an algorithm which performs variable
selection because only one coefficient of β̂(m) in each step changes from zero to non-zero.

4.2.1 A fast forward forward stepwise variable selection algorithm

Here, we establish an equivalence of CDBoost to the orthogonal greedy algorithm (cf.
Temlyakov 2000). The latter is similar to forward stepwise variable selection as described
in section 2.1.1. It also employs least squares based on the selected covariates but a new
covariate in the m-th selection step is chosen as the minimizer, with respect to j, of

|xT
j r|/xT

j xj , (4)

where r = y − Xβ̂(m−1) are the current residuals. Note that forward stepwise variable
selection chooses the covariate such that the loss L(β) is minimized when fitting least
squares on the previously and currently selected covariates.

Proposition 1 The solutions of CDBoost and the orthogonal greedy algorithm coincide
in every iteration m ≤ min(n−1, d) = rank(X). In particular, in every iteration CDBoost
employs least squares fitting in the corresponding sub-model of selected covariates.

Proof: (i) We first show that for every iteration m, β̂(m) is the least squares solution using
the selected m covariates. If we started our algorithm again with only these m covariates,
we would reach the same model after m iterations and this is the least squares solution
because we use a conjugate direction method. Thus, we have proved that CDBoost yields
least squares solutions when fitting y to the selected covariates.
In particular, in every iteration CDBoost selects a covariate which has not been selected
before and the saturated model is reached after min(n− 1, d) iterations.
(ii) For the equivalence to the orthogonal greedy algorithm (OGA), we only need to show
that CDBoost selects the same covariates as the OGA (since both algorithms employ least
squares fitting on the selected covariates). But this holds by the equivalence of formula (1)
for CDBoost and (4) for OGA (note that (1) is for standardized variables with xT

j xj = 1).
�

It should be pointed out that CDBoost and the orthogonal greedy method are different
algorithms. As a conjugate direction method, CDBoost has natural generalizations to be
used with small step sizes (see section 5) and to the non-parametric setting (see section
8).

4.2.2 Computations

We are interested in the computational complexity for computing the full path of solutions
of a method: that is, all possible solutions from the empty model with no covariates to
the fully saturated model from least squares (if d ≤ n − 1) or with zero residual sum of
squares (if d ≥ n).

Proposition 2 The computational complexity of CDBoost for computing the full path of
solutions is O(nd min(n, d)).
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Proof: Consider the m-th iteration of CDBoost: the negative gradient can be computed
at a cost of O(nd), all the λ’s at a cost of O(nm) (reusing terms computed in earlier
iterations), the new direction at a cost of O(dm) and the update at a cost of O(nd). Thus,
the computational cost for the m-th iteration is

O(nd) + O(nm) + O(dm). (5)

Because the fully saturated model is fitted after min(n−1, d) iterations (which follows from
Proposition 1), we get m ≤ min(n − 1, d). Hence by formula (5), the cost for computing
the whole path of CDBoost solutions is O(nd min(n, d)). �

The result from Proposition 2 can be compared with other methods. The computa-
tion of the whole path of the LARS solutions is of the same computational complexity
O(nd min(n, d)) (cf. Efron et al. 2004; in case of d > n − 1, their statement of O(n3) is
wrong and should be O(n2d) = O(nd min(n, d))). Thus, CDBoost and LARS are compa-
rable in terms of computational cost: while the former does least squares on the selected
variables, the latter employs shrinkage from `1-penalisation.
The full path of classical forward stepwise variable selection costs O(nd2) (cf. Miller 2002),
regardless whether d is smaller or greater than n. Thus, for d < n, forward stepwise
variable selection is as fast as CDBoost or LARS; for d � n, the situation is markedly
different and forward stepwise variable selection is no longer linear in the dimension d.
The main point is that forward stepwise variable selection depends on the square of the
number of covariates out of the model and CDBoost depends on the square of the number
of covariates in the model.
The computational cost for the path of L2Boosting until boosting iteration m is O(ndm).
In cases where the number of boosting iterations m is of the order of min(n, d), we have
comparable computational speed to CDBoost or LARS. However, to compute the fully
saturated model we would typically need infinitely many (m = ∞) iterations: the conver-
gence speed depends in a complicated manner on the design matrix X.
CDBoost and forward stepwise variable selection employ least squares fits based on the
selected variables while LARS (Lasso) and L2Boosting yield shrunken estimates. For cases
where d � n, CDBoost can have a substantial computational advantage over forward
stepwise variable selection.

5 Shrinkage or small step size

Noticed by Friedman (2001), the predictive accuracy of boosting (and forward stagewise
fitting) can be improved by a simple shrinkage strategy: in each boosting step, only a small
fraction ν (for example ν = 0.1) of the optimal update is added. This can be interpreted as
a small step-size along an approximate gradient. Of course, there is a computational cost
when using small step sizes, but it usually pays off as a clear improvement in accuracy.
We modify the update in Step 2 of the L2Boosting algorithm from section 3 to

F̂ (m)(x) = F̂ (m−1)(x) + ν · β̂k̂(m)xk̂(m) (function version)

or
β̂

(m)

k̂(m)
= β̂

(m−1)

k̂(m)
+ ν · xT

k̂(m)(y −Xβ̂(m−1)) (gradient version).

The implementation of a similar strategy with small step sizes for forward stepwise vari-
able selection or the orthogonal greedy algorithm (see section 4.2.1) is not straightforward.
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However, with CDBoost (which yields the same solutions as the orthogonal greedy algo-
rithm, see Proposition 1) we have a natural concept of using small step sizes for the
updates along the conjugate directions, as discussed next.

5.1 Conjugate direction boosting with restart

A new problem arises when we use shrinkage or small step sizes for CDBoost. Without
shrinkage, each covariate can only be chosen once. This is no longer true with shrinkage
because the coefficients β̂(m) are no longer least squares solutions (in sub-models). Thus, it
may happen that a covariate already included in the model fits the current residuals best.
In this case, we cannot find a new direction as in (2) which is conjugate to all previous
directions, because there are only m conjugate directions in an m-dimensional space. A
possible remedy is discussed next.
An easy and effective solution to the problem is to restart the algorithm when a variable
is chosen the second time. We take the actual β̂(m−1) as the new starting β̂, delete all the
conjugate directions pi and start again. A justification for restarting is described below in
Proposition 3. To keep track of the total number of iterations, denoted by m, we formulate
our algorithm by marking the starting points which are denoted by an index s.

CDBoost algorithm with shrinkage and L2-loss for linear regression:

Step 1 : Standardize xi to zero mean and unit length. Standardize y to zero mean.
Initialize β̂(0) = 0, m = 1 and s = 1.
Step 2 : Compute the negative gradient

−∇L(m) = XT (y −Xβ̂(m−1))

and take the component with highest absolute value: k̂(m) = arg maxj | − ∇L
(m)
j |. Define

the gradient approximation by ek̂(m) (unit coordinate vector).

If k̂(m) ∈ {k̂(s), . . . , k̂(m−1)} restart: Set s = m.

• If m = s:
pm = ek̂(m) .

• If m > s: For i = s, . . . ,m− 1 compute the coefficients for the linear combination

λ
(m)
i = −

pT
i XTXek̂(m)

pT
i XTXpi

,

and compute the new direction

pm =
m−1∑
i=s

λ
(m)
i pi + ek̂(m) .

Minimize along the direction of pm , i.e., update β̂:

β̂(m) = β̂(m−1) + ν
(y −Xβ̂(m−1))TXpm

pT
mXTXpm

pm.

Step 3 : Increase iteration index m by one and go back to Step 2.
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As already indicated, by the inclusion of shrinkage we no longer have a proper conjugate
direction method and thus, we do not reach the least squares solution after min(n−1, d) =
rank(X) iterations. With shrinkage, the goal is to generate a “good” path from the
empty model to the least squares solution (which is obtained with possibly infinitely
many iterations). The conjugate direction method is only used here to propose “good”
directions rather than achieving fast convergence to a good submodel. In section 7 we
show that shrinkage can dramatically improve the fits.
We now give an illustrating example with 3 correlated covariates, β = (3, 2, 1)T , low
noise and ν = 0.005. Covariate 1 has highest absolute gradient value and is therefore
chosen first in CDBoost with shrinkage. After a tiny update in direction p1 = (1, 0, 0)T ,
covariate 1 is still the best choice. This leads to a restart and we again take variable 1
followed by a step in direction p1. This scenario is repeated until β̂(43) = (1.03, 0, 0)T ,
where covariate 2 gets higher absolute gradient value. Then, we perform an update in the
direction p2 = (−0.81, 1, 0)T which is conjugate to p1. In the last two steps (along the
directions p1 and p2) we moved the fraction ν from β̂(42) to the least squares solution of
covariate 1 and 2.
Prior to these two steps, covariate 1 had a higher absolute negative gradient value than
covariate 2 and the same is true after these two steps (see the Proof of Proposition 3
below). Thus, we choose variable 1 which causes a restart and a step in direction p1

followed by the choice of variable 2 and a step in direction p2 followed by another restart
with variable 1. This is repeated until β̂(139) = (1.96, 0.93, 0)T , where variable 3 gets
highest absolute negative gradient value. Then we perform an update in the direction
p3 = (−0.43,−0.48, 1)T conjugate to p1 and p2. The next choice is covariate 1 which
causes again a restart and we repeatedly find the sequence of variables 1, 2, 3, restart until
we reach (theoretically after ∞ steps) the least squares solution β̂ = (3.03, 1.94, 1.02)T .
In summary: the selected covariate indices are

1, 1, 1, 1, . . . , 1︸ ︷︷ ︸
42 times

, 1, 2, 1, 2, 1, 2, 1, 2, . . . , 1, 2︸ ︷︷ ︸
95 times the pair (1,2)

, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . .︸ ︷︷ ︸
∞ times the triple (1,2,3)

.

It is no coincidence that the restart was always caused by covariate 1, as described by the
following result (the repeating pattern of selected pairs and triples is also a more general
fact).

Proposition 3 The CDBoost algorithm has the following property: It is always the first
chosen covariate xk̂(1) which causes a restart.

Proof: Suppose we have an arbitrary β̂(m) and j conjugate directions involving j covariates.
Now we restrict everything (L, ∇L, β̂) to these j covariates (denoted with ·|j). We
can minimize L|j (find the least squares solution for these j covariates) by j individual
minimizations along the j conjugate directions. For each of the j minimizations we take
only ν of the optimal step length and therefore we only move the fraction ν from β̂(m)

to the least squares solution of the j covariates. The new negative gradient after these j
steps is

−∇L(m+j)|j = X|Tj
(
y −X|j

(
β̂(m)|j + ν(β̂(OLS)|j − β̂(m)|j)

))
= X|Tj

(
νy − νX|j β̂(OLS)|j + (1− ν)y − (1− ν)X|j β̂(m)|j

)
= (1− ν)(−∇L(m)|j) (6)
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because the negative gradient at the least squares solution is 0. We see that the involved
components of the negative gradient are scaled by the factor 1− ν and therefore it is the
same component which has highest absolute value before and after the j updates.
Suppose covariate k̂(1) has highest absolute gradient value and CDBoost yields the follow-
ing sequence of covariate indices at the beginning: k̂(1), . . . , k̂(j), where all k̂(i), i = 1, . . . , j
are different. It follows from (6) that the variable with index k̂(1) has higher absolute
gradient value than k̂(2), . . . , k̂(j). In the next iteration we therefore choose either k̂(1)

(restart) or a completely new covariate (no restart necessary). �

5.2 Orthonormal design

Proposition 4 Assume an orthonormal design X with d ≤ n − 1, satisfying XTX = I.
Then, for every iteration m there exists a threshold λ (depending on m) such that CDBoost
equals:
(i) the soft-threshold estimator if ν is infinitesimally small;

(ii) the hard-threshold estimator if ν = 1.

Proof: First note that CDBoost and boosting coincide due to orthonormality of the design.
Therefore: statement (i) follows from Bühlmann and Yu 2005, and statement (ii) is a direct
consequence of Proposition 1 and the orthonormality of the design. �

For the special case with an orthonormal design matrix, CDBoost, boosting, both with
infinitesimal shrinkage, and all versions of LARS yield the soft-threshold estimator; the
latter follows from results in Efron et al. 2004. CDBoost has the interesting interpretation
that changing ν from infinitesimally small to 1 results in moving from the soft- to the hard-
threshold estimator; a larger ν points more towards the hard-threshold estimator. The
same is true for boosting. However, beyond the setting of orthonormal designs, CDBoost
is flexible enough to cover a whole range from shrinkage estimation/variable selection to
least squares estimation/variable selection, while boosting in general (even with ν = 1)
does not yield least squares on selected variables.

6 Connections to LARS

Efron et al. (2004) recently proposed least angle regression (LARS). A modification of
LARS yields all Lasso solutions and another modification yields forward stagewise fitting
(boosting with infinitesimal shrinkage). When we use boosting with a small shrinkage
parameter ν, we almost reproduce the forward stagewise fitting path. The bigger we take
ν, the more we depart from this path.
For the rest of this section we assume infinitesimal shrinkage for boosting and CDBoost.
LARS and boosting yield the same path, when all the β-coefficients move monotoni-
cally away from zero as the LARS or boosting iterations increase. In this case CDBoost
also leads to that path. For more general cases, turnarounds of coefficients (for example
decreasing after increasing) are possible with LARS. Forward stagewise fitting behaves
differently in such a case: it drops that variable from the active set of selected covariates
and leaves its coefficient unchanged in the next step. The CDBoost algorithm works in
between LARS and boosting/forward stagewise. Two examples with 3 covariates demon-
strate this behavior. The following tables show the traces (endpoints of linear pieces) of
the β̂-coefficients from zero to the least squares solutions.
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Example 1: LARS/CDBoost Boosting/Stagewise
β̂1 β̂2 β̂3 β̂1 β̂2 β̂3

2 0 0 2 0 0
5 3 0 5 3 0
2 10 6 5 6 3

2 10 6

Example 2: LARS Boosting/Stagewise/CDBoost
β̂1 β̂2 β̂3 β̂1 β̂2 β̂3

7 0 0 7 0 0
13 5 0 13 5 0
19 3 5 15 5 2

19 3 5
LARS always finds the least squares solution after 3 fairly large steps (in principle we can
also evaluate intermediate models between two steps). Forward stagewise fitting drops
covariate 1 in example 1 and covariate 2 in example 2 after step 2, the corresponding
coefficient remains and it needs one more step to reach the least squares solution (note
the turnaround of coefficient β̂1 in example 1 and β̂2 in example 2).
CDBoost behaves like LARS in the first example and like forward stagewise fitting in
the second. Remember that CDBoost takes a lot of tiny steps to produce one LARS-
step. At the beginning it always takes covariate 1 until the first LARS-step is reproduced,
then covariate 1 and 2 in an alternating fashion. In example 1 it is the first chosen vari-
able which turns around and CDBoost behaves like LARS. This is because covariate 1
is always chosen after a restart and its coefficient is adjusted in each step. In exam-
ple 2 it is not the first chosen variable which turns around and CDBoost behaves like
forward stagewise fitting. The selected variable indices with CDBoost in example 2 are:
1, 1, . . . , 1, 1, 2, 1, 2, . . . , 1, 2, 1, 3, 1, 3, . . . , 1, 3, 1, 3, 2, 1, 3, 2, . . ..

7 Simulations with linear regression

Now, we compare CDBoost with boosting, forward stepwise variable selection and the
three LARS methods (LARS, Lasso and forward stagewise fitting) for simulated linear
regression models.
In our simulation study, the data is split into three parts: a training set, a validation
set, both of equal size n and a test set of size 1000. The training set is used to fit the
models and the validation set for stopping the iterations in CDBoost, boosting or LARS
(the number of iterations is chosen to minimize the validation error). Finally we use the
test set to measure the prediction error on the test set:

1
|testset|

∑
xi∈testset

(F̂ (xi)− F (xi))2,

where F (x) = xT β is the true underlying regression function.
CDBoost (and boosting) has a second tuning parameter, the shrinkage factor ν, which
governs the degree between `0- and `1-penalisation. To compare CDBoost to boosting
we can fix ν and compare the methods (although the interpretation of a larger ν is not
the same for the two methods). To compare CDBoost and boosting to forward stepwise
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variable selection and the three LARS methods, we validate over a small set of different
shrinkage factors (0.7, 0.5, 0.3, 0.1, 0.03, 0.01).
In the next two subsections we give some results of simulations where the model is always
chosen to be linear with normally distributed errors.

7.1 Model 1: n = 100,d = 10,deff = 5

7.1.1 Setup for model 1

The size of the training set is n = 100 and the number of covariates is d = 10. The number
of covariates with effective influence on the response is only deff = 5.
We draw the covariates from a multivariate normal distribution. This is done in two steps
by first producing xi i.i.d. ∼ N d(0, I) and then multiplying X with the d × d matrix B
(blank entries correspond to zero):

B =



1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1

1 1
1


.

Finally we arbitrarily permute the columns of X. This leads to a correlation matrix with
approximately each third entry equal to zero. The other two thirds of the correlations
range from 0.2 to 0.9.
The next step is to choose the true β-vector: the first five components of β are β1, . . . , β5 i.i.d. ∼
N (5, 1), and the other five components are zero.
The last issue is to specify the variance for the normal distributed errors ε. We choose it
via the more meaningful signal-to-noise ratio which we define as

stnr =
Var (F (x))

Var (ε)
.

We select the desired signal-to-noise ratio and determine then the corresponding Var (ε). A
signal-to-noise ratio of 1 corresponds to a “population” R2 equal to Var (F (x)) /Var (y) =
0.5.
We simulate 100 datasets from each setting. Because the true β-coefficients are different for
each simulation we cover a greater range of models. The overall performance is the mean
over the 100 test errors. Paired sample Wilcoxon tests are used to quantify significance
when comparing CDBoost to the other methods.
We report on the test error in a standardized form. We divide it by the test error of the
best constant (location) model and multiply it by 100. Each method should be better
than the best constant model and therefore achieve a value below 100. This standardized
test error makes it possible to compare different settings. For convenience we still refer to
it as test error.
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7.1.2 Results for model 1

stnr = 9 stnr = 4 stnr = 1
test e loss p-value test e loss p-value test e loss p-value

CDB ν = 1 1.20 2.81 9.85
ν = 0.7 1.10 2.34 7.47
ν = 0.5 1.08 2.22 7.32
ν = 0.3 1.08 2.24 7.39
ν = 0.1 1.09 2.27 7.42
ν = 0.03 1.09 2.28 7.53
ν = 0.01 1.09 2.28 7.47

Boo ν = 1 1.33 11.2 9e−05 2.91 3.7 1e−01 9.56 −3.0 5e−01
ν = 0.7 1.28 15.8 3e−05 2.71 15.7 2e−06 8.24 10.4 4e−04
ν = 0.5 1.20 11.8 4e−05 2.60 17.0 2e−05 7.71 5.3 2e−02
ν = 0.3 1.20 10.9 6e−03 2.44 8.6 2e−03 7.63 3.3 1e−01
ν = 0.1 1.20 10.5 2e−03 2.44 7.5 5e−04 7.50 1.0 8e−01
ν = 0.03 1.20 9.7 3e−02 2.44 7.4 9e−03 7.46 −0.9 6e−01
ν = 0.01 1.20 10.2 5e−03 2.44 7.1 5e−03 7.49 0.2 7e−01

Table 1: Comparison of conjugate direction boosting (CDB) and boosting (Boo) for various
signal-to-noise ratios (stnr) and shrinkage factor ν for simulation model 1. Given is the
(standardized) mean of the test error (test e) over 100 simulations. The best value for
each method and each stnr is in bold face. The loss of boosting compared to CDBoost
with the same ν is given in % and the p-values are from paired sample Wilcoxon tests.

Table 1 shows the comparison of CDBoost and boosting. CDBoost performs better and
the difference is significant for the higher stnr’s. Both methods do substantially better
with shrinkage. While boosting needs small ν’s for best performance, CDBoost gives good
results for the whole range of shrinkage factors.

stnr = 9 stnr = 4 stnr = 1
test e loss p-value test e loss p-value test e loss p-value

CDB 1.00 2.19 7.16
Boo 1.16 16.3 3e−04 2.40 9.5 1e−02 7.35 2.7 5e−02
FVS 1.18 17.6 4e−04 2.93 33.6 3e−07 9.83 37.3 3e−11
LAR 1.13 12.4 1e−04 2.45 11.7 5e−05 8.20 14.6 1e−08
Las 1.10 9.6 4e−04 2.38 8.5 9e−04 7.97 11.4 1e−07
For 1.21 20.6 7e−08 2.52 15.3 4e−07 7.93 10.7 9e−07

Table 2: Comparison of conjugate direction boosting (CDB), boosting (Boo), forward
stepwise variable selection (FVS) and the three LARS methods (LARS, Lasso, forward
stagewise fitting) for simulation model 1. Given is the (standardized) mean of the test error
(test e) over 100 simulations. CDBoost and boosting are validated over the shrinkage factor
ν with candidate values 0.7, 0.5, 0.3, 0.1, 0.03, 0.01. The loss compared to CDBoost is
given in % and the p-values are from paired sample Wilcoxon tests.

In table 2 and figure 1 we compare CDBoost to boosting, forward stepwise variable selec-
tion and the three LARS methods. CDBoost and boosting are validated over the shrinkage
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Figure 1: Percentage loss of the different methods (without forward stepwise variable
selection) compared to CDBoost for simulation model 1.

factor ν with candidate values 0.7, 0.5, 0.3, 0.1, 0.03, 0.01, which gives better results
compared to a fixed ν. This shows that in some of the 100 simulations a solution close to
forward stepwise variable selection is appropriate and in other cases a solution closer to
LARS is adequate. CDBoost (and also boosting) does a good job in choosing a right ν
and is therefore very flexible.
CDBoost performs clearly and significantly best and forward stepwise variable selection
leads to the worst models. The gain of CDBoost compared to boosting and forward
stagewise increases with higher stnr’s and its gain compared to LARS and the Lasso is
fairly constant. Forward stagewise fitting is always worse than boosting so infinitesimal
shrinkage is not worthwhile in this example.

7.2 Model 2: n = 50,d = 2000,deff = 10

7.2.1 Setup for model 2

We now reduce the size of the training set to n = 50 and increase the number of covariates
to d = 2000, whereas deff = 10 variables have an effective influence on y. The covariates
are constructed as in section 7.1.1 but with
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B =



1 1
1 1 1

1 1 1
1 1 1

. . . . . . . . .
1 1 1

1 1 1
1 1


and without permuting the columns of X. This leads to a correlation matrix with 2/3 in
the secondary diagonals and 1/3 in the tertiary diagonals.
The ten non-zero coefficients are β31, . . . , β35, β66, . . . , β70 i.i.d. ∼ N (5, 1). So there are
two blocks of 5 correlated covariates with real influence on y. Because this setup is much
harder than model 1 we use higher stnr’s.

7.2.2 Results for model 2

stnr = 16 stnr = 9 stnr = 4
test e loss p-value test e loss p-value test e loss p-value

CDB ν = 1 23.7 26.4 36.5
ν = 0.7 15.9 21.7 33.0
ν = 0.5 15.3 21.5 34.2
ν = 0.3 15.3 21.7 34.5
ν = 0.1 15.8 22.4 36.2
ν = 0.03 16.0 22.8 36.9
ν = 0.01 16.1 23.0 37.2

Boo ν = 1 28.0 17.8 2e−07 30.4 15.1 5e−07 38.5 5.7 5e−03
ν = 0.7 20.4 28.2 3e−08 25.8 18.9 2e−05 34.7 5.2 2e−01
ν = 0.5 19.0 24.6 4e−11 24.1 11.9 3e−05 36.3 6.0 6e−03
ν = 0.3 18.0 18.2 2e−15 24.5 13.1 1e−12 37.2 7.8 1e−08
ν = 0.1 16.6 5.0 1e−10 22.9 2.3 3e−06 36.6 1.1 3e−02
ν = 0.03 16.4 2.5 8e−07 23.0 0.7 2e−02 37.0 0.2 2e−01
ν = 0.01 16.4 1.8 9e−05 22.9 −0.0 1e−00 37.1 −0.1 4e−01

Table 3: Comparison of conjugate direction boosting (CDB) and boosting (Boo) for various
signal-to-noise ratios (stnr) and shrinkage factor ν for simulation model 2. Given is the
(standardized) mean of the test error (test e) over 100 simulations. The best value for
each method and each stnr is in bold face. The loss of boosting compared to CDBoost
with the same ν is given in % and the p-values are from paired sample Wilcoxon tests.

Table 3 shows the comparison of CDBoost and boosting. The results are similar to that of
model 1. CDBoost performs better than boosting, especially for high stnr. In this model,
ν should not be too small for CDBoost.
In table 4 and figure 2 we compare CDBoost to boosting, forward stepwise variable selec-
tion and the three LARS methods. CDBoost and boosting are validated over the shrinkage
factor ν with candidate values 0.7, 0.5, 0.3, 0.1, 0.03, 0.01. Again, results are similar to
model 1 with CDBoost performing significantly best.
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stnr = 16 stnr = 9 stnr = 4
test e loss p-value test e loss p-value test e loss p-value

CDB 13.7 19.6 30.7
Boo 15.1 10.1 1e−06 20.7 5.5 2e−02 32.1 4.6 7e−03
FVS 20.1 46.3 2e−07 24.1 22.7 7e−05 34.9 13.7 2e−02
LAR 15.8 14.6 3e−08 22.9 16.3 1e−11 37.6 22.4 1e−13
Las 15.7 14.0 1e−07 22.7 15.4 7e−11 37.2 21.2 1e−13
For 16.4 19.6 4e−13 23.0 17.1 3e−13 37.3 21.5 4e−14

Table 4: Comparison of conjugate direction boosting (CDB), boosting (Boo), forward
stepwise variable selection (FVS) and the three LARS methods (LARS, Lasso, forward
stagewise fitting) for simulation model 2. Given is the mean of the (standardized) test error
(test e) over 100 simulations. CDBoost and boosting are validated over the shrinkage factor
ν with candidate values 0.7, 0.5, 0.3, 0.1, 0.03, 0.01. The loss compared to CDBoost is
given in % and the p-values are from paired sample Wilcoxon tests.
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Figure 2: Percentage loss of the different methods (without forward stepwise variable
selection) compared to CDBoost for simulation model 2.
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8 Generalization to arbitrary learners

We now generalize our approach to any base learner, for example trees or componentwise
smoothing splines (Bühlmann and Yu 2003, see also section 9) for non-parametric regres-
sion. In principle, we could use linear expansions in tree-type or B-spline basis functions,
resulting in a huge design matrix. Instead, we develop an iterative, computationally more
efficient approach. The idea is to construct a matrix X̃ during the iteration process, rather
than using a fixed design matrix X given in advance. In each iteration the learner pro-
duces a vector of fitted values for the training observations (which can be viewed as an
estimated basis function) and that vector is taken as a new column of X̃. Thus, X̃ grows
in each step by one column, and this matrix X̃ is then used in our CDBoost method. The
following algorithm makes the idea precise:

General CDBoost algorithm with L2-loss:

Step 1 : Standardize y to zero mean. The standardization of the xi is not necessary.
Initialize X̃ = null, β̂(0) = null and m = 1.
Step 2 : Compute the current residuals r = y − X̃β̂(m−1) and fit the base learner to them
using the predictor matrix X. The fit is denoted by f̂ (m)(x) and the vector of fitted values
by x̃m ∈ Rn.
Increase X̃ by one column by adding x̃m. Now X̃ is of dimension n×m. Extend β̂(m−1)

and all direction vectors pi, i < m, by a zero so that they all have length m.
For i = 1, . . . ,m− 1 compute the coefficients for the linear combination of pm ∈ Rm (for
m = 1 there are no λ′s):

λ
(m)
i = −pT

i X̃T X̃em

pT
i X̃T X̃pi

.

Compute the new direction (for m = 1 the sum vanishes)

pm =
m−1∑
i=1

λ
(m)
i pi + em.

Minimize in the direction of pm , that means update β̂:

β̂(m) = β̂(m−1) +
(y − X̃β̂(m−1))T X̃pm

pT
mX̃T X̃pm

pm.

Step 3 : Increase iteration index m by one and go back to Step 2.

The resulting function estimator in iteration m is then

F̂ (m)(x) = ȳ +
m∑

i=1

β̂
(m)
i f̂ (i)(x)

and can be evaluated at any x.
The main difference to the linear CDBoost is that we do not compute the negative gradient,
but fit the learner to the current residuals. The predicted values give x̃m. Loosely speaking,
the “gradient approximation” corresponding to (1) is em ∈ Rm, because x̃m is already
an approximate functional gradient (fitting the residuals best); note the correspondence
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with the function and gradient version of L2Boosting in section 3. Having a gradient
approximation, we continue as in the case of linear regression: we compute pm ∈ Rm and
optimize in that direction. This means that we adjust the coefficients of the fitted learners
already included in the model.
The addition of shrinkage is implemented as follows: we recall that in the linear regression
case we restart when a variable is chosen a second time. For arbitrary learners this would
happen when obtaining the identical fitted values as in an earlier step. It can be difficult
to determine numerically whether we have the same fitted values as before. We therefore
propose restarting when the absolute correlation between x̃m and a x̃i, i < m exceeds a
certain threshold. This threshold should not be too low, because we only want to restart
when it is really necessary. We found that 0.999 works fine for sample sizes between 50
and 500.

9 Simulations with trees and splines

Using a simulated model we compare the (general) CDBoost with boosting. We choose
n = 100, d = 10, deff = 5 and the covariates as in section 7.1. The true function F is

F (x) = c1x1 + c2x2 + 9c3 ϕ(x3) + 1.4c4 sin(2x4) + 2.7c5/(1 + exp(−3x5))

where ϕ is the density of the standard normal distribution and c1, . . . , c5 ∼ log-Uniform[−0.35, 0.35].
The model for the response is y = F (x) + ε with ε ∼ N

(
0, σ2

)
.

stnr = 9 stnr = 4 stnr = 1
test e loss p-value test e loss p-value test e loss p-value

CDB ν = 1 7.38 11.15 26.5
ν = 0.7 5.74 9.05 21.5
ν = 0.5 5.57 8.73 20.5
ν = 0.3 5.28 8.27 20.1
ν = 0.1 5.36 8.22 19.1
ν = 0.03 5.59 8.60 19.9
validated 5.01 7.93 19.0

Boo ν = 1 6.21 −15.9 7e−09 9.90 −11.3 5e−04 23.5 −11.5 3e−05
ν = 0.7 5.90 2.7 4e−01 9.23 2.0 7e−01 21.7 1.0 1e−00
ν = 0.5 5.61 0.6 7e−01 8.74 0.1 6e−01 20.5 −0.1 9e−01
ν = 0.3 5.62 6.4 2e−02 8.59 3.9 2e−02 20.1 0.2 9e−01
ν = 0.1 5.64 5.3 1e−04 8.68 5.6 4e−06 20.0 4.4 1e−02
ν = 0.03 5.65 1.2 1e−02 8.71 1.2 2e−04 20.0 0.2 7e−02
validated 5.49 9.5 2e−04 8.48 7.0 2e−04 20.2 6.3 2e−02

Table 5: Comparison of CDBoost (CDB) and boosting (Boo) with componentwise cubic
smoothing splines for various signal-to-noise ratios (stnr) and shrinkage factor ν (and
validated over ν = 0.7, 0.5, 0.3, 0.1, 0.03). Given is the (standardized) mean of the test
error (test e) over 100 simulations. The best value for each method and stnr is in bold
face. The loss of boosting compared to CDBoost with the same ν is given in % and the
p-values are from paired sample Wilcoxon tests.

Table 5 shows the results using componentwise cubic smoothing splines with 3 degrees
of freedom as base learner. This means that in each iteration we fit a smoothing spline

19



with 3 degrees of freedom for each predictor individually, and then select the one which
reduces the residual sum of squares most. CDBoost and Boosting both perform better
with shrinkage. It is especially CDBoost which benefits from the validation over ν with
the candidate values 0.7, 0.5, 0.3, 0.1, 0.03, and it is then clearly better than boosting.

stnr = 9 stnr = 4 stnr = 1
test e loss p-value test e loss p-value test e loss p-value

CDB ν = 1 17.7 25.5 49.0
ν = 0.7 11.6 15.8 30.9
ν = 0.5 10.7 14.5 28.0
ν = 0.3 10.2 14.2 26.5
ν = 0.1 10.2 14.1 26.3
ν = 0.03 10.3 14.1 26.3
ν = 0.01 10.3 14.1 26.4
validated 10.3 14.2 26.9

Boo ν = 1 20.0 13.3 5e−09 27.6 8.3 1e−04 53.2 8.6 1e−04
ν = 0.7 15.8 36.1 0e+00 21.7 36.8 0e+00 39.4 27.5 8e−13
ν = 0.5 13.4 25.8 2e−16 17.6 21.5 2e−16 31.5 12.7 6e−08
ν = 0.3 11.3 10.1 2e−11 14.8 4.3 7e−05 27.1 2.2 5e−02
ν = 0.1 10.5 2.2 2e−02 14.0 −0.6 7e−01 26.4 0.5 6e−01
ν = 0.03 10.4 0.7 7e−01 14.0 −1.1 5e−01 26.4 0.4 6e−02
ν = 0.01 10.4 0.4 1e−00 14.0 −0.9 9e−01 26.4 0.0 3e−01
validated 10.6 2.9 3e−02 14.4 1.4 3e−01 27.7 2.8 2e−01

Table 6: Comparison of conjugate direction boosting (CDB) and boosting (Boo) with
stumps for various signal-to-noise ratios (stnr) and shrinkage factor ν (and validated over
ν = 0.7, 0.5, 0.3, 0.1, 0.03, 0.01). Given is the (standardized) mean of the test error
(test e) over 100 simulations. The best value for each method andstnr is in bold face. The
loss of boosting compared to CDBoost with the same ν is given in % and the p-values are
from paired sample Wilcoxon tests.

Table 6 shows the results using stumps (trees with two terminal nodes) as base learner.
Boosting, once more, needs small ν for best performance and also CDBoost gives better
results for smaller ν. Both methods perform almost equally well and the validation over
ν does not pay off, because the shrinkage factors 0.7 and 0.5 lead to bad models.
Because the true underlying model is continuous, it is no surprise that both methods are
clearly worse with stumps than with splines as base learner.

10 Real data examples

Finally, we compare CDBoost and boosting using two real datasets.

10.1 Los Angeles ozone data

The Los Angeles ozone dataset (Breiman and Friedman 1985) consists of n = 330 complete
observations of d = 8 explanatory variables. We randomly split it into a training set of
size 220 and a test set of 110. We use five-fold cross-validation to estimate the number of
iterations/steps. The splitting is repeated 100 times and the test errors are averaged.
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We only fit main effects models: linear models with all covariates (d = 8) and linear
models with all covariates and the squared covariates (d = 16). In addition, we apply
componentwise smoothing splines with 3 degrees of freedom and stumps as learners. The
results are contained in table 7 (abbreviations of methods as in table 2).

Shrinkage factor ν
1 0.7 0.5 0.3 0.1 0.03 0.01 validated

CDB linear 21.1 21.0 21.0 21.0 21.0 21.0 21.0 21.0
Boo linear 21.1 21.0 20.9 20.9 21.0 21.0 21.0 21.0
FVS linear 21.1
LAR linear 21.0
Las linear 21.0
For linear 21.1
CDB quadratic 18.9 18.6 18.5 18.5 18.5 18.5 18.5 18.5
Boo quadratic 18.9 18.5 18.4 18.4 18.5 18.5 18.5 18.5
FVS quadratic 19.0
LAR quadratic 18.6
Las quadratic 18.6
For quadratic 18.5
CDB splines 18.7 18.6 18.1 18.0 17.9 17.9 17.9 18.2
Boo splines 18.3 18.1 17.9 17.9 17.9 17.9 17.9 17.9
CDB stumps 22.6 19.9 19.2 18.9 18.9 18.8 18.8 19.2
Boo stumps 22.5 21.6 20.5 19.3 18.9 18.9 18.9 19.1

Table 7: Comparison of different methods for the ozone dataset. Given is the mean of the
test error over 100 random splits. The best values for CDBoost and boosting are in bold
face. CDBoost and boosting are also validated over the shrinkage factor ν with candidate
values 0.7, 0.5, 0.3, 0.1, 0.03, 0.01.

There are differences between the learners but almost none between the methods. In
contrast to the simulated models, CDBoost does not deteriorate when ν becomes very
small and the validation over ν does not pay off. This is because we work with only one
dataset and therefore there should be a single ν which is adequate for all random splits.
In addition, the validation would give better results when we exclude the shrinkage factor
0.7.

10.2 Leukemia data

The Leukemia dataset (Golub, Slonim, Tamayo, Huard, Gassenbeek, Mesirov, Coller, Loh,
Downing, Caligiuri, Bloomfield, and Lander 1999) is from a microarray experiment with
72 samples and 3571 genes. Although it is a binary classification problem, we treat it as
a regression problem with outcome 0 and 1 and L2-loss (see also Zou and Hastie 2005
in their analysis of microarray data). We use the fitted values to classify the samples
with cut-point 1/2 and compute the misclassification rate. Again, we average again over
100 random splits with 50 training cases and 22 test cases. The number of iterations is
estimated with five-fold cross-validation. Table 8 shows the results.
In this example, CDBoost performs better than the other methods. The validation over ν
does again not pay off (the results would again be better when we exclude the shrinkage
factors 0.7 and 0.5 from the validation).
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Shrinkage factor ν
1 0.7 0.5 0.3 0.1 0.03 0.01 0.003 validated

CDB 8.91% 5.05% 4.41% 4.64% 4.32% 4.27% 4.14% 4.32% 4.55%
Boo 9.23% 7.82% 6.59% 5.23% 5.45% 5.27% 5.18% 5.23% 5.73%
FVS 8.50%
LAR 5.32%
Las 5.23%
For 5.23%

Table 8: Comparison of different methods for the leukemia dataset. Given is the mean of
the test error (misclassification rate) over 100 random splits. The best values for CDBoost
and boosting are in bold face. CDBoost and boosting are also validated over the shrinkage
factor ν with candidate values 0.7, 0.5, 0.3, 0.1, 0.03, 0.01, 0.003.

11 Discussion

We propose a conjugate direction boosting method (CDBoost) for linear and more general
regression with potentially very many covariates. For linear regression, our CDBoost
is a special version of forward stepwise variable selection (see Proposition 1): in high-
dimensional settings with very many covariates, it is computationally much faster than
traditional forward stepwise variable selection (see Proposition 2).
The concept of conjugate directions allows the inclusion of shrinkage or small step sizes,
analogously to boosting. Shrinkage can yield substantial or even dramatic improvements of
predictive performance; the same is true for boosting. But the role of weak or no shrinkage
has a more pronounced interpretation than in boosting, as discussed in section 5.2. We
also discuss in section 6 that CDBoost with infinitesimally small shrinkage yields solutions
which are very similar to boosting, Lasso and other versions of least angle regression
(LARS). Thus, varying the step size makes CDBoost surprisingly flexible ranging from
the Lasso, LARS (`1-penalty methods) and boosting to forward stepwise variable selection
(some sort of `0-penalisation). In some cases, e.g. in our simulation model 2 in section 7.2,
the shrinkage factor ν should not be too small for CDBoost, indicating that we should
move a little more towards least squares fitting in sub-models.
Our CDBoost method has the potential to outperform boosting, LARS and the Lasso.
It works especially well in complicated settings with correlated covariates where it is not
obvious how much a covariate contributes to the response. The gain of using CDBoost is
also more often pronounced in sparse cases with high signal to noise ratio and few effective
covariates (because CDBoost is flexible enough to cover the whole range from LARS and
boosting to forward stepwise variable selection; and for cases with large signal to noise
ratios and few effective covariates, a solution closer to forward stepwise variable selection
is expected to be good).
CDBoost, boosting and the three LARS methods perform almost equally well for real
datasets with only a few covariates. It can, however, be difficult to see clear differences
in real data examples because the irreducible error ε is also contained in the test error.
For the high-dimensional leukemia data though, CDBoost performs better than the other
methods.
Finally, the concept of conjugate directions in CDBoost allows for a direct generalization
to non-parametric fitting methods. Such an extension to the non-parametric setting is
also possible with boosting but not with LARS. One drawback is that CDBoost is often
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computationally more expensive and less generic than boosting. For example, it is unclear
how to modify CDBoost for classification using reweighted least squares since we would
need to combine reweighting with conjugacy.

Acknowledgements: We thank two referees for their constructive comments which
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