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Abstract We present a short selective review of causal inference from ob-
servational data, with a particular emphasis on the high-dimensional scenario
where the number of measured variables may be much larger than sample size.
Despite major identifiability problems, making causal inference from observa-
tional data very ill-posed, we outline a methodology providing useful bounds
for causal effects. Furthermore, we discuss open problems in optimization, non-
linear estimation and for assigning statistical measures of uncertainty, and we
illustrate the benefits and limitations of high-dimensional causal inference for
biological applications.

Keywords Directed acyclic graphs - Intervention calculus (do-operator) -
Graphical modeling - Observational data - PC-algorithm

1 Introduction

Inferring cause-effect relationships between variables is of primary importance
in many sciences. The classical approach for determining such relationships
uses randomized experiments where single or a few variables are perturbed,
i.e., interventions are pursued at single or a few variables. Such intervention ex-
periments, however, are often very expensive, unethical or even infeasible (e.g.
one cannot easily force a randomly selected person to smoke many cigarettes a
day). Hence, it is desirable to infer causal effects from so-called observational
data obtained by observing a system without subjecting it to interventions.
There are well-established methods to estimate causal effects from obser-
vational data based on a specified causal influence diagram describing qualita-
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tively the causal relations among variables [19,17]: the issue is then to quan-
tify the strength of these causal relations. In mathematical language: given
a directed graph (the causal influence diagram), the goal is to infer the edge
weights for the directed arrows in the graph (the strength of the causal rela-
tions). In practice, however, the influence diagram is often not known and one
would like to infer causal effects from observational data without knowledge
of the influence diagram. This is the focus here, for the case with very many
variables in the influence diagram and only relatively few observational data
points. The article is a selective short review which is only touching upon some
important notions of causal inference but putting instead more emphasis on
computational issues and statistical estimation.

1.1 Examples from molecular biology
1.1.1 Time to flowering in Arabidopsis thaliana

The problem of interest is to genetically modify the plant Arabidopsis thaliana
such that its time to flowering is shortened. The underlying motivation of this
goal is that fast growing crop plants lead to more efficient food production.
We have n = 47 observational data of “time to flowering” (the univariate
response variable) and of expressions of p = 21’326 genes (the p-dimensional
covariable), collected from wild-type (non-mutated) plants.

Based on these observational data, we want to infer (or predict) the effects
of a single gene intervention on the response of interest (namely the “time to
flowering”), for each of the p = 21’326 genes. These intervention effects are
called (total) causal effects. Having an accurate prediction of the intervention
or causal effect of each gene, we can rank all the genes, according to their
predicted strengths of an intervention effect. Such a ranking can be used to
prioritize future biological experiments, in particular for the situation here
where “fishing blindly” for the best genetic modification would be extremely
costly. In [20], this modeling approach was pursued and biological validation
experiments were performed: as a result, 4 new significant mutations were
discovered showing a significant effect on the “time to flowering”.

1.1.2 Effects of gene knock downs in yeast (Saccharomyces cerevisiae)

The goal is to quantify the effects of single gene interventions on the ex-
pression of other genes, allowing for better insights about causal relations
between genes. We have n = 63 observational data measuring the expression
of p = 5361 genes [9], and from these we want to predict all the mentioned
intervention effects (in total p- (p — 1) = 28'734’960 effects).

Conceptually, the problem can be formulated as a multivariate version of
the question above about time to flowering in arabidopsis. The first response
variable is the expression of the first gene and all other gene expressions (with-
out the first gene) are the covariables; then, the second response variable is
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the expression of the second gene and all other gene expressions (without the
second gene) are the covariables; and so on, until the pth response variable.

The data in [9] also contains 234 measurements of interventional experi-
ments, namely from 234 single-gene deletion mutant strains and for each of
them measuring the expressions of all the genes. Thus, thanks to these inter-
vention experiments we know the true causal or interventional effect in good
approximation. We can then quantify how well we can find the true (large)
intervention effects (we encode the true large intervention effects as “true”
effects and all others as “false”). Figure 1 shows some results: one of them
using graphical modeling and causal inference, as described in Sections 2 and
3, and two of them based on high-dimensional linear regression, the Lasso [21]
and the Elastic Net [22], which are conceptually wrong, as explained at the
beginning of Section 2, but easy to use.

1,000 IDA
--- Lasso
Elastic—net
good Random
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True positives
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0 1,000 2,000 3,000 4,000

False positives

Fig. 1 Intervention effects among 5361 genes in yeast. ROC-type curve with false positives
(x-axis) and true positives (y-axis) for the range of the strongest true and predicted effects.
IDA (black solid line) which is a graphical modeling method summarized in Section 3.1.1,
Lasso (dashed red line), elastic net (dash-dotted light blue line) and random guessing (fine
dotted dark blue line). Observational data used for training has sample size n = 63, and
there are 234 intervention experiments to validate the methods. The IDA technique uses
estimated lower bounds of intervention (causal) effects, as described in Sections 2 and 3.
The figure is essentially taken from [13].
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2 Causal effects, identifiability problems and identifiable bounds of
causal effects

We consider the framework as in Section 1.1.1 with a univariate response
variable Y and a p-dimensional covariable X = (X ... X)) The goal is
to quantify the intervention or causal effect of a single variable X) on Y, for
all j € {1,...,p}.

If (Y, X) have a joint Gaussian distribution, we can write

14
Y = Z’YJX(J) + €,
j=1

where € ~ N(0,02) and € independent of {X); j =1,...,p}. The quantity
[v;|v/Var(X (@) measures the effect (in absolute value) of X) on Y when
keeping all other variables {X(*); k # j} fixed, i.e., it quantifies the change
of Y when changing X) by one standard deviation (unit) /Var(X))while
holding all other variables {X*); k # j} fixed. But often in applications, if
we change X@) by say one unit, we cannot keep all other X (*)s fixed.

2.1 The intervention distribution and the notion of a causal effect

In contrast to regression, we would like to quantify the total effect of X )
on Y including all other indirect effects which arise because other variables
X () (k # j) potentially change as well. The framework of graphical modeling
can be used for this task.

Assume that we would know the true underlying influence or causal di-
agram, given in terms of a directed acyclic graph (DAG) where the nodes
correspond to the random variables Y, XM ... X®) and the directed edges
encode direct effects between variables, see Figure 2. We assume that the data-
generating distribution P, obeys the Markov property with respect to the
true influence diagram G: the symbol P,¢ indicates that this distribution cor-
responds to the observational case, i.e., when the system is in “steady state”
and there are no external interventions. If P, is e.g. Gaussian, the Markov
property implies

P
P (Y, xM 7X(P)) - pobs(y|X(Pa(Y))) H Pobs(X(k)|X(pa(k))); (1)
k=1

where pa(Y) and pa(k) denote the parental sets of the node Y and X*),
respectively. Abusing notation, if Y € pa(k), X a(k)) would also include the
variable Y. Of course, pa(-) is relative to a DAG: here and in the sequel, it

is always meant to be relative to the true underlying influence diagram, the
DAG G.
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The intervention distribution of ¥ when doing an intervention and setting
the variable XU) to a value z is denoted by

P(Y|do(XV) = z)). (2)

It is characterized by the truncated factorization, instead of (1), which is de-
fined as follows. First, when doing an intervention at variable X ), we define
the intervention DAG Giny j, arising from the non-intervention DAG G, by
deleting all edges which point into the node j (corresponding to X (j)), see
Figure 2. Second, assuming the Markov property of P,,s with respect to the

x@

x@
) Y X(Q) =x Y
xX@ X3 xX@ X3

Fig. 2 Example of an intervention graph. Left panel: an observational DAG G. Right panel:
intervention DAG Ging 2: the intervention is do(X (?) = z) (red label in the graph), and the
parental set of j = 2 is pa(2) = {3,4} which appears in (5) for computing the causal effect
B2 (of X3 on Y).

DAG G, we apply it to the intervention graph Gins ; (the Markov property is
inherited for P(Y|do(X) = -)) with respect to Gin, ;) and obtain

p
P(Y|do(XY) = 2)) = Pops(Y[X®P2OD) T Pops(X® | x P20
k=1,k#j

3)

X =g

We then consider E[Y|do(X ) = z)] and define the intervention effect, also
called the causal effect, at a point xg as

0 .
= () =
6x]E[Y|dO(X x)]

If (Y, X ..., X)) have a multivariate Gaussian distribution, E[Y|do(X ) =
x)] is a linear function in x and the intervention effect, or causal effect, becomes
a real-valued parameter

0; = —E[Y|do(XW =2)] (j =1,...,p). (4)

9
ox
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A simple way to obtain the parameter 6; is given by Pearl’s backdoor
criterion [17]: it implies that for Y ¢ pa(yj),

0; = the regression coefficient in a linear regression of
Y versus {X ), x(Pal)y, (5)

Note that if Y € pa(j), there is no intervention or causal effect from X ) to
Y (since children cannot have causal effects on their parents).

We summarize that the intervention distribution in (2) (and (3)) can be
inferred from the observational distribution Pg,s and the corresponding DAG
G. All what we require is the Markov condition of P,,s with respect to G.
Furthermore, from (5) we see that each causal effect can be inferred from a
local property of the DAG G, namely the nodes corresponding to the variables
X)) x®a) and Y.

The causal effect as defined in (4) is the effect which we would infer in
a randomized study (randomized trial). Of course, the goal here is to infer
this effect without pursuing a randomized trial which could be very expensive,
time-consuming or simply impossible to do.

2.2 Identifiability

We focus in the sequel on the following causal model for a response variable
Y and p-dimensional covariate X = (X1, ..., X®):

X,Y ~ Pops = Np11(0,2),
P,y is faithful with respect to a causal DAG G. (6)

This means that the variables XV, ..., X Y are related to each other with
a true underlying “causal influence diagram” which is here formalized as a
directed acyclic graph (DAG) G. Furthermore, these variables have a joint
Gaussian distribution which satisfies the Markov property with respect to the
DAG G and all marginal and conditional independencies can be read-off from
the graph G: the latter is the faithfulness assumption, cf. [19]. The restriction
to mean zero in N,41(0, X) is without loss of generality.

It is well known that for the case where P,,s is Gaussian, one cannot
identify the DAG G from the observational distribution P,; for non-Gaussian
problems, identifiability is typically enhanced, see Problem 2 in Section 4.
Instead, one can only identify the Markov equivalence class,

M(G) = M(Pops) = {G’; G’ a DAG which is Markov equivalent to G},

where Markov-equivalence of two DAGs means that the Markov property en-
codes the same set of conditional independencies, and hence the same set
of distributions. The notation M(G) = M(Pops) indicates that the Markov
equivalence class depends on either G or P,ps only, assuming faithfulness of
Pops w.r.t. G (the set of conditional (in-)dependencies among the variables is
then described by G or by Peys), cf. [12,17,19].
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Ezample: Two correlated Gaussian random variables.

Consider a bivariate Gaussian distribution P,,s, with non-zero correlation,
which is Markov with respect to an underlying true DAG. Then, the Markov
equivalence class consists of the two DAGs {X — Y, X + Y} and we cannot
infer the causal direction from P,ps (i.e., we cannot distinguish among the two
DAGS). Suppose the true DAG is G : X — Y. When doing an intervention at
X, the intervention DAG Gint,x = G and X and Y are correlated. If the true
DAG is G": X <Y, then Gj,, x has no edge, corresponding to uncorrelated
random variables X and Y under such an intervention. Thus, testing for zero
correlation after doing an intervention at X yields the causal direction: it is
non-zero if and only if the true underlying DAGis G: X — Y.

Example: DAG in Figure 2.

Using the rules in e.g. [17], it can be shown for the example in Figure 2
(left panel) that the DAG G has as its corresponding equivalence class one
member only: M(G) = M(Pyps) = {G}, and hence, G is identifiable from
P,ps- Roughly speaking, this happens because G is “sparse” instead of being
the full graph where every node is connected to every other node by an edge
as in the toy example of two correlated Gaussian variables. In general, for a
DAG G, some (or none or all) of its directed edges are identifiable, depending
on the degree of “sparsity” (i.e., so-called protectedness of edges [1]).

2.3 Bounds of causal effects

Due to the problem of identifiability one cannot infer from the observational
distribution P,y (or from observational data) the true underlying causal DAG
G, and hence, one cannot infer causal effects from Pg,s: for example, for using
(4) or (5) we need the DAG G or its parental sets {pa(j); j =1,...,p}.

However, one can infer lower (and upper) bounds of causal effects which can
still be very informative (as used in Figure 1). Conceptually, we can proceed
as follows. First, we find all DAG members in the equivalence class:

M(Pops) = {Gr; r=1,...,mp,_}. (7)

Then, we apply the do-calculus and compute all causal effects 6, ; of X () on
Y for every DAG member G, using formula (5):

@j = @j(Pobs) = {Hr’j; T = 1,...,mpobs}, j = 1,...,]9.

Clearly, ©; is identifiable from P4 for every j. From {0,; j =1,...,p}, we
can infer lower and upper bounds of the absolute values of causal effects for
allj=1,...,p:

a; =min{|f]; 0 € O;} = 1min 6r51,
T=Ls s MPo g
B =max{l6l; 6 € 0,3 = _max ], ®)

obs
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Since the true DAG G € M(P,s), the true causal effect 6, € ©; (j =1,...,p)
and therefore

If aj = fB;, we know that the true causal effect in absolute value is |0;] =
a; = (; and hence, in such a case, the true absolute effect of variable X @) on
Y is identifiable (while another absolute effect || of X(®) on ¥ may not be
identifiable). From a practical point of view, one is mostly interested in the
lower bound «; with the interpretation that the absolute value of the causal
effect is at least as large as ;. In fact, the result in Figure 1 is based on
estimates &; of the true a;.

2.3.1 Computation of {©;;j=1,...,p}

The computational bottleneck of the construction for the identifiable lower and
upper bounds in (8) is the enumeration of all DAG members in the Markov
equivalence class as in (7). This becomes quickly infeasible if the number of
variables is larger than say 50 (while we want to deal with cases where p =
5’000 — 207000).

Maathuis et al. [14] present an algorithm which computes all the elements
in ©; without enumerating all DAGs in the equivalence as in (7). The main
idea is to rely on local aspects of the DAG only, see also (5) which shows that
the computation of §; only requires the local parental set pa(j), X) and Y.
The “local algorithm” [14] yields a set Oy ; which is proved to satisfy:

Qloc,j = @]7 .7: 17"'7p7

where the equality is in terms of sets but not in terms of the multiplicities
of the elements in the sets. In fact ©; often contains the same values many
times (e.g. 6,; = 0 for many r for a particular or many j) and that is the
reason why enumeration as in (7) is not necessary. The “local algorithm” [14]
is computationally feasible for sparse DAGs with thousands of variables.

3 Estimation from data
Consider data being realizations of (6):
X1, Xy idd. ~ Pops = N, (0, %), (9)
where P, is faithful (and Markovian) with respect to a DAG G.
The main challenge is estimation of the Markov equivalence class M(G) =

M(Pops), see also (7). Two different approaches will be described in Sections
3.1 and 3.2.
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3.1 The PC-algorithm

The PC-algorithm is named after its inventors Peter Spirtes and Clarke Gly-
mour [19]. The output of the algorithm is an estimated Markov equivalence
class /\//T(Pobs).

The algorithm is based on a clever hierarchical scheme for multiple test-
ing conditional independencies among variables X @) X (%) (for all j # k) and
among XY (for all j) in the DAG. The first level in the hierarchy are
marginal correlations, then partial correlations of low and then higher order
are tested to be zero or not. Due to the faithfulness assumption in model (6)
and assuming sparsity of the DAG (in terms of maximal degree, see assump-
tion (A3) in the Appendix A), the algorithm is computationally feasible for
problems where p is in the thousands. It is interesting to note that we can use a
simplified version of the PC-algorithm for estimating the relevant variables in
a linear model [3], and that this estimator is competitive for variable selection
in comparison with the popular Lasso [21] and versions thereof.

3.1.1 IDA: Intervention calculus when DAG is Absent

IDA [13] is the combination of the following steps: (i) the PC-algorithm lead-
ing to an estimate of the Markov equivalence class M\(Pobs); (ii) the local
algorithm mentioned in Section 2.3.1, based on /T/T (Pobs), to infer an estimate
{éloc’j;j =1,...,p}; (iii) and from the latter we obtain lower (or upper) bound
estimates &; (or BJ) The whole procedure is implemented and available from
R-package pcalg [11].

The following asymptotic consistency result justifies the IDA procedure.

Theorem 1 ([14]) Consider data as in (9) where the dimension p = p, s
allowed to grow much faster than sample size as n — oco. Under assump-
tions (A1)-(A5) described in Appendiz A on sparsity, on the minimal size of
non-zero partial correlations, on requiring that absolute values of partial cor-
relations are bounded away from one, and choosing a tuning parameter for the
PC-algorithm in an appropriate range,

PO; = Oroc; = O; for all j=1,....p] =1 (n = c0),

Furthermore, we also have for the lower and upper bounds,

sup |&; — ;] = op(1), sup |Bj — Bl =op(1) (n — o00).
j=1,...,p j=1,...,p

The result is based on the fact that the PC-algorithm can consistently estimate
the underlying Markov equivalence class M (Peps), assuming the conditions
(A1)-(A4) in Appendix A [10].
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3.2 The penalized maximum likelihood estimator (MLE)

Instead of using the PC-algorithm, one can use score-based methods to infer
the underlying Markov equivalence class. The score should assign the same
value for every DAG in the same Markov equivalence class; such a score is then
coherent with the underlying probability mechanism which cannot distinguish
between different DAGs in the same Markov equivalence class.

It is instructive to formulate the problem with structural equation models,
cf. [17]. To simplify notation, we encode the variable Y = X ®*+1) The model
(6) can be rewritten as:

x@ — ZBij(k) +e@),
k=1

Bji, #0 < there is an edge k — j in G,
¢ independent of X ®2()) £(0) ~ N(0,0’?) (j=1,...,p+1). (10)

Clearly, the sum ranges over {k; k € pa(j)} but it is more convenient to make
the constraints in terms of the zeroes of the coefficient matrix B. The unknown
parameters are the (p41) x (p+1) matrix B and the vector 0 = (07, ...,0%, ).

A statistically popular score function is the negative log-likelihood score,
penalized with the dimensionality of the model: it is indeed invariant across
a Markov equivalence class (if G’ and G” are two Markov equivalent DAGs,
their corresponding (penalized) MLEs based on G’ and G” respectively yield
the same score). This leads to the following estimator:

B,6% = AIgMiNg ey, | 2cpntt — (B, 0% (X1,Y1), ..., (X0, Y)) + Al Bllos

IBllo = card({(j, k); Bjr # 0}),
Bpag ={B; Ba(p+1)x (p+ 1) matrix such that
the non-zero elements of B are compatible with a DAG}. (11)

The set Bpag can be characterized as follows: B € Bpag if and only if there
exists a permutation 7 : {1,...,p+1} = {1,...,p+1} such that [B ) ()li;
is a strictly lower-triangular matrix.

We discuss in Section 4 some major computational challenges for the esti-
mator in (11).

3.2.1 Extensions for incorporating interventional data

Despite the fact that computation of the estimator in (11) is highly non-trivial,
we emphasize the importance of the likelihood-based approach. In many prac-
tical applications, we have a mix of observational and interventional data, i.e.,
observations from either the “steady-state” system or from certain perturba-
tions of it. For such a setting with non-i.i.d. data, the PC-algorithm cannot
be used anymore but we can still use the likelihood framework: the interven-
tion distributions become a function of P,,s and the underlying DAG G, as
described in (2) and (3). More details are given in [7].
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4 Challenges and open problems

Problem 1: Optimization

A major challenge is the computation of the estimator in (11). The optimiza-
tion in (11) can be disentangled as follows. Given a DAG G’, we can easily
calculate the corresponding best parameters Ber and &é, by explicit formulae,
cf.[7]. Hence, the problem reduces to a discrete optimization over all DAGs:
unfortunately, this seems to be a very hard task, even when making additional
sparsity assumptions.

The popular “trick” of convex relaxation is not easily applicable: the reason
is that the underlying parameter space is non-convex and the DAG-constraint
from B is very complicated. This is in sharp contrast to the structural learning
problem of undirected Gaussian graphical models where convex optimization
techniques are very powerful [15,6,2]. To illustrate the non-convexity issue for
estimation of DAGs, consider the following example.

Ezample: Two Gaussian variables
Consider two Gaussian variables variables (X, X()) (which stands for one
covariate X = X and a response Y = X)), The 2 x 2 matrix B then
belongs to the space Bpag = {B; Bi1 = Bas = 0, either By # 0 or By #
0} U {0}. Clearly, Bpag is a non-convex parameter space (within R?*?) since
{B;Bi2 # 0 and By # 0} Z Bpac-

Because of the invariance of the penalized likelihood score, we “only” have
to search over all Markov equivalence classes instead of searching over all
possible DAGs. This task may be easier as the number of equivalence classes
is smaller than the number of DAGs. But it is still an open problem how to
efficiently search over all Markov equivalence classes, even if the problem is
sparse.

An intermediate solution is given by greedy search over equivalence classes:
it performs much better than greedy search in DAG-space and it seems to give
reasonable solutions for high-dimensional sparse problems [5,7].

Problem 2: Nonlinear and non-Gaussian structural equations

If the structural equations, see (10), are nonlinear or/and non-Gaussian, the
identifiability problems typically disappear, and the Markov equivalence class
M(G) = M(Pyps) = G saying that the DAG G is identifiable from Ppps [18,
8]. The (dramatic) gain in identifiability comes at the price of a much more
difficult estimation and computational problem for learning nonlinear or/and
non-Gaussian relations.

Problem 3: Assigning uncertainties

From a statistical perspective, one would like to assign uncertainties to the
estimated graphs and Markov equivalence classes and to the estimated causal
effects. The former seems much harder as the estimates for DAGs and equiva-
lence classes are highly variable, unstable and typically unreliable for practical
applications. However, at the level of (strong) causal effects and its lower and
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upper bounds, the estimates seem much more stable. Bootstrapping, subsam-
pling and stability selection [16] can be used to assess stability and to assign er-
ror measures which control false positive selections [4]. However, more refined
techniques are needed which are better in terms of false negative selections
(type II error).

5 Conclusions

We have given a short and selective review for causal statistical inference from
observational data. The proposed methodology (IDA [13]) is applicable to
high-dimensional problems where the number of variables can greatly exceed
sample size. Because some of the key assumptions for our (or any) modeling-
based method are uncheckable in reality, there is an urgent need to validate
the computational methods and algorithms to better understand the limits
and potential of causal inference machines. Of course, the validation should
also provide new insights and further prioritization of future experiments in
the field of the scientific study. We have pursued this route in [13,20].

Causal inference from observational data has an immense potential but is
also faced with major problems in computation, identifiability and assigning
statistical measures of uncertainties: we have briefly outlined three correspond-
ing main open problems in Section 4.

Appendix A

We describe here the assumptions underlying Theorem 1. We consider a tri-
angular scheme of observations from model (9):

Xty Xpm idd. ~ PP n=1,23 ..,

where X,, = (Xy(ll), ) ..X,(lp“'),X,(Lp"H)) with X +1) — Y,,. Our assumptions
are as follows.

(A1) The distribution Po(gs) is multivariate Gaussian and faithful to a DAG
G™ for all n € N.

(A2) The dimension p, = O(n*) for some 0 < a < 0.

(A3) The maximal number of adjacent vertices in the directed graph G(™),
denoted by g, = maxi<;j<p,+1 |adj(Gn, j)|, satisfies g, = O(n!~?) for some
0<b< 1.

(A4) The partial correlations satisfy:

inf{|pjricl; pjkjc #0, Jk=1,...,pn +1(j # k),
CC {15""pn + 1}\{]ak}7 |C| < Qn} > Cp,
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where ¢;! = O(n?) (n — oo) forsome 0 < d < b/2 and 0 < b <
1 as in (A3);

CC{l,....pn + I\ {5k}, |0 < qu} S M < 1.

(A5) The conditional variances satisfy the following bound:

. { Var(X | x(9)
Var( (pn+1)|X7(Lj),Xr(LS))

n

; S g a‘d-](Gn7])7 ]: ]'7"‘7pn} Z 1)2’

for some v > 0.

For further details we refer to [14].
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