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In this paper we give a review of recent causal inference methods. First, we
discuss methods for causal structure learning from observational data when
confounders are not present and have a close look at methods for exact iden-
tifiability. We then turn to methods which allow for a mix of observational
and interventional data, where we also touch on active learning strategies.
We also discuss methods which allow arbitrarily complex structures of hid-
den variables. Second, we present approaches for estimating the interven-
tional distribution and causal effects given the (true or estimated) causal
structure. We close with a note on available software and two examples on
real data.

1 Introduction

A main goal of many scientific investigations is to establish the nature of
dependencies. Statistics has a long tradition in dealing with events occur-
ring together. For instance, in medical statistics, we might want to find a
biomarker, say in the blood, that occurs together with a (perhaps early form
of a) disease. The knowledge of this dependence could be used to predict
the occurrence of the disease based on a blood test.

Suppose we detect such a dependence between the occurrence of the
biomarker and the disease. We can then use the biomarker as a predictor
for the disease. Beyond the use of the biomarker for predicting the disease,
we might also be interested in a cure for the disease. In our search for
a cure, we could argue along the following lines: If the biomarker would
cause the disease, this would explain the observed dependence. Therefore,
manipulating the biomarker in a proper way will cure the disease.

Of course, this conclusion based on an observed dependence can be
wrong. The biomarker causing the disease is just one out of several sce-
narios in which a dependence between occurrence of biomarker and disease
can be observed (see Fig. 1(a)). In an alternative scenario with the same
observed dependence, the disease might be the cause of the biomarker (see
Fig. 1(b)). Thus, manipulation of the biomarker would have no effect on
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Figure 1: Several causal models might give rise to a dependence between
biomarker and disease. Therefore, it is not trivial to deduce the true causal
model from the observed dependence.

the disease. As a final example, there might be a scenario, in which we did
not observe all relevant variables. Thus, it might be the case that there is
an unobserved third variable (e.g. genetic disposition) which is the com-
mon cause of both the occurrence of the biomarker and the disease (see Fig.
1(c)). This would, too, give rise to a dependence between the occurrence of
the biomarker and the disease, but manipulating the biomarker would have
no effect on the disease. Hence, it is not trivial to infer causal relationships
from observed dependencies.

For finding causal relationships, the gold standard are intervention ex-
periments. In such an experiment, we not only observes nature as it is, but
makes an intervention and observes the consequences of this intervention.
The main principles for experimental design were developed in the context
of agricultural research (Fisher, 1926; Cox, 1958). A key ingredient of a good
experiment is randomization and control: Suppose in our example that we
have access to a set of patients with the disease. We select half of the pa-
tients at random and manipulate the biomarker (treatment group). The
remaining patients are not treated (control group). After a certain time, we
check how many patients were cured in the treatment group and compare
with the control group. Suppose that many more patients were cured in the
treatment group than in the control group. Since the treatment allocation
was random, it is very unlikely that we (randomly) assigned treatment only
to those patients, which would have become healthy anyway (e.g. because
of genetic disposition). Thus, we have established that the treatment has a
causal effect on the disease.

In some situations, however, it is not feasible to do an intervention ex-
periment for ethical, financial or other reasons. For example, it would be
considered unethical to force a random selection of people to smoke in order
to establish smoking as cause for lung cancer.

The question arises therefore, whether it is at all possible to identify
cause and effect relationships by observation alone. The short answer is:
No, not in the general case. However, if we make suitable assumptions, the
answer becomes affirmative. In the past two decades, theories were devel-
oped which use suitable assumptions in such a way that causal relationships
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indeed become identifiable from observational data.
In this article, we give a selective review of methods for causal identifi-

cation. We focus on methods that aim at identifying the effect of an exper-
imental intervention given observational data or a mix of observational and
interventional data. For alternative introductions to causality we point to
Pearl (2009b), Spirtes et al. (2000), Spirtes (2010) and Pearl (2009a).

In section 2 we will give background information on concepts and nota-
tion. At some points, we will anticipate results from later sections in order
to put the definitions into context. In section 3 we will focus on methods for
estimating the causal structure from observational data or a mix of obser-
vational and interventional data. In section 4 we will present approaches for
estimating the interventional distribution (i.e., the probability distribution
of a random variable in a causal system after some intervention was done
at some other random variable in the causal system) based on observational
data and additional information such as the causal structure. Finally, in
section 6 we give some concluding remarks.

2 Notation and basic concepts

We will focus on structural equation models, originally formulated by Wright
(1921) and treated in detail by Pearl (2009b). A structural equation model
describes a causal system by a set of equations. Each equation explains one
variable of the system in terms of the variables, which are its direct causes.
Moreover, some random noise might be involved. Finally, the equations are
assumed to be autonomous: If the generating process of one variable (i.e.
one equation) is changed, this has no effect on the generating process of the
other variables (i.e., on the other equations).

As an example, we show a structural equation model on the three vari-
ables X, Y and Z and corresponding independent noise variables ux, uy and
uz:

X ← f1(ux) (1)

Y ← f2(X,uy)

Z ← f3(X,Y, uz)

In the equations, we use the symbol “←” instead of “=” in order to indicate
that the equation should be interpreted in an asymmetric way. For example,
Y ← X+1 should be interpreted as “Y is generated by taking X and adding
1”. Note that we cannot invert this relationship (e.g. “X is generated by
taking Y and subtracting 1”) as we could do in algebraic equations.

The structure of model (1) can be visualized by a causal graph (also
called causal structure): If X is a direct cause of Y (i.e., X is on the right
hand side of the equation defining Y ), then there is an arrow from X to
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Y . By convention, noise variables are not added in this graph. Almost all
of the theory presented in this review deals with causal systems without
feedback. Thus, a variable cannot be a cause of itself (directly or indirectly)
and therefore, in the corresponding causal graph, it is not possible to trace
a circle when following the direction of the arrows. The resulting graph is
therefore called a directed acyclic graph (DAG). The graph visualizing the
structural equation model given in 1 is shown in 2.

Y

X

Z

Figure 2: The causal structure visualizes the relationship between effects
and direct causes of structural equation model (1) with a DAG.

We will now introduce some formalism for the causal graph. Two nodes
are adjacent, if there is an edge between them. The parents of a node X in
a DAG are all nodes from which an arrow points to X. Correspondingly, all
nodes to which an arrow points from X are called children of X. A path is a
sequence of distinct, adjacent vertices. A path is directed, if all edges on the
path are directed in the same direction. The ancestors of X are all nodes
from which a directed path leads to X. Correspondingly, the descendants
of X are all nodes to which a directed path leads from X. The skeleton of a
DAG is the undirected graph that is obtained when ignoring the directions
of the arrows. The path X − Y − Z where X and Z are not adjacent is
called an unshielded triple. The node Y on the path X → Y ← Z is called
collider. If X and Z are not adjacent, Y is called an unshielded collider.

For example, in Fig. 2, X and Y are parents of Z, Y is a child of X
and a directed path is X → Y → Z. X and Y would be the ancestors of
Z even if the edge X → Z was removed. Finally, the node Y on the path
X → Z ← Y is a collider, but it is not an unshielded collider, since X and
Y are connected.

Given data and some further assumptions we will then try to solve one
of the two following problems:

Problem 1 (Causal Structure): Given observational data or a mix of
observational and interventional data, find the DAG representing the
causal structure, or, if this is not possible, give a class of DAGs to
which the true DAG belongs.

Problem 2 (Interventional Distribution): Given observational data or
a mix of observational and interventional data, find the interventional
distribution of some variable in the structural equation model. The
interventional distribution is the probability distribution of a random
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variable Y in a causal system after some other random variable X in
the causal system was set to a certain value by external intervention.
Thus, using the interventional distribution, we can make quantitative
predictions on the effect of interventions.

2.1 Assuming models without hidden variables

We first assume that all variables of the underlying causal system have
been observed and that the error variables are jointly independent. This
assumption is known as the “no unobserved confounders” assumption and
is considered to be strong.

It turns out that each structural equation model has certain invariance
properties, which only depend on the causal structure (but not on the func-
tional details of the structural equation model). The most prominent ex-
ample for invariance properties are conditional independencies. Given a
causal structure, the implied conditional independencies can be read off by
assuming the local Markov property: Every node is independent from its
non-descendants given its parents (see chapter 3 of Lauritzen (1996) for
much more details). For example, in Fig. 3(a), the local Markov property
tells us that Z is independent from Y given A and B (conditioning only on
B would be sufficient in this example). When applying the local Markov
property on several different nodes, the generated list of conditional inde-
pendencies might imply further (implicit) conditional independencies, which
might otherwise be easy to miss. Therefore, in order to explicitly generate
a list of all conditional independencies implied by the local Markov prop-
erty, the (graphical) concept of d-separation was introduced (Pearl, 2009b,
e.g. Definition 1.2.3). Two nodes X and Y are d-separated by the (possibly
empty) set S, if on every path between X and Y at least (i) one non-collider
is in S or (ii) one collider is not in S nor has a descendant in S. For exam-
ple, in Fig. 3(a) we see that X and Y are d-separated by A, A and B are
d-separated by the empty set, but A and B are not d-separated by Y . A
distribution is said to be Markov with respect to a DAG, if all d-separation
statements in the DAG hold as conditional independence statements in the
distribution. Thus, using d-separation, it is easy to check whether a causal
structure implies a given conditional independence statement. Note that,
assuming the Markov property holds, the conditional independencies found
with d-separation hold for every structural equation model with this given
causal structure (e.g. no matter what the details of the functional rela-
tionships or error distributions are). However, specific structural equation
models might imply even more conditional independence statements. As a
simplifying assumption, this is in practice often ruled out. Thus, we as-
sume that the conditional independence assumptions implied by applying
d-separation on the causal structure are exactly the same as the ones in the
distribution described by the structural equation model. This assumption is
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known as faithfulness. A stronger version of faithfulness (called strong faith-
fulness) requires additionally that the strength of all non-zero conditional
dependencies exceed a certain threshold.

It turns out that distinguishing between causal structures based on ob-
servational data is problematic: There might be several causal structures
which are compatible with the list of invariance properties that can be com-
puted from given observational data. This problem remains, even if we
remove sampling issues from the data (i.e. replacing the data by an ora-
cle). Based on this observation, DAGs are grouped into Markov-equivalence
classes (Andersson et al., 1997). DAGs within this share the same skele-
ton and the same unshielded colliders (Verma and Pearl, 1990). Thus, in
general, Markov-equivalent (or simply equivalent) DAGs cannot be distin-
guished based on observational data. Therefore, the answer to Problem
1 will, in general, be a Markov-equivalence class of DAGs, rather than a
single DAG. We visualize the Markov-equivalence class with a “completed
partially directed acyclic graph” (CPDAG). A CPDAG consists of directed
and undirected edges. All DAGs in the corresponding Markov-equivalence
class have the same skeleton and the same directed edges as the CPDAG.
However, for every undirected edge, there are at least two DAGs in the
Markov-equivalence class whose corresponding edges point into opposite di-
rections. For example, the DAG in Fig. 3(a) is in the equivalence class
represented by the CPDAG in Fig. 3(b).

The existence of an equivalence class reflects our previous statement that
in general, we cannot infer causal effects from observational data. One way
of dealing with this issue is to report suitable summary statistics of all DAGs
within an equivalence class. Apart from that, there are several approaches
to reduce the size of the equivalence classes and ideally obtain a unique DAG

• by including knowledge on background, such as time, for further ori-
enting some edges.

• by making further assumptions on the structural equation model (see
Sec. 3.1.1).

• by acquiring, in addition to observational data, information on (per-
haps optimally planned) intervention experiments (see Sec. 3.1.2).

2.2 Assuming models with hidden variables

Up to now, we have assumed that all variables of the underlying causal
system have been observed and that the error variables are independent.
In real life, however, we often observe only part of all variables, i.e., some
variables are observed, while others are hidden (or latent). Moreover, we
often even don’t know if or how many further latent variables in the causal
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system exist or not. In this case, we still might be interested in causal
statements among the observed variables.

An initial idea for solving this problem might be this: First, we assume
that the true causal structure (including all latent variables) is a DAG G.
Then, we try to marginalize out the latent variables. Thus, we try to come
up with a DAG G̃ only on the observed variables, so that the invariance
properties of G̃ coincide with the invariance properties on G restricted to
only the observed variables. Our new goal would then be to estimate G̃
from data. Unfortunately, it turns out that DAGs are not closed under
marginalization. Thus, in general, there is no DAG G̃ which would match
all invariance properties of DAG G when restricted to only the observed
variables. To solve this problem, the broader class of ancestral graphs was
developed, of which DAGs are a subset (Richardson and Spirtes, 2002). Of
special importance in this class are the maximal ancestral graphs (MAGs).
A MAG on the observed variables represents a class of infinitely many DAGs
(on observed and arbitrarily many hidden variables) that have the same d-
separation and ancestral relationships among the observed variables.

Although the theory of MAGs is useful for all kinds of hidden variables,
a simplifying assumption often only allows hidden confounders, i.e., hidden
variables which are a common cause of at least two observed variables (hid-
den variables that are cause of just one observed variables can be trivially
solved by extending the noise variables). In contrast to this, there might
also be hidden selection variables, i.e., hidden variables that are caused by
at least two observed variables (hidden variables that are caused by only one
observed variable can be dismissed, since they have no effect on the causal
structure among the observed variables). Although some work has been
done on structure learning with arbitrary hidden variables (Spirtes et al.,
1995), we will mainly focus on assuming only hidden confounders.

Graphically, a MAG consists of nodes representing (observed) variables
and edges, which might be directed, undirected or bidirected. Thus, each
end of an edge can have the edgemark “tail” or “head”. If on the edge
between X and Y there is a head mark at X, then X is no ancestor of Y (or
any selection variable) in the underlying DAG. If, on the other hand there
is a tail mark at X, X is an ancestor of Y (or any selection variable). In
Fig. 3(c) we show the MAG representing the DAG from Fig. 3(a), where
we assume that A and B are latent. We can read off that, for example, X
is no ancestor of Y .

In the presence of latent variables, we reformulate problem 1 in the
following way:

Problem 1’: Given observational data, find the MAG representing the
causal structure on the observed variables, or, if this is not possible,
give a range of MAGs among which the true MAG is.

MAGs encode conditional independence information using m-separation, a
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graphical criterion which is very closely related to d-separation for DAGs.
As with DAGs, we usually cannot identify a single MAG given observational
data. Rather, several MAGs which encode the same set of conditional in-
dependence statements form a Markov equivalence class represented by a
partial ancestral graph (PAG ; see Zhang (2008a)). A PAG is like a MAG
with the only difference that some edge marks are unknown (and usually
represented by circles). All MAGs in the equivalence class share the same
skeleton and also all edge marks which are given in the PAG. For each un-
known edge mark in the PAG, there is at least one MAG in the equivalence
class with a tail mark and at least one MAG in the equivalence class with a
head mark. The MAG shown in Fig. 3(c) is in the equivalence class that is
represented by the PAG in Fig. 3(d). From this PAG, we can read off that,
for example, Y is no ancestor of X.

Finally, we’d like to mention an alternative way of dealing with hidden
common causes in DAGs. We have seen in the previous paragraph that
MAGs on the variables O can be used to represent the conditional indepen-
dence constraints among the variables in O (using m-separation) of an under-
lying DAG with the variables O and an arbitrary set of hidden confounders.
Thus, the MAG represents some aspects (conditional independencies) of the
marginalized DAG. However, it is known that there are more constraints on
observable distributions that are implied by DAGs with hidden confounders,
but cannot be formulated in terms of conditional independence. Examples
of these additional constrains are Verma constraints (Verma and Pearl, 1991;
Shpitser and Pearl, 2008b) and inequality constraints (see for example Evans
(2012)). An object to deal with these additional constraints is an Acyclic
Directed Mixed Graph (ADMG), which consists of directed and bidirected
edges and has no directed cycles. These graphs are also called latent pro-
jections of the underlying DAG onto the observed variables. Richardson
et al. (2012) propose a nested Markov theory which allows to read off both
conditional independence and Verma constraints from ADMGs.

Note that although a MAG and a ADMG may look alike, they are in-
terpreted in a different way.

2.3 Solving Problem 1 and Problem 2

There are two common approaches for solving Problem 1 and 1’.

In one approach (“search-and-score approach”), we first assume a causal
structure and specific functional restrictions (e.g. linear relations and in-
dependent Gaussian noise). Then, we optimize some score (e.g. likelihood
or BIC) given these restrictions. In the next step, the causal structure is
changed and the new optimal score value is computed. This procedure is
repeated for many causal structures. Finally, the causal structure with the
best (optimized) score is returned.

The other approach focuses on constraints implied by a causal structure
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(“constraint based approach”). Constraint based learning starts with finding
a list of invariance properties (e.g. conditional independencies) implied in
the given observational data. Then, it rules out all causal structures which
are incompatible with the list of invariance properties implied in the data.
Ideally, we are left with only one compatible DAG, the true causal structure.

These (and further) approaches are discussed in more detail in section
3.

Approaches for solving Problem 2 are based on the do-calculus (Pearl,
2009b). When the true causal structure is given, the do-calculus can trans-
form interventional distributions into expressions involving only standard
statistical distributions. These approaches will be discussed in more detail
in section 4.

A B

X Y Z

(a) DAG

A B

X Y Z

(b) CPDAG

X Y Z

(c) MAG

X Y Z

(d) PAG

Figure 3: The DAG shown in (a) is in the equivalence class represented by
the CPDAG shown in (b). The MAG shown in (c) represents the marginal-
ized DAG from (a) when assuming A and B latent. Finally, the MAG shown
in (c) is in the equivalence class represented by the PAG shown in (d).

3 Estimating Causal Structure

We will first assume no hidden confounders and will then relax this assump-
tion.

3.1 Approaches assuming no hidden confounders

A broad range of methods has been developed for estimating causal struc-
tures assuming no hidden confounders. We will first discuss methods using
only observational data. Then, we will discuss methods which can handle
both observational and interventional data.

3.1.1 Using observational data

PC-algorithm
The PC-algorithm (Spirtes et al., 2000) is a popular algorithm for constraint-
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based structure learning. Its can be outlined in three steps.
In the first step, the skeleton of the DAG is estimated. For doing this,

the algorithm starts with a complete undirected graph (i.e., every node is
connected to every other node). Then, for each edge (say, between X and
Y ) it is tested, whether there is any conditioning set S, so that X and Y
are conditional independent given S (which we denote X ⊥⊥ Y |S). If such a
set (called a separation set) is found, the edge between X and Y is deleted.
The idea behind this step is that, if the dependence between X and Y can
be explained away, there cannot be a direct causal connection between them
and thus, there will be no edge between them in the true causal structure.
The crucial idea of the PC-algorithm for this step is to arrange the tests in
increasing size of adjacency sets of X and Y .

The separation sets are current adjacency sets of pairs of nodes and
we test sequentially, starting with small sets and gradually increasing their
sizes. This ensures statistical consistency (Kalisch and Bühlmann, 2007) and
efficient computation if the underlying DAG is large but sparse (referring to
the size of the maximal neighborhood).

In the second step, the information on separation sets is used to orient
unshielded colliders. The following example illustrates, that this is indeed
possible. Suppose, we have a skeleton of the form X − Z − Y where X and
Y are not connected (i.e., the skeleton is an unshielded triplet). Thus, the
true causal structure might be of the form X ← Z ← Y , X ← Z → Y ,
X → Z → Y or X → Z ← Y . By applying d-separation, we see that
X ← Z ← Y , X ← Z → Y , X → Z → Y imply that X ⊥⊥ Y |Z, whereas
X → Z ← Y implies X 6⊥⊥ Y |Z. Thus, if Z is not in the separation set of
X and Y , we know that X 6⊥⊥ Y |Z holds and therefore the causal structure
must be X → Z ← Y , which is an unshielded collider. This example can
be generalized to the rule that whenever Z is not in the separation set of
X and Y in an unshielded triple X − Z − Y , the unshielded triple must be
directed into an unshielded collider.

In the third step, all (still) undirected edges are checked, if one of the
two possible directions would lead to a new unshielded collider or a cycle.
If yes, the undirected edge is directed into the other direction to rule out
a new unshielded collider (all of them were already found in step two) or a
cycle (which is forbidden in a DAG).

While in the worst case the runtime of the PC algorithm is exponential
in the number of variables, for sparse graphs it can handle up to thousands
of variables in an acceptable amount of time. Robins et al. (2003) report on
fundamental issues with uniform consistency in causal inference. However,
Kalisch and Bühlmann (2007) show uniform consistency of the PC-algorithm
under the strong faithfulness condition for high-dimensional (i.e. more vari-
ables than samples) but sparse graphs for linear structural equation models
with Gaussian error terms. This result was extended to Gaussian copula
models by Harris and Drton (2012). The assumption of (strong) faithful-
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ness in this context is discussed in detail in Lin et al. (2012) and Uhler et al.
(2013): Near cancellation of parameters in structural equation models leads
to difficulties in identifiability and estimation accuracy.

Score based methods
The Greedy-Equivalent-Search (GES) algorithm (Chickering, 2002, 2003) is
a prominent example of a search-and-score algorithm. This algorithm scores
the causal structure using a score-equivalent and decomposable score, such
as the regularized log-likelihood, e.g. the BIC (Schwarz, 1978). A score is
score-equivalent, if it assigns the same value to all DAGs within the same
Markov equivalence class. This is a desirable property, since otherwise a
haphazard DAG out of a selection of statistically indistinguishable DAGs
would be preferred. A score is decomposable, if it can be computed as
a sum of terms (typically one term for each node) depending only on local
features of the causal structure. A decomposable score helps to speed up the
computation of scores during the search process. A naive approach would
now score every DAG on the given p variables and pick the DAG with
the best score. However, since the number of DAGs on p variables grows
super-exponentially in p (Robinson, 1977), this approach is not feasible.
Silander and Myllymaki (2006) provide a dynamic programming approach
which reduces the complexity to exponential time.

An improvement might be achieved by not searching over individual
DAGs but equivalence classes of DAGs. Since the average number of DAGs
per equivalence class seems to be 3.7 (Gillispie and Perlman, 2002; Garrido,
2009), such an improvement seems to be conceptually limited.

In view of the huge search space, greedy algorithms have been proposed.
The idea of GES is to traverse the space of Markov equivalence classes step
by step. It can be outlined in two (or three) steps. The GES algorithm
starts with an empty graph and then adds, in a first step (called “forward
phase”), edges in a greedy way until an optimum is reached . In each step,
the edges are added in a way, so that the resulting DAG is a representative of
a new equivalence class. Then, in a second step (called “backward phase”),
edges are greedily removed until, again, an optimum is reached . As before,
edges are removed in a way, so that the resulting DAG is a representative
of a new equivalence class. The resulting graph, representing the resulting
equivalence class, is the final output of GES. The algorithm can be improved
by including a turning phase of edges as well (Hauser and Bühlmann, 2012a).

The GES algorithm does not assume the faithfulness condition and con-
sistency of GES in the low-dimensional case (i.e. more samples than vari-
ables) is given in Chickering (2003). An analysis of the penalized maxi-
mum likelihood estimator for sparse DAGs in high dimensions which also
avoids the faithfulness assumption is presented in van de Geer and Bühlmann
(2013).
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Hybrid methods
The constraint-based and search-and-score methods mentioned in the pre-
vious paragraphs can be combined to form hybrid methods. A prominent
example is the Max-Min Hill-Climbing (MMHC) algorithm of Tsamardi-
nos et al. (2006). The idea of MMHC is to find the skeleton based on a
constraint-based search and then use a search-and-score approach to ori-
ent the edges. In empirical studies, MMHC seems to outperform both PC
and GES (Tsamardinos et al., 2006). In their empirical study, the authors
used the Structural Hamming Distance (SHD) to assess the performance of
several methods for structure learning. Recently, the Structural Interven-
tion Distance (SID) was proposed by Peters and Bühlmann (2013b). When
comparing causal structures in terms of their corresponding causal inference
statements, the SID is more appropriate than SHD.

Methods for fully identifiable models
In general, the algorithms in the above mentioned classes (such as PC, GES
and MMHC) return estimates of the equivalence class of the true causal
structure based on observational data. It turns out, however, that under
certain assumptions, the true causal structure can be recovered uniquely.

Peters et al. (2013) show that if the underlying causal structural equa-
tions are from an Additive Noise Model (ANM) with nonlinear functions and
some technical assumptions hold, the true causal structure G can be iden-
tified uniquely from the probability distribution of the observational data.
More precisely, an ANM is of the form

xi = fi(pai) + ni, (2)

where pai are the parents of xi in G and ni is an independent, additive error
variable. In particular, if the error variables are Gaussian, the technical
assumptions rule out linear functions in the structural equation model. A
notable improvement over previous assumptions is the fact that the technical
assumptions do not include faithfulness (but a weaker condition called causal
minimality; a distribution is causal minimal with respect to a DAG, if it is
Markov to the DAG but not to any subgraph).

Shimizu et al. (2006) propose a method for uniquely identifying causal
structures with the assumptions that the structural equation model is linear
with non-Gaussian error terms (LiNGAM ). Shimizu et al. (2011) propose
an algorithmic improvement of their original method which was based on
independent component analysis.

From the previous two paragraphs we see that unique identification from
observational data is indeed possible. Given technical assumptions, the cen-
tral theme is that as long as the data generating structural equation model
is non-linear or the error distributions are non-Gaussian, unique identifia-
bility is possible. This is in contrast to the situation where the structural
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equation model is linear with Gaussian errors. In this situation unique iden-
tifiability becomes in general impossible and only equivalence classes can
be found. But even for linear Gaussian structural equation models, unique
identifiability is possible when assuming equal error variances (Peters and
Bühlmann, 2013a).

3.1.2 Using a mix of observational and interventional data

In the previous section, we considered approaches for finding the causal
structure given observational data. It turned out that unique identification
is possible given some assumptions. In practice, however, assumptions are
hard to verify. To avoid assumptions as much as possible, we could therefore,
on the other extreme, perform fully controlled intervention experiments. In
an intervention experiment, fixed or random values are assigned to a single
or several variables. Making, for example, a single variable intervention at
each variable once would guarantee to find the causal structure.

A challenge, however, lies in combining both observational data and
data from intervention experiments on parts of the causal system. The
main reason for this is the fact that interventional samples from different
interventions (or no intervention) are not identically distributed. A thor-
ough framework dealing with this situation in the linear Gaussian case has
been developed in Hauser and Bühlmann (2012a) and Hauser and Bühlmann
(2013a). (While there exist also different approaches (Tian and Pearl, 2001),
we will focus on the approach by Hauser and Bühlmann (2012a).) Note that
it is precisely the linear Gaussian case in which unique identification is most
difficult, which suggests that the use of additional data from interventional
experiments might bring the largest benefit here. In their work, the authors
point out that even given interventional data, the causal structure is gener-
ally not fully identifiable. However, the interventional data help identifying
at least parts of the causal structure, while other parts of the structure might
remain ambiguous (and could be uniquely identified if results on different
intervention were available). Therefore, the concept of Markov equivalence
class must be extended to capture DAGs which are equivalent given obser-
vational data and data from specific interventions. The authors provide this
extension in the form of the interventional essential graph, generalizing the
CPDAG. Estimation and structure learning can be done with the maximum
likelihood principle. Similar to GES for CPDAGs, they propose a greedy
learning algorithm for a mix of observational and interventional data and
call it “greedy interventional equivalence search” (GIES). Like GES, GIES is
based on a greedy optimization of the BIC-score greedily moving through the
space of essential interventional graphs (encoding the interventional Markov
equivalence classes) with repeated forward, backward and turning phases.

With GIES, the problem of combining observational and interventional
data is solved satisfactorily for the linear Gaussian case. However, it might
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seem plausible to approach the identification problem sequentially: First, we
acquire observational data. If the true causal structure is not uniquely iden-
tifiable, we could invest in specifically targeted intervention experiments.
This approach is also known as “active learning”. Hauser and Bühlmann
(2012b) address this problem (allowing also for the situation with no observa-
tional data) and propose two solutions for any given interventional essential
graph that is not fully directed. In the first solution, the single variable
intervention is found which, when analyzed in an intervention experiment,
will direct as many undirected edges as possible. (The graph might still not
be fully directed afterwards.) In the second solution, a (non-unique) multi
variable intervention is found that contains the minimal amount of vari-
ables necessary to achieve full identification when performing intervention
experiments on these variables. This second solution also contains a proof
of the Eberhardt conjecture dealing with the number of unbounded inter-
vention targets which is sufficient and in the worst case necessary for full
identifiability. (Eberhardt, 2008). Hauser and Bühlmann (2012b) demon-
strate impressive performance of their algorithms in the case of negligible
sampling error (e.g. large sample limit). However, when the sampling er-
rors become large, the advantages of the proposed methods get blurred. He
and Geng (2008) also propose single and multi variable intervention schemes
which allow for full identification. However, their method uses (only) the
observational data for estimating the CPDAG and (only) the interventional
data for orienting edges. In contrast to this, Hauser and Bühlmann (2013b)
make a more efficient use of the data, which leads to increased empirical
performance.

Eberhardt et al. (2010) propose an algorithm for identifying cyclic linear
causal models (in equilibrium) from a mix of observational and interventional
data, which may also include latent variables. Although the authors propose
a necessary and sufficient condition for the identifiability of the set of all
total effects, they don’t propose an optimal (in terms of minimal number of
interventions) procedure for finding a set of variables to intervene on that
guarantees full identifiability.

3.2 Approaches assuming hidden confounders

In section 3.1, we have assumed that there are no hidden confounders or
selection variables. In this section, we will discuss approaches for structural
learning when hidden confounders and selection variables are assumed to be
present.

Under the faithfulness assumption, the PAG on the observed variables
representing a Markov equivalence class of DAGs with latent and selection
variables can be learned from the observed variables using the FCI (Fast
Causal Inference) algorithm (Spirtes et al., 2000, 1995).

The idea of FCI can be outlined in five steps. In the first and second
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step, an initial skeleton and unshielded colliders are found as in the PC-
algorithm. In the third step, a set called “Possible-D-SEP” is computed.
The edges of the initial skeleton are then tested for conditional independence
given subsets of Possible-D-SEP. If conditional independencies are found,
the conditioning sets are recorded as separation sets and the corresponding
edges are removed (as in step 1 of PC-algorithm). Thus, edges of the initial
skeleton might be removed and the list of all separation sets might get
extended. Since Possible-D-SEP can get very large even in sparse graphs,
testing all subsets might be very time consuming. In step four, unshielded
colliders in the updated skeleton are oriented based on the updated list of
separation sets. In step five, further orientation rules are applied in order
to avoid contradictions in the resulting PAG.

In the original formulation of FCI, the output is a PAG, but a slightly
different object. However, Zhang (2008a) showed that it can be interpreted
as a PAG as well. Furthermore, Zhang (2008b) introduced extra orientation
rules in FCI which make the algorithm complete, i.e., maximally informative.

One major drawback of FCI is that, despite its name, it suffers from
an exponential time complexity (even when the underlying DAG is sparse).
Therefore, a version called “AnytimeFCI” was developed by Spirtes (2001),
which allows a trade-off between computational speed and informativeness
by setting an additional tuning parameter. Although the output of Any-
timeFCI is no PAG anymore, it can still be interpreted causally.

Another improvement of FCI, the RFCI algorithm, was proposed by
Colombo et al. (2012). The idea of RFCI is to avoid computing the poten-
tially costly Possible-D-SEP and follows the same three steps as the PC-
algorithm. However, some modifications of step two (unshielded colliders)
and step three (further orientation) avoid some of the erroneous causal con-
clusions PC could make in the presence of hidden variables. The causal
interpretation of RFCI is sound and consistent in high-dimensional, sparse
settings, but slightly less informative than that of FCI. However, the com-
putational speed is dramatically increased. Colombo et al. (2012) show in
simulations that the estimation performances of FCI and RFCI are very
similar.

An alternative improvement of FCI was given in Claassen et al. (2013).
They propose the FCI+ algorithm, which is sound and complete and has
polynomial complexity for underlying sparse DAGs. In contrast, the com-
plexity of FCI is exponential even for sparse graphs.

We now turn away from estimating PAGs and discuss the estimation
of ADMGs. A parameter fitting algorithm, and a search and score struc-
ture learning algorithm for these nested Markov models is given in Shpitser
et al. (2012). As with DAGs, different ADMGs can be equivalent but have
different causal interpretation. However, in contrast to DAGs and MAGs,
there is currently no characterization of equivalent ADMGs known. Re-
call that with GES, we could find the equivalence class of all best-scoring
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DAGs. Since these DAGs have usually different causal interpretation, we
could e.g. report summary statistics representing all DAGs in the equiva-
lence class. However, while the search and score algorithm of Shpitser et al.
(2012) might find several top-scoring ADMGs (which are equivalent, since
they have the same score), it will in general not find all ADMGs which are
equivalent (exhaustive search over all ADMGs would be computationally
too expensive). Therefore, when giving summary statistics of the ADMGs
found, we can never be sure whether or note we missed an equivalent ADMG
with a completely different causal interpretation.

4 Estimating Causal Effect Strength

In section 3, we have discussed methods for estimating the causal structure.
The causal structure indicates which variables have a direct effect on which
other variables. However, it does not indicate, how strong this effect is
(or, for example, if it is positive or negative). In this section, we will review
methods for estimating the strength of causal effects given data and a causal
structure. In practice, the causal structure might be considered to be the
true causal structure when, for example, sufficient background knowledge is
available. However, oftentimes, the true causal structure is not known and
it is estimated by methods discussed in the previous section.

The basic technical tool for quantifying the causal effect in structural
equation models is the do-calculus (Pearl, 2009b). We denote the probability
distribution of variable Y when an external intervention fixes variable X to
the value x as P (Y |do(X = x)). While this expression looks very much
like the conditional probability P (Y |X = x), it is fundamentally different:
Typically, P (Y |do(X = x)) corresponds to doing randomized experiments
by intervening at X and then observing Y . However, P (Y |X = x) has the
interpretation of observing the system (without doing any intervention at
all) and just noting the behavior of Y whenever we observe that X takes
the value x. These two distributions can be fundamentally different, as is
illustrated in the following example.

Suppose there is a street in a desert. The binary variable X indicates
whether it is raining (X = 1 with P (X = 1) = 0.01, so rain is a rare event)
or not (X = 0). The binary variable Y indicates whether the street is wet
(Y = 1) or not (Y = 0). We suppose that the street gets wet when it is
raining (P (Y = 1|X = 1) = 1) and that other reasons for a wet street are
rare (P (Y = 1|X = 0) = 0.001). Now, let’s suppose we observe that the
street is wet. What is the probability that it is raining conditional on this
observation? Using Bayes Theorem, we arrive at P (X = 1|Y = 1) = 0.91.
So, if we see that the street is wet, we can be rather sure that it is raining.
However, we know from background knowledge that if we intervene to make
the street wet (e.g. with a water hose), this will have no effect on whether it
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is raining or not. Thus P (X = 1|do(Y = 1)) should be independent from the
intervention: The probability of rain given we make the street wet is just the
probability that it rained in that moment anyway. Thus, the probabilities
under intervention and the conditional probability are indeed very different.

Thus, if we know the causal structure, it might be possible to transform
interventional distributions into expressions involving pre-intervention dis-
tributions. In the example, we achieved this by setting P (X = 1|do(Y =
1)) = P (X = 1). Thus, we are able to predict the distribution under in-
tervention without doing any interventions at all but just evaluating certain
pre-intervention probabilities, which can be found by observation alone.

In the following, we will review ways of transforming interventional dis-
tributions into expressions involving pre-intervention distributions.

4.1 Approaches assuming no hidden confounders

Pearl (1995) proposed a set of three inference rules, which form the basis of
the do-calculus (see also Pearl (2009b, Theorem 3.4.1)). These rules and any
combination of them allow transformations of distributions under interven-
tion into standard statistical distributions given the true causal structure.
The set of rules was shown to be complete (Shpitser and Pearl, 2008a, The-
orem 23), i.e., if an intervention distribution can be transformed into an
expression containing only pre-intervention distributions, there will be a se-
quence of these three rules that will make this transition.

In the case without hidden confounders, the rules of the do-calculus
justify a particularly simple rule that is complete for transforming the inter-
ventional distribution into an expression of pre-intervention distributions:
The back-door criterion (Pearl, 2009b, Chapter 3.3.1). A set of variables B
satisfies the back-door criterion relative to cause X and effect Y if in the
causal structure B d-separates every path between X and Y that is point-
ing into X and no node in B is a descendant of X. For example, in Fig. 2,
the variable X satisfies the back-door criterion relative to Y and Z. With
this definition, the interventional distribution can be transformed into an
expression using only standard statistical distributions using the formula:

P (Y = y|do(X = x)) =
∑
b∈B

P (Y = y|X = x,B = b)P (B = b) (3)

Note that the left hand side of equation (3) is an interventional distribu-
tion while the right hand side consists of standard statistical distributions.
Maathuis et al. (2009) propose a method that combines the estimation of
the causal structure and the interventional distribution in the linear Gaus-
sian case. They concentrate on the effect strength measured as the expected
change in the response if the cause is changed by one unit. Using a local al-
gorithm, the authors are able to compute the multiset of expected changes of
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all DAGs in the equivalence class. A summary statistics of this multiset can
then be reported. The method, termed IDA for Intervention calculus when
the DAG is Absent, was shown to perform well when compared with inter-
vention experiments (Maathuis et al., 2010). Further developments of this
method were shown in Stekhoven et al. (2012) and Colombo and Maathuis
(2012).

4.2 Approaches assuming hidden confounders

When hidden confounders are assumed to be present and the true causal
structure is given in the form of an ADMG, Shpitser and Pearl (2008a)
show that the do-calculus is still complete. The authors even give an algo-
rithm (ID-algorithm) to find the explicit reformulation of the interventional
distribution in terms of pre-intervention distribution if such a transforma-
tion exists. An algorithmic improvement (EID-algorithm) was proposed in
Shpitser et al. (2011).

If the true causal structure is given in the form of a MAG or PAG,
the generalized backdoor criterion (Maathuis and Colombo, 2013) offers a
sufficient (but not necessary) criterion for transforming the interventional
distribution into an expression involving standard statistical distributions.

5 Software and Application

For the statistical software R (R Core Team, 2013) the package pcalg is
available for causal inference (Kalisch et al., 2012). The package contains
implementations of PC, FCI, RFCI, GES, GIES and IDA. A detailed doc-
umentation (also of recent updates) can be found in the document accom-
panying the package (“vignette”). We demonstrate the application of this
software in two recent examples.

In the first example, Bühlmann et al. (2013) make public and analyze
a data set on vitamin (riboflavin) production in bacteria. There is a single
real-valued response variable which is the logarithm of the riboflavin pro-
duction rate. Furthermore, there are p = 4088 (co-)variables measuring the
logarithm of the expression level of 4088 genes. Using the R-package pcalg,
the authors illustrate in detail how IDA can be applied to estimate bounds
on the causal effect of a gene (in the example, the gene YCIC at was chosen)
on riboflavin production. It was found that an increase of the expression of
YCIC at by one unit leads to a change of the riboflavin production rate of
at least 0.08 units.

In a second example, Colombo and Maathuis (2012) discuss the analysis
of a data set on gene expression in yeast (extending previous analyses in
Maathuis et al. (2010) and Stekhoven et al. (2012)) for experimental valida-
tion of causal inference methods. Observational data contained expression
measurements of 5361 genes for 63 wild-type cultures. In addition to the
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purely observational data, the authors used interventional data on expression
measurements of the same 5361 genes for 234 single-gene deletion mutant
strains. The interventional data was used as the gold standard for estimat-
ing the total causal effect of the 234 deleted genes on the remaining genes
(giving a total of 234 × 5360 effects) using the observational data. Then,
the top 10% of these effects were defined as target set and it was evaluated
how well IDA could identify these effects from the observational data. For
the structure learning in IDA, different variations of PC were proposed by
the authors. The results are shown in a ROC curve in Fig. 4. The grey
dash-dotted line labelled with “RG” indicates the performance of random
guessing. The black solid line labelled with “PC” represents the method of
Maathuis et al. (2010). The black dashed line labelled “PC + SS” represents
the method of Stekhoven et al. (2012). The remaining lines correspond to
variations of the PC algorithm proposed by Colombo and Maathuis (2012).
It is clear that random guessing is dramatically outperformed by a wide
range of proposed approaches.

6 Conclusion

In this paper we reviewed substantial progress on causal inference in the
past two decades. Under some assumptions it is indeed possible to estimate
the causal structure given observational data. While in some settings the
result may not be unique (Markov equivalence), we discussed methods for
full identifiability and also incorporation of interventional data (perhaps
in an active way) to achieve full identifiability. We also showed that the
interventional distribution can be computed when the true causal structure
is known or estimated. This also holds true if we allow for hidden variables.

We close by highlighting three open problems for future research, whose
solutions would enable to generalize IDA to other scenarios relevant for many
practical applications.

The generalized backdoor criterion only gives a sufficient criterion for
identifying the interventional distribution. Thus, if the criterion fails to
identify we don’t know whether there is no translation of the interventional
distribution into an expression involving only standard statistical distribu-
tions or if we used the wrong criterion to find it. It would therefore be
desirable to extend the generalized backdoor criterion so that it is also nec-
essary.

The approach to causal structure learning based on ADMGs seems to
be attractive: One can incorporate Verma and inequality constraints and
if the structure was known, one could use complete identification methods
(ID) for expressing interventional distributions in terms of pre-intervention
distributions. However, the estimation of ADMGs is not easy at the moment.
This seems to be in part because it is not clear how to characterize equivalent

19



False positives

0 2000 4000 6000 8000 10000

0

2000

4000

6000

8000

Tr
ue

 p
os

iti
ve

s

MPC−stable
RG

PC

PC−stable
PC + SS
MPC−stable + SS(P)

PC + SSP

PC−stable + SSP

PC−stable + SS

Figure 4: Experimental validation of causal inference methods using gene
expression data in yeast. The dash-dotted line labelled with “RG” indicates
the performance of random guessing. It is clear that random guessing is
dramatically outperformed by a wide range of proposed approaches. This
figure is taken from Colombo and Maathuis (2012) with the permission of
the authors.
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ADMGs. It would therefore be desirable to develop a characterization of
equivalent ADMGs.

The use of interventional data in order to support observational data
helps to identify unique causal structures. However, methods with this intent
only exist when no hidden variables are present. It would therefore be
desirable to develop methods for mixed data (including active learning) when
hidden variables may be present.
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