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Abstract

Human protein diversity is partly due to a process called alternative splicing which enables different

exon/intron combinations arising from a single gene. We know that the prevalence of these com-

binations is development and tissue specific but we are far from understanding the mechanism of

alternative splicing and what causes the spliceosome to produce an array of different proteins from

the same genetic information in changing frequencies over time and different tissues. A first step in

the understanding of this process is the statistical analysis of the exon interaction structure. If we

know which exons interact with each other, we might be able to draw conclusions about the asso-

ciated functional domains. At present, the most advanced molecular technique to investigate this

issue is to generate large-scale single-gene transcriptome data, so-called full-length cDNA libraries.

Not all theoretically possible exon/intron combinations can be observed in these libraries, both due

to functional restrictions at the protein level as well as to the sheer number of possible combinations.

Statistically this poses the challenge of learning interactions in sparse contingency tables. To this

end, we develop methods to perform model selection and parameter estimation in high-dimensional

log-linear models. These include Bayesian methods as well as penalization approaches which gen-

eralize to this context the Lasso algorithm. We compare these procedures in a simulation study

and we apply the proposed methods to full-length cDNA libraries, yielding valuable insight into the

biological process of alternative splicing.

Keywords: Log-linear models, Sparse contingency tables, Interactions, Hierarchical models, Lasso,

Bayesian Variable Selection
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1. INTRODUCTION

One of the most striking discoveries of the genomic era is the unexpectedly small number of genes

in the human genome. This number has decreased from more than 100000 (Liang et al., 2000)

through 30000-35000 (Int. Consortium, 2001; Ewing and Green, 2000; Venter et al., 2001) and is

now estimated to be roughly between 20000 and 25000 (Int. Consortium, 2004; Southan, 2004), tens

of thousands less than initially expected and essentially the same number as found in phenotypically

much simpler organisms. Thus, a question of overriding biological significance is, how complex

phenotypes of higher organisms arise from limited genomes. Part of the explanation may be that

many genes undergo a process called alternative RNA splicing, which can generate many distinct

proteins from a single gene.

RNA splicing is a post-transcriptional process that occurs prior to mRNA translation. After the

gene has been transcribed into a pre-messenger RNA (pre-mRNA), it consists of intronic regions

destined to be removed during pre-mRNA processing (RNA splicing), as well as exonic sequences

that are retained within the mature mRNA. Occurring after transcription is the actual splicing

process, during which it is decided which exons are retained in the mature message and which are

targets for removal. This is modeled as a non-deterministic process where exons and introns are

retained and deleted in different combinations to create a diverse array of mRNAs from a common

coding sequence. This process is known as alternative RNA splicing. Mapping of large numbers of

expressed sequence tags (ESTs) onto genomic DNA has revealed that many genes are alternatively

spliced. Depending on the source, the percentage lies between 35% and 60% (Mironov et al., 1999;

Brett et al., 2000; Int. Consortium, 2001; Brett, Pospisil, Valcarcel, Reich, and Bork, 2002; Carninci

et al., 2005; Zavolan, van Nimwegen, and Gaasterland, 2003; Imanishi et al., 2004). However, the

information which can be derived from ESTs as far as alternative splicing is concerned is limited

for various reasons. One of these is transcript end bias resulting from the fact that ESTs are

prevalently derived from sequencing the ends of cDNAs. And as ESTs are short in length (typically

around 300-500bp), only a portion of the cDNA can be covered. This means that splice sites in

the middle region of the gene are strongly underrepresented in EST libraries and therefore hard to

detect by these means. One way to overcome this difficulty is by screening many full-length cDNAs.

By recording the complete cDNA from a mature RNA for the same gene again and again, a full-

length cDNA library, also known as single-gene library (SGL), builds up and detailed information

about how specific exon combinations go together becomes available. The functional regions of the

proteins are grouped in domains which in many cases correspond to a single exon which encodes these

domains. For example a transcription factor consists of a DNA binding domain and a regulatory

domain. Thus the alteration of the exon structure corresponds to an alteration in the function of

this particular domain. The central premise is that correlated expressions of domains point to a

functional association. If domains interact functionally then their splicing should be co-regulated. It

is further believed that such interaction patterns are regulated in a tissue and development specific
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way.

As more investigators become interested in this type of information, and large-scale single-gene

libraries become available, there is a strong need for reliable statistical methods for analyzing the

resulting datasets. Due to the large number of potential combinations in highly alternatively spliced

genes, any library will only comprise a small portion of the total theoretically possible inventory of

combinations. Statistically, this leads us to deal with sparse contingency tables in which dimensions

represent exons and cells represent variants. Investigating interactions among exons in the formation

of a message requires addressing a model selection problem that is challenging both inferentially and

computationally.

Here, within the context of log-linear models, we develop and use different statistical methods to

analyse sparse contingency tables, such as those arising from single-gene libraries. Our main focus

lies in identifying the interaction structure, estimating the interaction strength, and assessing how

the interaction structure varies over different tissues or stages of development in a single tissue. The

analysis of these interaction patterns is a first step towards understanding the underlying regulatory

program.

Section 2 is an introduction to contingency tables and log-linear models. In Section 3, we describe

different model selection procedures for log-linear models. Detailed algorithms and implementations

of these are given in Section 4. The summary of a simulation study is given in Section 5, and

the proposed methods are applied to real single-gene libraries in Section 6. Sections 2 and 3 are

presented in general terms, as the methodology developed there can be applied to a broad spectrum

of problems.

2. CONTINGENCY TABLES AND LOG-LINEAR MODELS

2.1 General Methodology

In this section we provide general definitions and notations. For the context of alternative splicing,

the reader is referred to Section 2.2.

A contingency table is formed by classifying a number of objects according to a set C of criteria

which correspond to categorical variables. The classified objects can be represented as the cell counts

of a so-called |C|-way contingency table, where |C| represents the number of elements in C. If we

adopt the notation of Dellaportas and Forster (1999), which goes back to Darroch, Lauritzen, and

Speed (1980), the table is the set I =
∏

c∈C Ic, where Ic is the set of levels of the factor c. An

individual cell is denoted by i = (ic, c ∈ C) and the corresponding cell count by ni. The total

number of cells in the table is m = |I | =
∏

c∈C |Ic|.

A natural way of representing the distribution of the cell counts is via a vector of probabilities p =

(pi, i ∈ I). If a total number of n individuals is observed and the objects are classified independently,

then the distribution of the corresponding cell counts n = (n1, n2, . . . , nm)t is multinomial with

5



probability p. A general log-linear model represents p as log (p) = Xβ, where β is a vector of

unknown regression coefficients. The choice of the design matrix X will be discussed below. A

specific parametrization of the log-linear model is in terms of the ”u parameters”, introduced by

Birch (1963), see for example Bishop, Fienberg, and Holland (1975). The resulting model is called

a log-linear interaction model:

log pi =
∑

a⊆C

ua(ia) (i ∈ I), (1)

where ia is the marginal cell ia = (iγ , γ ∈ a), indicating the levels of a subset a of C. Thus the

vector Ua = (ua(ia), i ∈ I) depends only on the corresponding cell i via the marginal cell ia. In

matrix formulation, this corresponds to a matrix X = [Xa, a ⊆ C], where X∅ is a column of 1’s

(intercept) and Xc1
∈ R

m×|Ic1
| for c1 ∈ C is an incidence matrix where each row has a unit entry in

the column of the level to which it belongs; Xc1c2
:= Xc1

: Xc2
is defined by taking each column of

Xc1
and multiplying it element-wise by each column of Xc2

; Xc1c2c3
= Xc1

: (Xc2
: Xc3); and this

can be generalized to any number of factors a = {c1, . . . , cl} ⊆ C.

The model (1) and the corresponding matrix X are highly overparametrized. To ensure identifiabil-

ity, we impose sum-to-zero constraints on ua:

∑

i∈I
iγ=const

ua(ia) = 0 ∀a ⊆ C, ∀γ ⊂ a, ∀iγ ∈ Iγ , (2)

while u∅ is a normalizing constant ensuring that all cell probabilities add up to 1. Equation (1) in

vector formulation becomes

log(p) =
∑

a⊆C

Ua. (3)

One can easily prove that under the constraints (2) it holds that Ua⊥Ub for a 6= b, i.e.
∑

i∈I ua(ia)ub(ib) =

0 (see Lemma A1 in the Appendix A for details). In matrix formulation, the constraints (2) impose

constraints on the sub-matrices Xa of X (a ⊆ C) in the representation log (p) = Xβ: X t
bXa = 0 for

a 6= b. If we reparametrize Xa by choosing orthonormal columns, it holds that Xa is an orthonormal

basis of span(Ua): Xa has dimensionality R
|I|×da , where da =

∏
γ∈a(|Iγ | − 1). Imposing the con-

straints (2) on the design matrix X corresponds in terms of ANOVA to choosing a poly-contrast.

The log-linear interaction model (1) or (3) with the constraints (2), takes on the following form in

matrix formulation:

log (p) = Xβ. (4)

The correspondence to (3) holds by using Ua = Xaβa, where βa is the part of the vector β corre-

sponding to the interaction term a. In case of factors with only 2 levels, βa is a scalar, otherwise it

is a vector of dimension da. If one assumes a smaller model without some of the interaction terms,

the model takes on the same form (4) with some columns removed from the design matrix X.
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2.2 Contingency Tables and Log-Linear Models for Single-Gene Libraries

Translating the formalism above to our problem is straightforward. The set C = {1, . . . , D} of

criteria corresponds in our case to D factors with 2 levels 1/-1. These represent the D exons,

which are either retained or deleted. The set I is the whole array of 2D theoretically possible

exon combinations. A single cell i of the contingency table can therefore be represented by a D-

dimensional binary vector (i1, . . . , iD), with each ij indicating whether the corresponding exon is

present or absent. The corresponding log-linear interaction model (1) with the constraints (2) can

be written in the following way:

log pi = β∅ +
∑

l∈{1,...,D}

βlil +
∑

i,k
j<k∈{1,...,D}

βjkijik + . . . + β12...Di1i2 · · · iD.

From this representation, one can straightforwardly derive the design matrix X and the parame-

trization (4).

The formulation above corresponds to the situation where we have D cassette exons. Cassette exons

are segments of the DNA which are either spliced in or spliced out. We note here that the term

exon throughout this work represents either a complete exon or an exon segment, as alternative

splicing at times occurs within exon boundaries, resulting in inclusion of exon fragments in the

mature transcript. The situation corresponds to D factors with two levels (spliced in or spliced out).

The methodology in Section 2.1 is held very general so that it can also be applied to problems with

more than two levels per factor. For example in the context of single-gene library analyis, if two

exons are mutually exclusive, an appropriate representation for the pair is given by using a single

factor with 3 levels.

3. MODEL SELECTION

In this section we introduce different model selection strategies in log-linear models. In Section 3.1

the pros and cons of hierarchical model selection are reviewed. In Sections 3.2 and 3.3 Bayesian

model selection strategies are introduced and in Sections 3.4, 3.5 and 3.6 penalization model selection

approaches are discussed.

3.1 Non-Hierarchical Versus Hierarchical Models

Hierarchical models are a subclass of models such that if an interaction term βa is zero, than all

higher order interaction terms βb for b ⊇ a are also zero. While it is possible that the true underlying

interaction model may not be hierarchical from a biological standpoint, a difficulty in the use of non-

hierarchical models arises from the fact that they are not invariant under reparametrization. We have

chosen the design matrix X with sum-to-zero constraints on ua (see (2)) to ensure identifiability,

and we used a specific, namely an orthonormal basis of span(Ua). In terms of ANOVA, this choice is

equivalent to choosing a poly-contrast. We could have imposed different constraints or have chosen
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a different basis of span(Ua), and this would have resulted in a different design matrix X or in

terms of ANOVA, a different choice of contrast. Suppose we have found an interaction vector β for

one parametrization of the log-linear model and that this vector corresponds to a non-hierarchical

model, meaning there is at least one lower order interaction term βa equal to zero, while βb 6= 0 for

at least one b ⊇ a. If we reparametrize the model, using a different design matrix, the coefficient for

the model term a may not be zero anymore. On the other hand, by reparametrizing a hierarchical

model, all zero terms remain zero after reparametrization. Therefore, hierarchicity is preserved

after reparametrization while non-hierarchicity depends on the parametrization. This is a distinct

advantage of working within the hierarchical class. In a hierarchical model, all zero coefficients

can directly be interpreted in terms of conditional independence, while for non-hierarchical models,

the zero terms of the hierarchized model (βa = 0 with βb = 0 ∀b ⊇ a) feature this interpretation

whereas lower order zero interaction terms may only be interpreted together with the according

parametrization.

3.2 Non-Hierarchical Bayesian Model Selection

Our model selection strategies include both Bayesian and non-Bayesian alternatives. The Bayesian

approach we choose is most closely related to those of Ntzoufras, Forster, and Dellaportas (2000),

George and McCulloch (1993) and Geweke (1994). We use a Markov chain Monte Carlo algorithm

based on Stochastic Search Variable Selection (SSVS): SSVS is a procedure proposed by George

and McCulloch (1993) to perform variable selection in the standard linear regression model. We

adapt this procedure to log-linear models. But instead of assuming a normal mixture model for the

coefficients of interest as in SSVS, we follow an approach proposed by Geweke (1994), and assume

the coefficients to be a mixture of a point mass at zero and a normal distribution. The complete

model is described as follows:

n ∼ Multinom(p) with log(p) = Xβ,

βa|γa ∼ (1 − γa)I0 + γaN (0, σ2
a1da

) independent for all a ⊆ C,

γa ∼ Ber(prγa
) independent for all a ⊆ C,

σ2
a ∼ Γ−1(l, u) independent for all a ⊆ C,

(5)

where I0 is a point mass at zero and γa is a Bernoulli variable with probability parameter prγa

reflecting prior belief that the corresponding interaction term Ua is present. The parameters σ2
a

follow an inverse gamma distribution with parameters l and u. In our simulation study, we also

considered fixed values for σ2
a. The choice of the prior parameter l, u and prγa

is discussed in Section

4.1. In the absence of strong prior belief, it is reasonable to assume that all σ2
a are identically

distributed. By imposing prior distributions on the log-linear parameters βa, it would be possible

to incorporate further prior knowledge in the form of existence of correlation or signs of correlation

between the different criteria C. One way is to use a prior with expectation different from zero

for the corresponding log-linear term (E [βa|γa = 1] 6= 0). See for example Dellaportas and Forster

(1999) for a more detailed discussion on normal priors for the log-linear parameters βα.
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We introduce variables αa, where αa ∼ N (0, σ2
a1da

) and we set βa = αa if γa = 1 and βa = 0 if

γa = 0 independent of the value of αa: βa = αaγa has then the desired distribution in (5). This

construction is mentioned, but not implemented, in Geweke (1994).

The calculation of the posterior distribution f(γ, α, σ2|n) is now required. This cannot be done

directly and Monte Carlo approximations are needed, for example from Gibbs sampling. We first

calculate the univariate conditional distributions of the parameters αa or components of αa if it is

a vector:

f(αa|n, γ, α\a, σ2) ∝ f(n|γ, α)f(αa|σ
2
a) ∝ exp (n · (X∅α∅ + Xaαaγa)) f(αa|σ

2
a).

Although this univariate conditional density is not of any recognized form, we can prove that it is

log-concave (see Lemma A2 in the Appendix A for details) and therefore sampling from it can be

efficiently done using adaptive rejection sampling, as proposed by Gilks and Wild (1992). Sampling

σ2
a is straightforward, as

f(σ2
a|n, γ, α, σ2

\a) = f(σ2
a|αa) ∝ f(αa|σ

2
a)f(σ2

a), (6)

and we can easily show that σ2
a|αa ∼ Γ−1(α2

a/2 + l, u + 1/2). Therefore we can sample σ2
a from an

inverse gamma distribution. In the case where σ2
a is assumed to be fixed, this sampling step can be

omitted. To sample from f(γa|n, γ\a, α, σ2), we compute the conditional Bayes factor BF in favour

of γa = 1 versus γa = 0. The conditional posterior distribution of γa is Bernoulli with pγa
= BF

1+BF
.

Thus we can sample

γa ∼ Ber(pγa
).

The Bayes factor BF is given by

BF =
f(n|γa = 1, γ\a, α)prγa

f(n|γa = 0, γ\a, α)(1 − prγa
)
.

The parameters αa, σ2
a and γa are updated in turn for all a ⊆ C. In this way we are able to efficiently

sample from the full posterior f(α, γ, σ2|n) and derive from it the posterior of f(β, γ, σ2|n). From

the marginal posterior distribution f(γ|n), we can estimate the model probabilities by the sample

proportions for γ, with the most promising models corresponding to the most frequently observed

γ. From f(β|n, γ) we can derive the distribution for the interaction strength vector β conditional

on the model γ.

3.3 Hierarchical Bayesian Model Selection

We adapt the algorithm described above in a way that allows only moves from one hierarchical

model to another, so that we never leave the class of hierarchical models. A hierarchical model is

determined by its generators, that is the maximal terms a ⊆ C which are present in the model.

The only individual model term which may be removed from a hierarchical model so that it remains
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hierarchical is a generating term. In addition, Edwards and Havranek (1985) define the dual gener-

ators, which are the minimal terms that are not present in the model. The only individual model

terms which may be added to the model so that it remains hierarchical are the dual generators.

We consider all hierarchical models to be equally likely and denote the set of generators and dual

generators of a hierarchical model corresponding to γ with Gγ . We use a Metropolis Hastings

algorithm to sample from the full posterior distribution f(γ, α, σ2|n). We propose a move from one

model γt to the next model γt+1 by choosing an element Gγt . Thus we randomly sample an element

a ∈ Gγt and the corresponding γa is set to one or zero respectively. The resulting γ is denoted as

γt+1. The corresponding move is accepted with acceptance probability:

min

(
1,

f(n|γt+1, αt)|Gγt |

f(n|γt, αt)|Gγt+1 |

)
.

The sampling procedure for αa and σ2
a is performed exactly as in the non-hierarchical case described

in Section 3.2.

3.4 `1-Regularized Model Selection

The Lasso, originally proposed by Tibshirani (1996) for linear regression, performs regularized pa-

rameter estimation and variable selection at the same time. It is defined as follows:

β̂
λ

= argmin
β

[
∑

i

(Y −Xβ)2i + λ
∑

i

|βi|

]
,

where Y = (Y1, . . . , Yn) is the response vector. It can also be viewed as a penalized Maximum

Likelihood estimator, as
∑

i(Y − Xβ)2i is proportional to the negative log-likelihood function for

Gaussian linear regression. While the MLE for the general regression model is no longer uniquely

defined and very poor in the case of more variables than observations, the Lasso estimator is still

reasonable for λ > 0. For our analysis, we have a similar problem, namely that the MLE is not

defined in case of zero counts in the contingency table: a detailed description of the existence of the

MLE in general log-linear interaction models is given in Christensen (1991). Inspired by the Lasso,

we estimate our parameter vector β by the following expression:

β̂
λ

= argmin
β


−l(β) + λ

m∑

j=1

| βj |


 , (7)

where l(β) is the log-likelihood function l(β) = log Pβ[n] ∝

∑
j nj(Xβ)j . This minimization has to

be calculated under the additional constraint that the cell probabilities add to 1:

m∑

j=1

exp ((Xβ)j) = 1. (8)

The problem of the optimization (7) is that the solution is no longer independent of the choice of

the orthogonal subspaces Xa. That is, if any set of orthogonal columns Xa of X is reparametrized

by a different orthogonal set, we get a different solution. To avoid this undesirable outcome we use
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a penalty that is intermediate between the `1- and the `2-penalties. This penalty, called group-`1-

penalty, has the following form:

∑

a⊆C

‖βa‖`2 , where ‖βa‖
2
`2

=
∑

j

(βa)2j

It has been proposed by Yuan and Lin (2006) for the linear regression problem with factor variables.

The estimator of β then becomes

β̂
λ

= argmin
β


−l(β) + λ

∑

a⊆C

a6=∅

‖βa‖`2


 , (9)

subject to the constraint in (8). By imposing a penalty function on the coefficients of the log-

linear interaction terms, overfitting as it might occur by using MLE is prevented. Furthermore,

the `1-penalty encourages sparse solutions as far as the single components of β are concerned, the

group `1-penalty encourages sparsity at the interaction level, meaning that the vector βa, which

corresponds to the interaction term a is either present or absent in the model as a whole. In case of

factors with only 2 levels, the group `1-penalty and the `1-penalty are equivalent.

For both the `1-, and the group `1-regularization, the parameter λ can be assessed e.g. by 10-fold

cross-validation: we divide the individual counts into ten equal parts and in turn leave out one part

for the rest (90%) to form a training contingency table with cell counts ntrain. The solution for an

array of values for λ, the so-called solution path, is calculated according to an algorithm described

in Section 4.2. The corresponding vectors of cell probabilities are denoted by p
(
β̂

λ
)
. We then use

the remaining 10% of the cell counts ntest to calculate the predictive negative log-likelihood score

−
∑m

j=1
ntest,j · log

(
pj(β̂

λ
)
)

∑m

j=1
ntest,j

, (10)

which is proportional to the out-of-sample negative log-likelihood. This score is on the same scale

when varying the number of observations and may therefore be used to compare contingency tables

of the same dimension but with different numbers of cell entries. The parameter λ is chosen as the

value which minimizes the cross-validated score in (10).

3.5 Relaxed `1-Regularized Model Selection

For the `1- as well as for the group `1-penalization, a single parameter, λ, controls both variable

selection and parameter estimation. It can be questioned whether these two effects can be controlled

well by a single parameter. For linear regression, it has been proven theoretically as well as em-

pirically (Meinshausen, 2005) that under some circumstances it is beneficial to separate these two

effects by allowing for two parameters. The two-stage relaxed Lasso accomplishes this:

β̂
λ,µ

= argmin
β


−l(βMλ

) + µ
∑

j∈Mλ

|βj |


 ,
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where Mλ = {1 ≤ k ≤ m|β̂λ
k 6= 0}, β̂

λ
as in (9) and βMλ

denotes a vector consisting only of

components in Mλ.

For selecting the parameters λ and µ, a similar approach is chosen as with `1-regularization in Section

3.4. First, we compute all possible submodels Mλ for the full dataset. Then, for each submodel

the second parameter µ is selected as for the regular `1-regularization by computing the negative

log predictive probability score (10). Finally, the parameters (λ, µ) are chosen to minimize the score

(10). When we prefer hierarchical over non-hierarchical models, we consider a hierarchical Mλ,

meaning that λ and µ are assessed using the hierarchical model induced by Mλ, i.e. the smallest

hierarchical model which contains all elements of Mλ. Due to the second-stage penalization, β̂
λ,µ

is not necessarily hierarchical though.

3.6 Step `1-Regularized Model Selection

If we consider the hierarchical models induced by the `1- or the relaxed `1-regularized model selection

procedures, it might happen that the final model chosen by cross-validation is large, for example if a

single high order interaction is estimated to be present in Mλ. Therefore, we set up a regularization

approach which we call step `1-regularized model selection. We first fit the model with the main

effects only, and calculate the predictive negative log-likelihood score (10) for the best main effects

model (step 1). The same is then done for the model including all main effects and first order

interactions (step 2) and so on. Finally, the model with minimal score (10) among all steps is

chosen.

4. IMPLEMENTATION

4.1 Prior Specification for Bayesian Methods

For the Bayesian estimation of the parameter vector, we must specify the parameters for the prior

distribution of σ2
a: σ2

a plays a role that is similar to that of the parameter λ in the Lasso. The lower

σ2
a, the smaller the estimated coefficient β̂a. An empirical Bayes approach to the implementation

could be to specify this parameter by cross-validation. While feasible for the `1-regularization

approaches above, cross-validation becomes prohibitive for the MCMC approaches because of the

computational demands. Dellaportas and Forster (1999) proposed a fixed value of two for all a in C,

e.g. σ2
a = σ2. Placing a normal prior with mean zero and variance two on each αa means that with

probability 0.95, each of these effects will increase or decrease the ratio of any two cell probabilities

by a factor of no more than 10. This is a relatively vague prior, and can be appropriate when no

prior information is available. However, our simulation study will illustrate that the final results can

be highly sensitive to the choice of this value. To mitigate this sensitivity, we assume σ2 to have an

inverse gamma distribution with mean and variance equal to one, as described in Section 3.2.
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In addition, for non-hierarchical model selection, we have to specify the prior distribution for γa.

We set γa ∼ Ber(prγa
), where prγa

reflects prior belief that the corresponding interaction term Ua

is present. Without prior knowledge, we assume here that all possible models are a priori equally

likely, corresponding to prγa
= 1/2 for all a ⊆ C.

This prior is especially attractive when coupled with MAP estimation, as done here, because it

effectively cancels out of the MAP calculation. In other situations, this prior may be less compelling.

For example, it may be of interest to report posterior probabilities of properties of sets in the model

space, such as marginal posteriors of the inclusion of certain coefficients or marginal posteriors of

the presence of high order interactions. Then one has to evaluate carefully the mass that priors

give to those sets, and one might have to reconsider the choice of the prior distributions to get

reasonable posterior probabilities of these sets. In addition, as D, the number of exons, increases,

estimating the MAP in the model space becomes difficult and marginal posteriors of summaries such

as the model size or the maximum order of interaction may be all that can be reliably estimated.

In those circumstances, we suggest graphing these posteriors along with the corresponding priors

probabilities, and/or to report Bayes factors.

4.2 Algorithm for `1-Regularization for Factors With Two Levels

For the regularization approaches we calculate β̂
λ

over a large number of values of λ in order to do

some cross-validation using (10). For this purpose, an efficient algorithm is required. As one can

easily verify by introducing Lagrange multipliers, finding the solution to (9) under the constraint

(8) is equivalent to minimizing an unconstrained function g(β):

g(β) = −l(β) + n
m∑

j=1

exp (µj) + λ
∑

a⊆C

a6=∅

‖βa‖`2 , (11)

with µ = Xβ. Here, g is a convex function. If each factor has two levels only, as in our application

with single-gene libraries, we can set up an algorithm, which efficiently yields the estimates for a

whole sequence of parameters λ. Let A denote the set of active interaction terms, which means

for a ∈ A it holds that βa 6= 0; XA is the corresponding sub-matrix of X, βA the corresponding

sub-vector of β and gA is g restricted to the subspace βA. We restrict ourselves to the currently

active set A, where ∇gA and ∇2gA are well-defined:

∇gA(βA, λ) = −Xt
A(n − n · exp (XAβA)) + λ(0, sign(βA))t

∇2gA(βA, λ) = n · Xt
Adiag (exp (Xβ))XA.

The algorithm, which is an adaption of the path following algorithm proposed by Rosset (2005), is

set up as follows:

13



(1) Start with β̂ = (− log (m), 0, . . . , 0)

(2) Set: λ0 = maxj∈C

j 6=∅
|(Xtn)j | = n,A = {∅} and t = 0.

(3) While (λt > λmin)

• (3.1) λt+1 = λt − ε

• (3.2) A = A ∪ {j /∈ A : |(Xt · (n − n · exp
(
Xβ̂

)
))j | > λt+1}

• (3.3) β̂ is updated as β̂t+1 = β̂t − [∇2gA(β̂t, λt+1)]
−1 · [∇gA(β̂t, λt+1)].

• (3.4) A = A \ {j ∈ A : |β̂t+1,j | < δ}

• (3.5) t = t + 1

The pairs (β̂t, λt), obtained from the algorithm above, represent the estimates from (9) under the

constraint (8) for a range of penalty parameters λt e.g. (t = ε, 2ε, . . .). The choice of the step length

ε represents the tradeoff between computational complexity and accuracy. To increase accuracy,

one can perform more than one Newton step (3.3) if the gradient starts deviating from zero. The

coefficient δ is also flexible. Typically it is chosen in the order of ε. The lowest λ for which one

wants the solution to be calculated is denoted by λmin.

Technical details concerning the algorithm can be found in the Appendix B.

5. SIMULATION STUDY

5.1 Data

We choose the true underlying interaction vector β consisting of 5 factors of 2 levels. By enumerating

the factors from 1 to 5, the generators of the model are 345+235+234+135+123+14, which means

that all third and fourth order interactions are absent, only five of ten second order interactions and

all first order interactions are present. This defines γ and the corresponding coefficients of β are

independently simulated using a normal distribution with mean zero and variance one.

Then, 250 draws from a multinomial distribution with probability vector p where log (p) = Xβ,

are taken. This corresponds to a reasonable number of cDNA in a single-gene library. This is then

repeated 10 times, independently of each other. With our choice of β, the resulting contingency

tables are sparse. With the simulated cell counts, β̂ is estimated with different methods described
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in the previous sections and these methods are then compared in various ways described in the next

Section 5.2.

5.2 Criteria

For the MCMC approaches, the maximum a posteriori (MAP) estimators are used. As a model

selection score (MSS), the fraction of correctly assigned model terms is reported:

MSS =
1

m

m∑

j=1

|1{βj 6=0} − 1{
�

βj 6=0}|.

Moreover, we consider the root mean squared error for the interaction coefficients,

RMSE =

√√√√ 1

m

m∑

j=1

(β̂j − βj)2.

For assessing how much the estimation of β varies over multiple datasets, we calculate for every

coefficient β̂j the estimated standard deviation σ̂j . The means of these standard deviations are

reported as

V ar =
1

m

m∑

j=1

σ̂j ,

a measure of variability.

To compare the different procedures for estimation of probabilities p = exp (Xβ), we simulate a

new dataset nnew of 4000 observations and calculate the out-of-sample negative log-likelihood score

(NLS) similar to the score in (10):

NLS(β̂) = −
m∑

j=1

nnew,j · log
(
pj(β̂)

)

5.3 Results

The results are summarized in Table 1. We notice that the penalty-based regularization approaches

proposed in this article leads to comparable or better results than the Bayesian approaches with

respect to the NLS-score, RMSE and the variation (Var).

The step and the relaxed `1-regularization are both competitive and can be better than MCMC for

model selection.

The results of the MCMC procedures are sensitive to the choice of the prior value or the prior

distribution for σ2. A flat prior for αa (σ2 = 2) results in worse estimations than with a prior that

shrinks the coefficients more towards zero (σ2 = 1/2). This suggests that specification of this prior

hyperparameter may be difficult in practice, while we can easily optimize λ in the regularization

approach by cross-validation.

The MCMC approaches without model selection perform poorly, as should be expected from data

generated by a sparse model. MCMC methods based on a non-hierarchical model selection are also

15



Table 1: Comparison of different methods to estimate the interaction strength vector β. MSS, NLS,

RMSE and Var are described in Section 5.2. sfdsfdssdfssdfsfdsfsfdsf sfsdf sdfsf sdfsfs dfsfsf sdfsf

fsfdsfsf

MSS NLS RMSE Var

Penalty-based regularization methods:

`1-regularization 69.7% 8835 0.228 0.144

Step `1-regularization 89.7% 8918 0.237 0.179

Relaxed `1-regularization 82.2% 8900 0.233 0.154

`2-regularization - 8833 0.238 0.130

MCMC without model selection:

σ2 = 2 - 9296 0.747 0.401

σ2 = 1 - 9105 0.467 0.287

σ2 = 1/2 - 8970 0.294 0.201

MCMC with model selection:

σ2 ∼ Γ−1(2, 3) 81.5% 8933 0.294 0.231

σ2 = 2 76.6% 9023 0.431 0.342

σ2 = 1 78.4% 8951 0.331 0.265

σ2 = 1/2 76.6% 8934 0.281 0.225

MCMC with hierarchical model selection:

σ2 ∼ Γ−1(2, 3) 84.1% 8879 0.255 0.180

σ2 = 2 80.6% 9176 0.415 0.284

σ2 = 1 83.4% 9059 0.308 0.221

σ2 = 1/2 83.4% 8966 0.247 0.178

clearly inferior to the hierarchical counterpart. This is not surprising, as we have simulated data

from a hierarchical model.

In Table 1 we have also added an additional approach, denoted by `2, the equivalent to the `1-

regularization but instead of an `1-penalty, using an `2-penalty on the coefficients of the log-linear

model. This method is equivalent to the MAP estimator with Gaussian priors on βa in (5), with

the parameter of the distribution optimized by cross-validation. This Ridge-type method does not

perform variable selection, but it is very competitive for all other criteria that we assessed.

Overall, the step `1-regularization has good model selection performance in combination with low

negative log-likelihood score (NLS) and a low mean squared error for the true β (RMSE). In addition,

it is feasible to optimize the tuning parameter λ by cross-validation as the computational cost

is very low compared to the MCMC approaches. On the other hand, posterior distributions of
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estimates from MCMC methods provide additional information about uncertainty in the model

space, compared to point estimates from `1− or `2− regularization.

6. REAL DATA FROM SINGLE-GENE LIBRARIES

6.1 Dataset

We estimate the splicing interaction pattern for a dataset corresponding to the itpr1 gene, one of

three mammalian genes encoding receptors for the second messenger inositol 1,4,5-trisphosphate

(InsP3 ). This gene is subject to alternative RNA splicing, with seven sites of transcript variation,

6 of these within the ORF and among these, D = 5 were completely assessed in the single-gene

libraries. Five single-gene libraries were built, one for adult rat cerebrum as well as four for different

stages of postnatal cerebellar development, namely on days 6, 12, 22 and 90, the latter being

considered as adult. Each library consists of between 179 and 277 transcripts which were assessed,

i.e.
∑m

j=1
nj ∈ [179, 277]. This gene is 89% identical at the cDNA level and 95% identical at the

amino acid level with the human receptor gene. The complete dataset can be found in Regan, Lin,

Emerick, and Agnew (2005).

6.2 Results

Unless stated differently, we report the results using the step `1-penalization method. We display

the interaction vector β̂ graphically by plotting the components β̂j for the different tissue and

development stages in Figure 1.

We clearly see that the exons interact mainly in pairs and there is no estimated higher order in-

teraction in the splicing interaction pattern of rat cerebellum. We further notice that the main

interaction pattern is very well conserved over different developmental stages. A strong mutual in-

teraction between the exons number three, four and five can be observed in all development stages of

rat cerebellum as well as in the cerebral tissue. The biggest changes in the interaction pattern during

development of rat cerebellum occur from postnatal day six to day 12. This can be seen at position

number 10 on the x-axis in Figure 1, and it corresponds to the first order interaction between exons

two and three, and from day 12 to day 16, the first main effect changes in sign and magnitude. The

first main effect decreases progressively from day 6 to adult, reversing in sign between day 12 and

22. Between day 22 and 90, the interaction pattern is strongly conserved. Comparing the splicing

interaction patterns between cerebellum and cerebrum in the adult rat, we see a much more complex

pattern in the cerebrum, involving several second order interactions, and therefore a clear distinction

from that of the cerebellum.

A natural way of visualizing a log-linear model is in terms of a graph. A graph G = (V , E) consists of

a finite set V of vertices and a finite set E of edges between these vertices. In our context, the vertices

correspond to the different alternatively spliced exons. We form the so-called independence graph by
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Figure 1: The upper panel shows the estimated splicing interaction vectors β̂ of rat cerebellum

tissues at postnatal days six, 12 and 22. The lower panel shows the splicing interaction vector β̂ of

rat cerebellum tissues at the age of 90 days as well as the splicing interaction vector β̂ of rat cerebral

tissue at the age of 90 days. Within an interaction degree, the sequence of coefficients is ordered

from left to right as follows: e.g. for 2nd order interactions, 123, 124, 125, . . . , 345, where 1, . . . , 5

represent exons 12, 23B, 40, 41, and 42 in the rip3r1 gene, as described in Regan et al. (2005).
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Figure 2: Interaction vectors β̂ for the gene itpr1 estimated by the hierarchical MCMC estimator

with σ2
a = 1 for all a. Note the close similarity between this interaction pattern and the one from

the step `1-regularization estimator in Figure 1.
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connecting all pairs of vertices that appear in the same generator. From this graph we can directly

read off all marginal and conditional independences by the global Markov property for undirected

graphs which states: if two sets of variables a and b are separated by a third set of variables c then

a and b are conditionally independent given c (a⊥⊥b|c), where for three subsets a, b and c of V , we

say c separates a and b if all paths from a to b intersect c.

The independence graphs for the estimated log-linear models are drawn in Figure 3, where the

thickness of the edges are proportional to the largest corresponding coefficient of the interaction
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vector β̂ and the radius of the vertices are chosen proportional to the corresponding main effect

coefficient. Figure 3 graphically exploits the strongly conserved interactions between exons three,

four and five. Except for a rather strong interaction between exon two and three on day six, all other

interactions appear to be rather small. The graphical representation of the interaction pattern of

adult rat cerebrum reveals a more complex interaction pattern with no conditional independences.

We have also estimated β with the hierarchical Bayesian approach using MCMC. For the choice of

σ2 = 1 this resulted in very similar interaction patterns as for the step `1-penalization method (see

Figure 2). For σ2 = 2 it led to remarkably different results. Details can be found in the supplemental

material available at http://stat.ethz.ch/∼dahinden/JASA/SupplementalMaterial.html. In

addition to this, a further dataset was analyzed where the details can be found in the Supplemental

Material as well.

As mentioned in Section 4.1, we report Bayes Factors in favour of certain model sizes to get an idea

of which order the models are. For rat cerebellum day six, these Bayes factors are 0 for the main

effects model, 1.92 for first order interaction, 18.29 for second, 93.95 for third and 0 for fourth order

interaction. Similarly for the other developmental stages, it is always the third order interaction

model with the largest Bayes Factor. Interestingly, the MAP in the model space is a model involving

only second order interactions, but the Bayes Factors speak in favour of a third order interaction

model.

7. CONCLUSIONS

We have developed efficient frequentist and Bayesian methods for identifying interaction patterns in

single-gene libraries. In a simulation study, the results of the new step `1-regularization method are

superior to hierarchical Bayesian approaches and other frequentist regularization methods. With real

data, the step `1-regularization and hierarchical Bayesian approach led to similar results, subject to

a specific choice of priors for the Bayesian method. Substantial computational advantages are on the

side of the step `1-method: the algorithm is sufficiently efficient such that cross-validation becomes

feasible which in turn allows for an objective choice of the tuning parameter. On the other hand,

posterior distributions of estimates from the hierarchical Bayes approach can provide a measure of

uncertainty on the model or models selected that is harder to derive in an optimization setting.

The approaches and results presented here can provide valuable insight into the underlying processes

in alternative splicing in general, and specfically in the brain development experiments considered

here. Most striking is the strong conservation over developmental stages at day 12, 22 and 90 (adult);

some differences are showing between postnatal day six and day 12. Also, the conservation between

the cerebellum and cerebrum is less pronounced than over developmental stages. Finally, second-

or higher-order interaction terms seem to be of minor relevance, suggesting that in this gene/tissue

combination, direct interaction mainly happens between pairs of exons, but not combinations of

three or more exons.
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Figure 3: Independence graphs for the estimated log-linear models for the itpr1 gene. For each

graph, the predictive probability score (10) is reported as a goodness of fit measure. Note the strong

mutual interaction between exons three, four and five.
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The step `1-method is not restricted to analyzing alternative splicing data, but is a much more general

tool which can be applied to a wide variety of problems involving sparse contingency tables. An R

package will be available soon for download at http://stat.ethz.ch/∼dahinden/R/loglin.html.
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APPENDIX A

Lemma A1. Ua⊥Ub for a 6= b, i.e.
∑

i∈I ua(ia)ub(ib) = 0.

Proof. For a ∩ b = ∅ it holds that

∑

i

ua(ia)ub(ib) =
∑

ia

∑

i,with
ia=const

ua(ia)ub(ib) =
∑

ia

ua(ia)
∑

i,with
ia=const

ub(ib)

=
∑

ia

ua(ia)
1

|ia|

∑

i

ub(ib) = 0, because
∑

i

ub(ib) = 0,

while |ia| is the total number of different marginal cells ia. For a ∩ b = γ it holds that

∑

i

ua(ia)ub(ib) =
∑

iγ

∑

ib,with
ib∩γ=iγ

∑

i,with
ib=const

ua(ia)ub(ib) =
∑

iγ

∑

ib,with
ib∩γ=iγ

ub(ib)
∑

i,with
ib=const

ua(ia)

=
∑

iγ

∑

ib,with
ib∩γ=iγ

ub(ib)
1

|ib\γ|

∑

i,with
iγ=const

ua(ia) = 0 because of (2) .

Lemma A2. The function f(αa|n, γ, α\a) is log-concave for the prior distributions chosen as de-

scribed in (5).

Proof. Without loss of generality we assume that αa is univariate. The proof for the case that αa is

a vector is exactly the same but for a single component of αa. We have to prove that the function

h(αa) is concave for

h(αa) = nα∅ + ntXaαaγa −
1

2σ2
α2

a,

where α∅ is the normalizing constant ensuring that all cell probabilities add up to one. This constant

depends on αa. As the last two terms are concave it remains to be shown that nα∅(αa) is concave.

For γa = 0 this term is constant and h(αa) is therefore concave. For γa = 1, we set X ′ = X\∅ and

α′ = α\∅, it then holds

h(αa) = nα∅ = −n log

m∑

i=1

exp ((X ′α′)i),

h′(αa) = −n
Xt

a exp (X ′α′)∑m

i=1
exp ((X ′α′)i)

,

h′′(αa) = −n
(X2

a)t exp (X ′α′)
∑m

i=1
exp ((X ′α′)i) − (Xt

a exp (X ′α′))2

(
∑m

i=1
exp ((X ′α′)i))2

,

where exp (X ′α′) has to be understood as the componentwise application of the exponential function

and likewise for X2
a . We now have to show that h′′(αa) is less than zero. If we denote exp (X ′α′)

by u and Xa with x, it is sufficient to prove that

m∑

j=1

x2
juj

m∑

i=1

ui − (xtu)2 ≥ 0.
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The above expression is

∑

i,j
j<j

((x2
j ujui + x2

i uiuj) − (2xiuixjuj)) =
∑

i,j
j<j

(x2
j + x2

i − 2xixj)uiuj =
∑

i,j,i<j

(xj − xi)
2uiuj ,

which is greater than zero, as u > 0. This proves Lemma A2.

APPENDIX B

We note that if β is a minimum of g, then βA is a minimum of gA.

In our application with single-gene libraries, all factors have two levels only, which allows to construct

an efficient algorithm. Since the gradient

∇


−l(β) + n

m∑

j=1

exp (µj)


 = −Xt · (n − n · exp (Xβ)),

where exp(Xβ) is understood as the componentwise exponential function, it follows that for a

minimum βA of gA, the following equation holds:

∇gA(βA) = −Xt
A · (n − n · exp (XAβ)) + (0, sign(βA))t · λ = 0 (A.1)

Without loss of generality, we can restrict ourselves to the subspace β ∈ R
− × R

m−1, because the

constraint (8) can only be satisfied for β∅ < 0 as is proved in the following Lemma A3. Therefore

β∅ ∈ A.

Lemma A3. β∅ < 0 for a minimum of g(β) for all λ ∈ R
+.

Proof.

log (p) = Xβ < 0 which yields (1, . . . , 1)Xβ = mβ0 < 0 this implies β∅ < 0.

This holds because (1, . . . , 1) is orthogonal to all columns of X except for the first one.

Additionally for β being a minimum, a necessary condition is:

|(Xt · (n − n · exp (Xβ)))j | < λ, ∀j /∈ A. (A.2)

Conditions (A.1) and (A.2) are sufficient for β being a minimum of (11). To find the β’s that solve

these equations for an array of values for λ, we set up a so-called path following algorithm. The

idea is to start from an optimal solution βλ0 for λ0, and follow the path for decreasing λ, using a

second-order approximation for βA. In the following, we restrict ourselves to the currently active

set A, omitting the index A. It then holds:

∇g(βt+1, λt+1) = 0 ≈ ∇g(βt, λt+1) + ∇2g(βt, λt+1)δβ. This implies (A.3)

δβ = −∇2g(βt, λt+1)
−1∇g(βt, λt+1).
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The algorithm tries to follow the optimal path as close as possible. At each step, it aims to meet

the conditions (A.1) and (A.2). In step (3.2), the active set A is identified, which forces β̂ to meet

the condition (A.2). In step (3.3), a Newton step as described in (A.3) is performed. Starting from

a solution which meets condition (A.1), the new β̂
λ

approximately meets (A.1) again.
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