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Hui Zou and Runze Li ought to be congratulated for their nice and interesting work
which presents a variety of ideas and insights in statistical methodology, computing and
asymptotics.

We agree with them that one- or even multi-step (or -stage) procedures are currently
among the best for analyzing complex data-sets. The focus of our discussion is mainly on
high-dimensional problems where p � n: we will illustrate, empirically and by describing
some theory, that many of the ideas from the current paper are very useful for the p � n
setting as well.

1 Non-convex objective function and multi-step convex op-
timization

The paper demonstrates a nice, and in a sense surprising, connection between difficult non-
convex optimization and computationally efficient Lasso-type methodology which involves
one- (or multi-) step convex optimization. The SCAD-penalty function (Fan and Li, 2001)
has been often criticized from a computational point of view as it corresponds to a non-
convex objective function which is difficult to minimize; mainly in situations with many
covariates, optimizing SCAD-penalized likelihood becomes an awkward task.

The usual way to optimize a SCAD-penalized likelihood is to use a local quadratic
approximation. Zou and Li show here what happens if one uses a local linear approx-
imation instead. In 2001, when Fan and Li (2001) proposed the SCAD-penalty, it was
probably easier to work with a quadratic approximation. Nowadays, and because of the
contribution of the current paper, a local linear approximation seems as easy to use thanks
to the homotopy method (Osborne et al., 2000) and the LARS algorithm (Efron et al.,
2004). While the latter is suited for linear models, more sophisticated algorithms have
been proposed for generalized linear models, cf. Genkin et al. (2004), Park and Hastie
(2007), Meier et al. (2006).

In addition, and importantly, the local linear approximation yields sparse model fits
where quite a few or even many of the coefficients in a linear or generalized linear model
are zero, i.e. the method does variable selection. From this point of view, the local linear
approximation is often to be preferred: in fact, it closely corresponds to the adaptive Lasso
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(Zou, 2006) which is in our view very useful for variable selection with Lasso-type tech-
nology. The rigorous convergence results in Section 2.3 of the paper, with a nice ascent
property as for the EM-algorithm, are further reasons to favor the local linear approxima-
tion over the local quadratic versions with its heuristic rule for ad-hoc thresholding to zero
(as described in the paragraph after formula (2.4) of the paper). Finally, the local linear
approximation is shown, in Theorem 2 of the paper, to yield the best convex majorization
of the penalty function.

1.1 Connection to the adaptive Lasso for type 1 penalty functions

Section 4 in the paper distinguishes the cases where the regularization parameter can be
separated from the penalty function or not. Type 1 penalty functions pλ(t) = λp(t) allow
for separation, e.g. the Bridge penalties and the logarithm penalty, but excluding SCAD.
From a computational point of view, the type 1 penalties are to be preferred because path-
following algorithms can be used: this is Algorithm 1 in Section 4 of the paper, allowing
to compute the whole regularization path very efficiently. In contrast, Algorithm 2, which
can be used for the one-step SCAD estimator, seems much less efficient for approximating
the entire regularization paths.

Question: Why should we use the one-step SCAD estimator? In particular, (at least some
of the) one-step type 1 penalty estimators, e.g. the adaptive Lasso as discussed below,
have the same asymptotic oracle properties, under the same conditions, as the one-step
SCAD presented in Theorem 3.

Consider now type 1 penalty functions. Formulae (3.1) and (3.3) of the paper de-
scribe the one-step estimator based on the local linear approximation. In formula (3.1)
corresponding to a linear model, we see that only the penalty function involves the initial
estimator: the estimator can be written as

β(1) = argminβ

1
2
‖y −Xβ‖2 + nλ

p∑
j=1

w(|β(0)
j |)|βj |,

where the penalty is based on re-weighting the `1-norm (or Lasso-penalty) with weights
wj = w(|β(0)

j |) depending on the initial estimator. Of course, the weights also depend on
the type 1 penalty function which we aim to approximate with the local linear approxi-
mation.

This is exactly the idea of the adaptive Lasso, recently proposed by Zou (2006). We
think it is important to emphasize this connection (which is not mentioned at all in the
paper) because: (i) it is a simple and very effective idea to reduce the bias of the Lasso,
see below; (ii) the adaptive Lasso is theoretically supported (Zou, 2006) and enjoys the
same oracle result as the one-step SCAD described in Theorem 3, and there are theoretical
results even for the high-dimensional situation where p � n (Huang et al., 2006).

Regarding issue (i): particularly in cases with many ineffective (or non-substantial)
covariates, the prediction optimal Lasso typically needs a large penalty parameter to get rid
of these ineffective covariates. But a large penalty parameter implies substantial shrinkage
to zero even for the coefficients corresponding to the important covariates. Solutions to
improve such bias problems of the Lasso are based on two-stage procedures, e.g. the
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LARS-OLS hybrid (Efron et al., 2004), the adaptive Lasso (Zou, 2006) or the relaxed
Lasso (Meinshausen, 2007).

2 Variable selection in the high-dimensional case

For simplicity, consider a linear model

y = Xβ + ε (1)

as discussed in Section 3.1 of the paper. Our goal is variable selection (which is in many
applications more relevant than prediction; we will present an example from biology in our
Section 3.2). In high-dimensional problems where p � n, computational aspects become
crucial. Since there are 2p sub-models, we cannot inspect all of them (even when using
efficient branch-and-bound methods). Ad-hoc methods can be used but they may be very
unstable yielding poor results (e.g. forward variable selection), see Breiman (1996). On
the other hand, having provably correct algorithms or methods, as the one in the paper
with provable properties, is much more desirable.

The Lasso and its modifications belong to the latter class of methods. Regarding the
computational feasibility, for linear models, the complexity to compute all sub-models from
Lasso is O(np min(n, p)) which is linear in the dimensionality p if p � n. An important
question is whether such computationally efficient estimators have good, provable sta-
tistical properties. Meinshausen and Bühlmann (2006) showed consistency of the Lasso
for variable selection in the high-dimensional setting where p � n: there is one major
assumption, the neighborhood stability condition, which was shown to be sufficient and
“almost” necessary (the wording “almost” refers to a numerical value which has to be
< 1 for sufficiency and ≤ 1 for necessity). Later, the irrepresentable condition has been
worked out (Zou, 2006; Zhao and Yu, 2006) which is easier to interpret but is equivalent
to the Meinshausen-Bühlmann assumption on neighborhood stability. The irrepresentable
assumption is restrictive and easily fails to hold if the design matrix exhibits a too strong
“degree of linear dependence” (of course, there is always linear dependence if p � n) or a
too strong population absolute correlation among the covariates.

Since the irrepresentable (or neighborhood stability) condition is restrictive, one would
like to understand Lasso’s behavior under weaker assumptions: recently, consistency re-
sults in terms of

‖β̂(λ)− β‖q = oP (1) (n →∞), q ∈ {1, 2} (2)

have been achieved, see van de Geer (2006), Meinshausen and Yu (2006), Zhang and
Huang (2007). The result in (2) has implications for variable selection. In case of fixed
dimension p, (2) implies: if βj 6= 0, then β̂j(λ) 6= 0 with probability tending to 1 (because
otherwise, the convergence to zero in (2) would not hold). That is:

The Lasso yields a too large model which contains the true model
with high probability (tending to 1 as n →∞). (3)

Under suitable conditions, the statement in (3) also holds in the high-dimensional case
where p � n, see Meinshausen and Yu (2006). As a second fact, we point out that
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The prediction optimal (w.r.t. MSE) tuned Lasso contains the true model
with high probability (tending to 1 as n →∞). (4)

This has been proved in Meinshausen and Bühlmann (2006).
Putting the two facts (3) and (4) together, we can view the Lasso as an excellent and

computationally efficient tool for “variable filtering”, in the sense that the true model is
with high probability a subset of the Lasso-estimated model. To appreciate the value of
such a result: imagine that we have p ≈ 10′000 and n ≈ 50 (e.g. from microarray data).
As the size of the Lasso-estimated sub-model is bounded by min(n, p) which equals n if
p � n, we pursue an immense dimensionality reduction from p ≈ 10′000 to something of
the order 50.

When viewing the Lasso as a variable filtering method, it is clear that we want to
do an additional step (similar to the one-step estimator in the paper) which aims to go
from the Lasso-estimated model in the first stage to the true model in a second stage.
We have already touched upon two-stage procedures for addressing the bias problem in
Lasso. The main proposals are the LARS-OLS hybrid (Efron et al., 2004), the relaxed
Lasso (Meinshausen, 2007) and the adaptive Lasso (Zou, 2006) with the Lasso as initial
estimator: all of them reduce the bias and in fact, this is what will lead to consistency
in variable selection. We think (based on empirical evidence) that the latter, which is
essentially the one-step estimator in the paper when using the Lasso as initial estimator,
is a very elegant way to address Lasso’s overestimation behavior. In addition, some theory
for consistency in variable selection has been worked out for the high-dimensional case
(Huang et al., 2006).

3 Beyond the one-step estimator

For regularization in high-dimensional spaces, we may want to use more than one or two
regularization parameters. This can be achieved by pursuing more iterations where every
iteration involves a separate tuning parameter (and as described below, those parameters
are “algorithmically” constrained). We propose here the

Multi-Step Adaptive Lasso (MSA-LASSO)

1. Initialize the weights w
(0)
j ≡ 1 (j = 1 . . . , p).

2. For k = 1, 2 . . . , M :
Use the adaptive Lasso with penalty function

λ
(k)
∗

p∑
j=1

w
(k−1)
j |βj |.

where λ
(k)
∗ is the regularization parameter leading to prediction optimality. Denote

the estimator by β(k) = β(k)(λ(k)
∗ ). In practice, the value λ

(k)
∗ can be chosen via some
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cross-validation scheme.
Up-date the weights

w
(k)
j =

1

|β(k−1)(λ(k−1)
∗ )j |

, j = 1, . . . , p.

For k = 1, we do an ordinary Lasso fit and k = 2 corresponds to the adaptive Lasso. Note
that what is termed “one-step” in the paper corresponds here to k = 2. Note that Zou
and Li initialize with w

(0)
j ≡ 0 (in the terminology of MSA-LASSO), yielding the MLE (in

step k = 1). We find it more natural, and actually essential in the high-dimensional case
with p � n, to initialize with the non-zero weights allowing for regularized fitting in step
k = 1.

We will illustrate below the MSA-LASSO on a small simulated model and a real data
set from molecular biology. Before, we describe some properties of the method which are
straightforward to derive.

Property 1: MSA-LASSO increases the sparsity in every step in terms of the `0-
norm, i.e. fewer selected variables in every step. As “heuristics”, which is derived from
the Zou and Li paper, MSA-LASSO is related to approximating the non-convex optimiza-
tion problem with the log-penalty

∑p
j=1 log(|βj |), see the formula appearing just before

Proposition 2. From the Bayesian view point, the log-penalty corresponds to the MAP
with improper prior β1, . . . , βp i.i.d. with (non-integrable) density f(β) ∝ 1

|β| which puts
a lot of mass at zero corresponding to a very high degree of sparsity.

Property 2: MSA-LASSO can be computed using the LARS algorithm for every
step. The computational complexity of MSA-LASSO is bounded by O(Mnp min(n, p));
due to the increase of sparsity, a later step is faster to compute than an early one. The
computational load is in sharp contrast to computing all solutions over all M steps when
allowing for any λ for each Lasso path: this would require O(np(min(n, p))M ) essential
operations.

MSA-LASSO is different from the multi-step procedure as analyzed in Section 2.3 of
the paper: there, the regularization parameter λ is fixed. We will also discuss below in
Tables 1 and 2, for a simulated example, that the algorithmic restriction of choosing the
regularization parameters in a sequentially optimal fashion seems very reasonable.

3.1 Small simulation study

To illustrate the proposed MSA-LASSO method, a small simulation study is carried out.
We use a linear model as in (1) with covariates X from a multivariate normal distribu-
tion with correlation matrix Σi,j = ρ|i−j| (for various values of ρ). The true underlying
parameter vector is of the form β = (c, . . . , c, 0, . . . , 0)T with pact non-zero entries and c
such that the signal-to-noise ratio is 9 (which we find more relevant for practical appli-
cations than a signal-to-noise ratio of 21.25 as in example 1 in the paper). The number
of predictors is set to p = 500. We choose the number of active variables pact ∈ {3, 25}.
In each simulation run, a training set of size 100 and a validation set of size 50 is used
to determine the prediction optimal estimator. A total of 100 simulation runs are carried
out for each parameter setting.
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As performance measures we use the squared error ‖β̂ − β‖22 and the number of false
positives (FP)

∑p
j=1 I(β̂j 6= 0, βj = 0). Table 1 illustrates the results for the case pact = 3.

We denote by 1-Step (k = 2) the MSA-LASSO with k = 2: it equals the adaptive Lasso

squared error
ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.8

1-Step (MSA-LASSO k = 2) 0.12 (0.16) 0.09 (0.09) 0.11 (0.11) 0.21 (0.23)
2-Step (MSA-LASSO k = 3) 0.08 (0.12) 0.08 (0.10) 0.09 (0.09) 0.23 (0.30)

1-Step opt. 0.08 (0.09) 0.09 (0.10) 0.10 (0.09) 0.19 (0.17)

false positives (FP)
ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.8

1-Step (MSA-LASSO k = 2) 6.10 (12.07) 3.82 (6.59) 3.73 (5.00) 3.19 (6.23)
2-Step (MSA-LASSO k = 3) 2.93 (7.53) 2.19 (6.24) 1.65 (2.69) 2.19 (5.09)

1-Step opt. 2.92 (7.13) 3.08 (7.55) 2.88 (6.00) 3.36 (5.56)

Table 1: Results for pact = 3 active variables. Average and standard deviations (in
parentheses) of squared errors and of false positives (FP).

with Lasso as initial estimator and we use the terminology “1-Step” to be more consistent
with the paper. Furthermore, 1-Step opt. is the adaptive Lasso with Lasso as initial
estimator (as for 1-Step) but we optimize over a large 2-dimensional grid of the two
regularization parameters which are involved in the initial Lasso and the adaptive Lasso
step. Several conclusions can be made. The estimation error can be slightly decreased by
an additional step if the correlation is not too high. More importantly, the number of false
positives gets reduced. The number of false negatives is zero for this setting (not shown),
i.e. the true variables are always identified. The computational extra effort of the 1-Step
opt. estimator does not pay off in this situation.

The results for pact = 25 are given in Table 2. There is a slight loss in terms of

squared error
ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.8

1-Step (MSA-LASSO k = 2) 6.15 (1.45) 3.23 (1.06) 1.78 (0.45) 1.57 (0.32)
2-Step (MSA-LASSO k = 3) 6.25 (1.50) 3.28 (1.12) 1.92 (0.48) 1.73 (0.35)

1-Step opt. 6.03 (1.49) 2.95 (1.04) 1.48 (0.49) 1.25 (0.33)

false positives (FP)
ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.8

1-Step (MSA-LASSO k = 2) 32.91 (23.66) 30.26 (18.16) 17.91 (16.37) 8.42 (9.01)
2-Step (MSA-LASSO k = 3) 27.43 (23.54) 25.52 (17.44) 14.60 (15.76) 6.35 (6.73)

1-Step opt. 31.55 (22.11) 24.55 (15.55) 9.48 (11.37) 2.76 (5.61)

Table 2: Results for 25 active variables. Average and standard deviations (in parentheses)
of squared errors and of false positives (FP).

mean squared error (MSE) for this setting when doing an additional step. Already the
1-step estimator loses compared to the initial Lasso estimator (not shown), in terms of
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MSE; likewise, the 1-step opt. estimator has worse performance than the initial Lasso
estimator. However, the number of false positives (FP) gets reduced again due to the
increased sparsity. In terms of FP, the 1-step opt. estimator seems to perform better for
moderate and large values of ρ; but an additional step (k = 4) in MSA-LASSO would
improve performance with respect to FP as well.

3.2 Real data example from biology

Reducing the number of false positives is often very desirable in biological applications
since follow-up experiments can be costly and laborious. In our experience, it is often
appropriate to do estimation on the conservative side with a low number of false positives
because we still see more positives than what can be typically validated in a laboratory.

We illustrate the MSA-LASSO method on a problem of motif regression (Conlon et al.,
2003) for finding transcription factor binding sites in DNA sequences. Beer and Tavazoie
(2004) contains a collection of microarray data and a collection of motif candidates for
yeast. The idea is to predict the gene expression value of a gene based on the corresponding
motif scores (the information based on the sequence data). The dataset which we consider
consists of n = 2587 gene expression values of a heat-shock experiment and p = 666 motif
scores. We use a training set of size 1300 and a validation set of size 650. The remaining
data is used as a test-set.

The squared prediction error on the test-set E[(ŷnew − ynew)] = (β̂ − β)T Σ(β̂ − β) +
Var(ε) remains essentially constant for all estimators (probably due to high noise, i.e.
large value of Var(ε)): 0.6193, 0.6230, 0.6226 for the Lasso, 1-step and 2-step estimator,
respectively. But the number of selected variables decreases substantially:

Lasso 1-Step 2-Step
number of selected variables 91 42 28

The list of top-candidate motifs gets slightly rearranged between the different estimators.
The hope (and in part a verified fact) is that the 1- or 2-step estimator yield more stable
lists with fewer false positives.
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