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Comment
Peter BÜHLMANN

I congratulate the authors for their excellent contribution cov-
ering practical and nonstandard mathematical aspects of infer-
ence. Quantifying uncertainty belongs to the core of statistics.
The standard (and overly simplified) measure for classification
accuracy is an estimated test set or generalization error. Laber
and Murphy address a much more appropriate and more chal-
lenging task: constructing accurate confidence intervals for the
test set error. I very much agree with them that quantifying ac-
curacy should be pursued with measures taking uncertainty into
account.

Laber and Murphy present thorough mathematical analysis
and arguments showing that with small sample size, the asymp-
totic framework should be chosen carefully. I concur with their
views and mathematical argumentation. In what follows, I at-
tempt to make a few selective cross-connections to related is-
sues that have been worked out in the past.

1. THE LOCAL VIEW, BAGGING, AND SUBSAMPLING

One of the key issues that Laber and Murphy address is the
need for careful analysis when the points are near the clas-
sification boundary, formalized as distinguishing whether or
not P[Xtβ∗ = 0] is strictly positive. The idea is then to look
more closely at what happens at the boundary Xtβ∗ = 0. The
approach considering “local alternatives” (section 3.3) is in-
structive, and I follow up on it by reusing a toy example from
Bühlmann and Yu (2002).

Consider a scenario where we have a general estimator θ̂n
for an unknown parameter θ∗

n = θ∗ + �/
√

n that is “moving”
as the sample size n changes [see the authors’ formula (11)].
For simplicity, assume that the value of the parameter is one-
dimensional (p = 1). Consider the indicator decision (or classi-
fication) function

d̂ = d̂n = 1(θ̂n < θ∗) = 1
(√

n(θ̂n − θ∗
n ) < −�

)
.

Assume that we are in a nice situation where
√

n(θ̂n − θ∗
n ) ⇒ N (0, σ 2∞) (n → ∞) (1)

for some asymptotic variance σ 2∞. We can then rewrite the esti-
mator as (see also section 2)

d̂n = 1(θ̂n < θ∗) = 1
(√

n(θ̂n − θ∗
n )/σ∞ < −�/σ∞

)
≈ 1(Z < −�/σ∞),

where Z ∼ N (0,1). For any � [including � = 0, which is
slightly different from formula (11)], the indicator decision
function does not converge to a constant, because the variance
is not converging to 0,

E[d̂n] = E[1(θ̂n < θ∗)] → �(−�/σ∞) (n → ∞),

Var(d̂n) = Var(1(θ̂n < θ∗))

→ �(−�/σ∞)
(
1 − �(−�/σ∞)

)
(n → ∞),
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where �(·) is the cdf of N (0,1). Here I simply recover aspects
of what Laber and Murphy discuss in detail.

Next, look at the bootstrap. The bootstrap is typically consis-
tent for asymptotic normally distributed estimators (Giné and
Zinn 1990). We assume
√

n
(
θ̂ (b)

n − θ̂n
) ⇒ N (0, σ 2∞) (n → ∞) in probability. (2)

Thus the bootstrapped indicator decision function becomes

1
(
θ̂ (b)

n < θ∗)
= 1

(√
n
(
θ̂ (b)

n − θ̂n
)
/σ∞ <

√
n(θ∗ − θ̂n)/σ∞

)
= 1

(√
n
(
θ̂ (b)

n − θ̂n
)
/σ∞ < −√

n(θ̂n − θ∗
n )/σ∞ − �/σ∞

)
Now look at the first two moments again, with respect to the
bootstrap distribution:

E
(b)

[
1
(
θ̂ (b)

n < θ∗)]
= P

(b)
[√

n
(
θ̂ (b)

n − θ̂n
)
/σ∞ < −√

n(θ̂n − θ∗
n )/σ∞ − �/σ∞

]
≈ �

(−√
n(θ̂n − θ∗

n )/σ∞ − �/σ∞
) ≈ �(−Z − �/σ∞), (3)

where Z ∼ N (0,1). The first approximation is due to bootstrap
consistency in (2), whereas the second approximation holds be-
cause of (1). Then, for the variance,

Var(b)
(
1
(
θ̂ (b)

n < θ∗)) ≈ �(−Z −�/σ∞)
(
1 −�(−Z −�/σ∞)

)
.

The bootstrap is not picking up the first two moments in a con-
sistent way; that is,

E[1(θ̂n < θ∗)]
E(b)[1(θ̂

(b)
n < θ∗)]

− 1 �= oP(1),

Var(1(θ̂n < θ∗))
Var(b)(1(θ̂

(b)
n < θ∗))

− 1 �= oP(1),

where the first statement about expectations holds only for
� �= 0. Thus, clearly the bootstrap does not provide confidence
intervals for E[d̂n] or similar quantities. However, the bootstrap
can be used to stabilize.

Instead of using the estimator d̂ = 1(θ̂n < θ∗), one can use
bagging (Breiman 1996). Consider the bagged version, which
is simply the bootstrap expectation,

d̂bag = E
(b)

[
1
(
θ̂ (b)

n < θ∗)] ≈ �(−Z − �/σ∞);
see formula (3). Figure 1 shows the asymptotic behavior of the
decision function d̂ and the (substantial) smoothing effect when
using d̂bag as a function of the random variable Z ∼ N (0,1) for
the value � = 0 (which corresponds to the most unstable point
with maximal variance for d̂) and using θ∗ = 0 without loss
of generality. This figure may be compared with the authors’
Figure 1.
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Figure 1. Asymptotic behavior of d̂ ≈ 1(Z < 0) and d̂bag ≈ �(−Z)

as a function of Z ∼ N (0,1), for � = 0 and, without loss of generality,
θ∗ = 0.

The smoothing operation (see Figure 1) introduces some bias
but reduces variance:

E[d̂bag] ≈ E[�(−Z − �/σ∞)],
E[d̂] ≈ �(−�/σ∞),

Var(d̂bag) ≈ Var(�(Z − �/σ∞)),

Var(d̂) ≈ �(−�/σ∞)(1 − �(−�/σ∞)).

The easiest comparison is for � = 0, which corresponds to the
most “unstable” case where d̂ has the greatest variance. Then,
based on the simple fact that �(−Z) is a Uniform([0,1]) ran-
dom variable,

E[d̂bag] ≈ 1/2, E[d̂] ≈ 1/2,

Var(d̂bag) ≈ 1/12, Var(d̂) ≈ 1/4.

In words, this means that there is approximately no bias of the
bagged decision d̂bag, whereas it enjoys a variance reduction
of a factor 3. The mean squared error (MSE) can be computed
for the target E[d̂]). The bagged procedure has smaller MSE
than the nonbagged estimator for a large range where |�| ≤ 2.3,
and the biggest gain (by a factor of 3) is at the most unstable
value where � = 0. The entire analysis hinges on asymptotic
normality and bootstrap consistency in (1) and (2).

For more complicated estimators, θ̂n, where (1) and (2) do
not hold, I do not know how the foregoing argument carries
through. From a methodological standpoint, the bootstrap is
still doing some sort of smoothing of the indicator (decision)
function. Bühlmann and Yu (2002) have looked at subsampling,
using subsample size m < n, instead of bootstrap resampling.
The analog of d̂bag is then

d̂subag(m) = E
(s)[1(

θ̂ subs(m)
n < θ∗)]

where the aggregation is over subsampled estimators (E(s) is
with respect to subsampling, and in fact is a finite sum over all(n

m

)
different subsamples of size m). One can then prove that

there is again a substantial gain in terms of MSE when using
d̂subag(m) instead of d̂. A generic and good choice of the sub-
sample size is m = �n/2�. [For further details, see Bühlmann
and Yu (2002).]

2. SAMPLE SPLITTING

As indicated earlier, subsampling with subsample size m =
�n/2� has the potential to stabilize and improve the decision
function d̂. Subsampling with such a subsample size is very
closely related to sample splitting with two half-samples in-
dexed by I1 = {1, . . . , �n/2�} and I2 = {1, . . . ,n} \ I1. One can
pursue a very different route with sample splitting than that dis-
cussed earlier.

2.1 p-Values and Confidence Intervals Based
on Sample Splitting

Laber and Murphy make a connection to Yang (referenced
by L&M) and raise the issue that Yang’s approach lacks rig-
orous mathematical justification. Other work by van de Wiel,
Berkhof, and van Wieringen (2009) and Meinshausen, Meier,
and Bühlmann (2009) presents mathematical theory when us-
ing (multiple) sample splitting for constructing p-values.

The problem studied by van de Wiel, Berkhof, and van
Wieringen (2009) is to test whether two methods exhibit a sig-
nificant difference in terms of their misclassification error,
a question closely related to Laber and Murphy’s results (see
their section 6). One can use the first half-sample, I1, to train
two different classifiers and then use I2 to test on |I2| sample
points the difference in performance for misclassification lead-
ing to a p-value (conditional on training data from I1). This ap-
proach has the problem that the resulting p-value depends very
heavily on the (random) sample split used, and thus the result
is not really reproducible. Aggregating over multiple (random)
sample splits is a useful idea (van de Wiel, Berkhof, and van
Wieringen 2009; Meinshausen, Meier, and Bühlmann 2009),
and I briefly outline in (5) how to aggregate p-values from such
multiple sample splits.

As an alternative to the approach of Laber and Murphy, one
could use sample splitting as follows. On I1, train the method
f̂ = f̂I1 and build the classifier sign(f̂I1(x)) for a new covariate x.
Then look at the performance on the other (test) sample:∑

i∈I2

1
(
sign

(
f̂I1(Xi)

) �= Yi
)
. (4)

Conditionally on the data from I1, the expression in (4) has a
Binomial(|I2|,πI1) distribution where πI1 = P[sign(f̂I1(X)) �=
Y], where (X,Y) is a new test data point (e.g., a sample point
from I2) and the probability is conditional on the samples
from I1.

This then enables significance testing. The null and alterna-
tive hypotheses are formalized when conditioning on training
data I ⊂ {1, . . . ,n} with |I| = �n/2�:

H0 :πI ≤ π0 for all I ⊂ {1, . . . ,n} with |I| = �n/2�.
Usually, the interest lies in one-sided testing, and the alterna-
tive would be HA :πI > π0 for some (training) set I. Note that
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π0 is a fixed value that does not depend on I. Using the sum-
mary statistics in (4), with its corresponding Binomial(|I2|,π0)

distribution under H0, we obtain a p-value

pI1(π0)

which is conditional on the training half-sample I1.
As indicated earlier, this p-value might be highly sensitive

to the sample split and its corresponding sets I1 and I2 =
{1, . . . ,n} \ I1. The remedy is to use B (random) sample splits
yielding p-values

p
I(j)1

(π0), j = 1, . . . ,B,

where B is “large” such as B = 100–500. These (dependent)
p-values can be aggregated using empirical quantiles. Write

qγ (π0) = qγ

I(1)
1 ,...,I(B)

1

(π0)

= γ -quantile of
{
p

I(j)1
(π0)/γ ; j = 1, . . . ,B

}
. (5)

Then qγ (π0) controls the type I error,

PH0[qγ (π0) ≤ α] ≤ α (0 < α < 1),

corresponding to the rejection of H0 if and only if qγ (π0) ≤ α.
We note that the aggregation of the p-values with the γ -quantile
involves an additional factor, 1/γ ; for example, when using
the median with γ = 1/2, the p-values p

I(j)1
(π0) must be mul-

tiplied by the factor of 2 to obtain error control. The proof
of such p-value aggregation under no additional assumptions
(other than that the p-value has a Uniform([0,1]) distribution
under the null-hypothesis) can be adopted from theorem 3.1 of
Meinshausen, Meier, and Bühlmann (2009). The latter refer-
ence also provides a method for estimating a good value of γ

while still providing error control. When making additional as-
sumptions, the correction factor 1/γ can be dropped (see van
de Wiel, Berkhof, and van Wieringen 2009).

From the p-values qγ (π0), a confidence interval can be con-
structed via duality:

I(1 − α) = {π0;qγ (π0) > α} (0 < α < 1).

Thus, a confidence interval is constructed for “some kind
of” conditional misclassification error. The phrase “some kind
of” refers to the issue of conditioning on all subsets I ∈
{I(1)

1 , . . . , I(B)
1 } that arise when performing B (random) sample

splitting operations. This may be an unusual viewpoint, and this
issue should be addressed in a more elegant and aesthetically
pleasing way.

2.2 Pros and Cons, and Some Remarks

The confidence interval I(1 − α) does not require any as-
ymptotic approximations. It is applicable in for example, high-
dimensional problems with p � n, and it is very generic and
easy to compute—as easy as bootstrapping or subsampling,
which only requires programming an additional outer loop that
repeats the same calculations B times. Moreover, such an ap-
proach enjoys the conceptual advantage of clearly separating

training and test sets, whereas the bootstrap as used by Laber
and Murphy involves the data that were used for training the
classifier. Does this lead to overly optimistic results, especially
in more complex problems? Would an out-of-bag bootstrap
(Breiman 2001) be beneficial?

The sample splitting approach has two drawbacks and poten-
tial disadvantages. First, the approach operates on training sam-
ple size �n/2�, which, despite aggregation afterward, is a poten-
tial loss of efficiency. Second, the p-value aggregation in (5) is
conservative [note the additional factor 1/γ in (5)], a potential
loss of power.

Of note, subsampling and sample splitting often lead to
“stable” results. In various contexts of high-dimensional prob-
lems, subsampling and sample splitting can be tremendously
useful for performing structure estimation (Meinshausen and
Bühlmann 2010) or assigning (conservative) p-values in gener-
alized regression (Meinshausen, Meier, and Bühlmann 2009).
The gain in stability when randomizing over different subsam-
ples (and/or subsets of the feature space) is only partially under-
stood (Lin and Jeon 2006; Meinshausen and Bühlmann 2010);
nevertheless, Leo Breiman, the “inventor” of this kind of think-
ing, has provided utterly convincing examples indicating that
these methods have the potential to provide very competitive
answers and results (Breiman 1996, 2001), perhaps in a much
broader range than his fundamental contributions in “improv-
ing” regression or classification methods.

3. CONCLUSIONS

Subsampling has interesting potential for stabilizing the indi-
cator or decision function, as outlined in Section 1. In principle,
the related concept of sample splitting can be used to construct
confidence intervals for the misclassification error or for many
other problems related to assigning uncertainty; see Section 2.

Laber and Murphy have presented an impressive path of
ideas and results. My remarks do not diminish in any sense
their beautiful contribution, and should be interpreted as an at-
tempt to provide some complementary thoughts about the issue
of constructing uncertainty measures for the misclassification
error or other quantities of interest.
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