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Abstract

We consider the problem of variable selection in high-dimensional linear models
where the number of covariates greatly exceeds the sample size. We introduce a
new concept, called partial faithfulness, and discuss how this concept can be used to
infer associations between the covariates and the response. Under the assumption of
partial faithfulness, we develop a simplified version of the PC algorithm (Spirtes et al.,
2000), the PC-simple algorithm. This algorithm is computationally feasible even with
thousands of covariates, and yields consistency for high-dimensional variable selection
under rather mild conditions on the (random) design matrix. Our assumptions are
of a different nature than coherence conditions for penalty-based approaches like the
Lasso: we make a simple assumption on the structure of the regression coefficients to
exclude adversarial cases. We also provide an efficient implementation of our algorithm
in the R-package pcalg and demonstrate the method on real and simulated data.

Keywords: Directed acyclic graph, Elastic net, Graphical modeling, Lasso, Regression

1 Introduction

The variable selection problem for high-dimensional models has recently attracted a lot of
attention. A particular stream of research has focused on penalty-based estimators whose
computation is feasible and provably correct (Meinshausen and Bühlmann, 2006; Zou,
2006; Zhao and Yu, 2006; Candès and Tao, 2007; van de Geer, 2008; Zhang and Huang,
2008; Meinshausen and Yu, 2009; Huang et al., 2008; Bickel et al., 2009; Wasserman
and Roeder, 2009; Wainwright, 2006; Candès and Plan, 2009). As such, these methods
distinguish themselves very clearly from methods based on heuristic optimization of an
objective function or stochastic simulation or search, e.g., MCMC, which often do not
exploit a high-dimensional search space.

In this paper, we propose a method for variable selection in linear models which is “di-
ametrically opposed” to penalty-based schemes. Reasons to look at such a new approach
include: (i) From a practical perspective, it can be very valuable to have a “diametrically
opposed” method in the tool-kit for high-dimensional data analysis, raising the confidence
for relevance of variables if they are selected by say two or more very different methods.
(ii) From a methodological and theoretical perspective, we introduce a new framework of
so-called partially faithful distributions. This framework allows to build up a hierarchical
estimation scheme, and the required mathematical assumptions are very different from
coherence assumptions for variable selection with penalty-based methods.

1



The partial faithfulness framework is introduced in Section 3. We prove that partial
faithfulness arises naturally in the context of (high-dimensional) linear models if we make
a simple assumption on the structure of the regression coefficients to exclude adversarial
cases (see assumption (A2) and Theorem 1). The name “partial faithfulness” is derived
from the concept of faithfulness (Spirtes et al., 2000, Section 2.3.3) that is used in graphical
models. A discussion of the relationship between partial faithfulness and faithfulness is
given in Section 3.2: considering an appropriate framework where comparisons can be
made, our partial faithfulness condition is weaker than faithfulness and hence we emphasize
this fact by the word “partial”.

In Section 4 we develop algorithms for variable selection under the assumption of par-
tial faithfulness. We first show how partial faithfulness can be used for a preliminary
reduction of the dimension of the covariate space. We call this technique “partial corre-
lation screening”. It can be viewed as a generalization of “sure independence screening”
that was proposed by Fan and Lv (2008). However, the reasoning and mathematical as-
sumptions in our approach and the approach of Fan and Lv (2008) are very different. The
idea of partial correlation screening leads to an algorithm for variable selection that we
call the “PC-simple algorithm”, since it is a simplification of the PC algorithm (Spirtes
et al., 2000) which has been proposed for estimating directed acyclic graphs. It is possible
to substantially simplify the PC algorithm for our purposes, since selecting variables in a
linear model is easier than estimating an entire graph. The PC-simple algorithm is compu-
tationally feasible in high-dimensional problems: its computational complexity is crudely
bounded by a polynomial in the dimension p of the covariate space, and we illustrate that
our implementation in the R-package pcalg has about the same computing time as the
LARS-algorithm (Efron et al., 2004).

Asymptotic properties of the algorithm are considered in Section 5. We prove con-
sistency of the PC-simple algorithm for variable selection in high-dimensional partially
faithful linear models under rather general designs (Theorem 4).

In Section 6 we compare our PC-simple algorithm with the Lasso and the elastic net
(Zou and Hastie, 2005) using simulated high dimensional data. In addition to reporting
on accuracy for variable selection, we give an overview of the runtime of the different
methods. We also demonstrate the usefulness of having “diametrically opposed” methods
by analyzing a real high-dimensional data set on riboflavin (vitamin B2) production by the
bacterium Bacillus subtilis. Finally, Section 7 contains a brief discussion, and all proofs
are collected in Appendix 1.

2 Model and notation

Let X = (X(1), . . . ,X(p)) ∈ Rp be a vector of covariates with E(X) = µX and cov(X) =
ΣX . Let ǫ ∈ R with E(ǫ) = 0 and var(ǫ) = σ2 > 0, such that ǫ is uncorrelated with
X(1), . . . ,X(p). Let Y ∈ R be defined by the following random design linear model:

Y = δ +

p∑

j=1

βjX
(j) + ǫ, (1)

for some parameters δ ∈ R and β = (β1, . . . , βp)
T ∈ Rp. Note that we assume implicitly

that E(Y 2) <∞ and E{(X(j))2} <∞ for j = 1, . . . , p.
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We consider models in which some (or most) of the βj ’s are equal to zero. Our main
goal is to identify the active set

A = {1 ≤ j ≤ p; βj 6= 0}
based on a sample of independent observations (X1, Y1), . . . , (Xn, Yn) which are distributed
as (X,Y ). We denote the “effective dimension” of the model, i.e., the number of nonzero
βj ’s, by peff:

peff = |A|.
We consider the following additional assumptions:

(A1) ΣX is strictly positive definite.

(A2) The regression coefficients satisfy:

{βj ; j ∈ A} ∼ f(b)db,

where f(·) denotes a density on (a subset of) Rpeff of an absolutely continuous
distribution with respect to Lebesgue measure.

Note that assumption (A1) implies identifiability of the regression parameters from the
joint distribution of (X,Y ) since β = Σ−1

X (cov(Y,X(1)) . . . , cov(Y,X(p)))T . Assumption
(A2) says that the non-zero regression coefficients are (fixed) realizations from an ab-
solutely continuous distribution with respect to Lebesgue measure. Once the βj ’s are
realized, we fix them such that they can be considered as deterministic in the linear model
(1). This framework is loosely related to a Bayesian formulation treating the βj ’s as in-
dependent and identically distributed random variables from a prior distribution which
is a mixture of point mass at zero (for βj ’s with j /∈ A) and a density with respect to
Lebesgue measure (for βj ’s with j ∈ A). Assumption (A2) is rather mild in the following
sense: the regression coefficients having values zero can arise in an arbitrary way and only
the non-zero coefficients are restricted to exclude adversarial cases. Interestingly, Candès
and Plan (2009) also make an assumption on the regression coefficients using the concept
of random sampling in their “generic S-sparse model”. Other than that, there are no
immediate deeper connections between their setting and ours.

We close this section by introducing some notation that we will use throughout the
paper. We denote the (i, j)th entry of a matrix ΣX by ΣX;i,j. For any set S ⊆ {1, . . . , p},
we let |S| denote the cardinality of S, and we let SC denote the complement of S in
{1, . . . , p}. For example, {j}C = {1, . . . , p} \ {j} for j ∈ {1, . . . , p}. Moreover, we let
X(S) denote the set of X(j)’s for which j ∈ S, i.e., X(S) = {X(j); j ∈ S}. Finally,
we use parcor(Z(1), Z(2)|W ) and parcov(Z(1), Z(2)|W ) to denote the population partial
correlation and the population partial covariance between two variables Z(1) and Z(2)

given a collection of variables W .

3 Faithfulness and partial faithfulness

3.1 Partial faithfulness

We now introduce the concept of partial faithfulness. This concept will allow us to identify
the active set A using a simplified version of the PC algorithm (see Section 4).
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Definition 1. (Partial faithfulness) Let X ∈ Rp be a random vector (e.g. covariates),
and let Y ∈ R be a random variable (e.g. response). The distribution of (X,Y ) is said to
be partially faithful if for every j ∈ {1, . . . , p}

parcor(Y,X(j)|X(S)) = 0 for some S ⊆ {j}C

=⇒ parcor(Y,X(j)|X({j}C )) = 0.

Note that for the linear model (1) with assumption (A1), βj = 0 if and only if

parcor(Y,X(j)|X({j}C )) = 0. Hence, such a model satisfies the partial faithfulness as-
sumption if for every j ∈ {1, . . . , p}:

parcor(Y,X(j)|X(S)) = 0 for some S ⊆ {j}C =⇒ βj = 0. (2)

Theorem 1. Consider the linear model (1) satisfying assumptions (A1) and (A2). Then
the partial faithfulness assumption holds almost surely (with respect to the distribution
generating the non-zero regression coefficients, see (A2)).

A proof is given in the Appendix. Theorem 1 says that failure of partial faithfulness
has probability zero (i.e., Lebesgue measure zero). This is in the same spirit as a result
by Spirtes et al. (2000, Th. 3.2), saying that non-faithful distributions for a directed
acyclic graph have Lebesgue measure zero, but we are considering here the weaker notion
of partial faithfulness (see Section 3.2).

A direct consequence of partial faithfulness is as follows:

Corollary 1. Consider the linear model (1) satisfying the partial faithfulness condition.
Then the following holds for every j ∈ {1, . . . , p}:

parcor(Y,X(j)|X(S)) 6= 0 for all S ⊆ {j}C ⇐⇒ βj 6= 0.

A simple proof is given in the Appendix. Corollary 1 shows that an effective variable,
i.e., an element of the active set A, has a strong interpretation in the sense that all
corresponding partial correlations are different from zero when conditioning on any subset
S ⊆ {j}C . In many applications, such a strong concept of association is a desirable
property.

3.2 Relationship between faithfulness and partial faithfulness

The name “partial faithfulness” is motivated by the concept of faithfulness that is used
for graphical models (Spirtes et al., 2000, Section 2.3.3). These two concepts are loosely
related, but in general faithfulness does not imply partial faithfulness, and partial faithful-
ness does not imply faithfulness. However, under some additional assumptions a weaker
form of faithfulness implies partial faithfulness (Theorem 2), and this is the reason for the
name “partial faithfulness”.

We first recall the definition of faithfulness. The distribution of a collection of random
variables Z(1), . . . , Z(q) can be depicted by a directed acyclic graph (DAG) G in which
each vertex represents a variable, and the directed edges between the vertices encode
conditional dependence relationships in the following sense. If two variables Z(i) and Z(j)

are d-separated (see, e.g., Spirtes et al. (2000, Section 2.3.4)) by a collection of variables
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Z(S) for S ⊆ {1, . . . , q} \ {i, j}, then Z(i) and Z(j) are conditionally independent given
Z(S). We say that the distribution of (Z(1), . . . , Z(q)) is faithful to the DAG G if the
other direction is also true, i.e., if the following holds for all i 6= j ∈ {1, . . . , q} and
S ⊆ {1, . . . , q} \ {i, j}:

Z(i) and Z(j) are conditionally independent given Z(S)

⇐⇒ Z(i) and Z(j) are d-separated by Z(S) in G.

In other words, faithfulness means that all and only all conditional independence relation-
ships among the variables can be read off from the DAG G using d-separation.

Partial faithfulness is related to a weaker version of faithfulness. We say that the
distribution of (X,Y ), where X ∈ Rp is a random vector (e.g. covariates) and Y ∈ R is a
random variable (e.g. response), is weakly faithful to a DAG G if the following holds for
all j ∈ {1, . . . , p} and S ⊆ {j}C :

X(j) and Y are conditionally independent given X(S)

⇐⇒ X(j) and Y are d-separated by X(S) in G. (3)

Thus, weak faithfulness requires that all and only all conditional independence relation-
ships between Y (e.g. the response) and all X(j)’s (e.g. the covariates) can be read off
from the DAG using d-separation, but it does not require that all and only all conditional
independence relationships among the X(j)’s (e.g. the covariates) can be read off using
d-separation.

Theorem 2. Assume that the linear model (1) with assumption (A1) holds. Moreover,
assume that the distribution of (X,Y ) is multivariate normal and weakly faithful (see (3))
to a DAG G in which any edges between Y and X(j), j = 1, . . . , p, are pointing towards
Y . Then partial faithfulness holds.

A proof is given in the Appendix. We note that the assumptions in Theorem 2 are
made to create a framework in which faithfulness and partial faithfulness are both mean-
ingful. We assume that the distribution of (X,Y ) can be represented by a DAG, since
faithfulness is defined with respect to DAGs. We assume that any edges between Y and
X(j), j = 1, . . . , p, are pointing towards Y , since that is a natural way to represent the
linear model (1) as a DAG. Finally, we assume multivariate normality because condi-
tional independence (used in faithfulness) equals zero partial correlation (used in partial
faithfulness) for multivariate normal distributions.

As mentioned before, in general faithfulness does not imply partial faithfulness or
vice versa. This is illustrated in several examples below. Example 1 shows a case where
both faithfulness and partial faithfulness fail to hold. Example 2 shows a case where
faithfulness holds, but partial faithfulness does not. Examples 3 and 4 show cases where
partial faithfulness holds, but faithfulness does not.

Example 1. Let θ ∈ R \ {0} and consider the following Gaussian linear model:

X(1) = ε1,

X(2) = X(1) + ε2,

Y = θX(1) − θX(2) + ε,

5



where ε1, ε2 and ε are independent standard Normal random variables. This model can be
represented by the DAG in Figure 1(a). It can also be represented by the linear model (1)
with β1 = θ and β2 = −θ.

The distribution of (X(1),X(2), Y ) is not faithful to the given DAG, since X(1) = ε1 and
Y = −θε2 + ε are independent, but they are not d-separated in the DAG. The distribution
of (X(1),X(2), Y ) is also not partially faithful, since parcor(Y,X(1)|∅) = cor(Y,X(1)) = 0
but parcor(Y,X(1)|X(2)) 6= 0.

Note that the reason for failure of faithfulness and partial faithfulness in Example 1 is
a very specific parameter constellation of the βj ’s for the given distribution of (X(1),X(2)).
In fact, we are exactly in the situation discussed in the proof of Theorem 1, equation (11):

β1parcov(X(1),X(1)|∅) = −β2parcov(X(2),X(1)|∅) = θ,

since β1 = θ, β2 = −θ, parcov(X(1),X(1)|∅) = var(X(1)) = 1, and parcov(X(2),X(1)|∅) =
cov(X(2),X(1)) = 1. Thus, the parameter constellation β1 = θ and β2 = −θ is exactly a
parameter combination for which partial faithfulness (and faithfulness) does not hold.

Example 2. Consider the following Gaussian linear model:

X(1) = ε1,

Y = ε,

X(2) = X(1) + Y + ε2,

where ε1, ε2 and ε are independent standard Normal random variables. This model can be
represented by the DAG in Figure 1(b).

The distribution of (X(1),X(2), Y ) is faithful to the given DAG, since all and only
all conditional independence relationships among the variables can be read off using d-
separation. However, the distribution of (X(1),X(2), Y ) is not partially faithful, since
parcor(Y,X(1)|∅) = cor(X(1), Y ) = 0, but parcor(Y,X(1)|X(2)) 6= 0.

In Example 2, partial faithfulness fails to hold because the X(j)’s and Y do not satisfy
the hierarchical structure of the linear model given in (1), in the sense that it is not possible
to first define the distribution of X, and then write Y as a linear combination (1). This is
shown in the DAG in Figure 1(b) by the fact that the edge between Y and X(2) is pointing
towards X(2), a rather unnatural assumption in a linear model.

Example 3. Let θ ∈ R \ {0} and consider the following Gaussian linear model:

X(1) = ε1,

X(2) = X(1) + ε2,

X(3) = θX(1) − θX(2) + ε3,

Y = X(3) + ε,

where ε1, ε2, ε3 and ε are independent standard Normal random variables. This model
can be represented by the DAG in Figure 1(c). The model can also be represented by the
linear model (1) with β1 = β2 = 0 and β3 = 1.
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The distribution of (X(1),X(2),X(3), Y ) is not faithful to this DAG, since X(1) = ε1 and
X(3) = −θε2 + ε3 are independent, but they are not d-separated in the DAG. However, the
distribution of (X(1),X(2),X(3), Y ) is partially faithful, since parcor(Y,X(j)|X({j}C )) 6= 0
only for j = 3, and parcor(Y,X(3)|X(S)) 6= 0 for any S ⊆ {1, 2}.

In Example 3, faithfulness is violated because the conditional independence relation-
ships among the X(j)’s, j = 1, . . . , 3, cannot be read off using d-separation due to specific
parameter cancellations, analogously to the parameter cancellations in Example 1. On the
other hand, since the conditional independence relationships between Y and the X(j)’s,
j = 1, . . . , p, can be read off exactly from the DAG using d-separation, partial faithfulness
holds by Theorem 2.

Example 4. Consider the following Gaussian linear model:

X(1) = ε1, Z = εZ , X(4) = ε4,

X(2) = Z + X(1) + ε2,

X(3) = Z + X(4) + ε3,

Y = X(2) + ε,

where ε1, . . . , ε4, εZ and ε are independent standard Normal random variables, and where
Z is assumed to be unobserved. This model can be represented by the DAG in Figure 1(d).
It can also be represented by the linear model (1) with β1 = β3 = β4 = 0 and β2 = 1.

The distribution of (X(1), . . . ,X(4), Y ) is not faithful to any DAG, in the sense that
there is no DAG that represents all and only all conditional independence relationships
among these variables. However, the distribution of (X(1), . . . ,X(4), Y ) is partially faithful,

since parcor(Y,X(j)|X({j}C )) 6= 0 only for j = 2, and parcor(Y,X(2)|X(S)) 6= 0 for all
S ⊆ {1, 3, 4}.

In Example 4, the distribution of (X(1), . . . ,X(4), Y ) is non-faithful because of the
existence of an unobserved covariate Z, and the fact that DAGs are not closed under
marginalization (cf. Richardson and Spirtes (2002)). On the other hand, since the con-
ditional independence relationships between Y and X(1), . . . ,X(4) can be read off exactly
via d-separation, the distribution is partially faithful by Theorem 2.

4 The PC-simple algorithm

4.1 Population version of the PC-simple algorithm

We now explore how partial faithfulness can be used for variable selection. In order to show
the key ideas of the algorithm, we first assume that the population partial correlations
are known. In Section 4.2 we consider the more realistic situation where the population
partial correlations are unknown, and need to be estimated from data.

Recall that partial faithfulness for the linear model (1) says:

parcor(Y,X(j)|X(S)) = 0 for some S ⊆ {j}C =⇒ βj = 0.

The easiest relation is with S = ∅:

cor(Y,X(j)) = 0 =⇒ βj = 0, (4)
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Figure 1: Graphical representation of the models used in Examples 1 - 4.

showing that the active set A cannot contain any j for which cor(Y,X(j)) = 0. Hence,
we can do screening according to marginal correlations and build a first set of candidate
active variables

A[1] = {1 ≤ j ≤ p; cor(Y,X(j)) 6= 0}.

We call this the step1 active set or the correlation screening active set, and we know by
(4) that

A ⊆ A[1]. (5)

Such correlation screening may reduce the dimensionality of the problem by a substantial
or even huge amount, and due to (5), we can use other variable selection methods on the
reduced set of variables A[1].

Furthermore, we can do screening with partial correlations of order one by using the
following relation: for j ∈ A[1],

parcor(Y,X(j)|X(k)) = 0 for some k ∈ A[1] \ {j} =⇒ βj = 0. (6)

That is, for checking whether the jth covariate remains in the model, we would addition-
ally screen with all partial correlations of order one. Note that we only consider partial
correlations given variables in the step1 active set A[1]. This is similar to what is done in
the PC algorithm, and yields an important computational reduction while still allowing
us to eventually identify the true active set A (see Algorithm 1 and Theorem 3). Thus,
screening with partial correlations of order one using (6) leads to a smaller active set

A[2] = {j ∈ A[1]; parcor(Y,X(j)|X(k)) 6= 0 for all k ∈ A[1] \ {j}} ⊆ A[1].

This new step2 active set A[2] further reduces the dimensionality of the candidate active
set, and because of (6) we still have that A[2] ⊇ A.

We can then continue screening using higher-order partial correlations, and we end up
with a nested sequence of stepm active sets

A[1] ⊇ A[2] ⊇ . . . ⊇ A[m] ⊇ . . . ⊇ A. (7)
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A stepm active set A[m] can be used as dimensionality reduction and any favored vari-
able selection method could then be used for the reduced linear model with covariates
corresponding to indices in A[m]. Alternatively, we can continue the algorithm until the
candidate active set does not change anymore. This leads to the following simplified
version of the PC algorithm (Spirtes et al., 2000).

Algorithm 1 The population version of the PC-simple algorithm.

1: Set m = 1. Do correlation screening, see (4), and build the step1 active set
A[1] = {1 ≤ j ≤ p; cor(Y,X(j)) 6= 0}.

2: repeat

3: m = m + 1. Construct the stepm active set:

A[m] = {j ∈ A[m−1]; parcor(Y,X(j)|X(S)) 6= 0

for all S ⊆ A[m−1] \ {j} with |S| = m− 1}.

4: until |A[m]| ≤ m.

The value of m which is reached in Algorithm 1 is called mreach:

mreach = min{m; |A[m]| ≤ m}. (8)

The following theorem shows that the population version of the PC-simple algorithm
correctly identifies the active set A for linear model (1) satisfying (A1) and partial faith-
fulness.

Theorem 3. For the linear model (1) satisfying (A1) and partial faithfulness, the pop-
ulation version of the PC-simple algorithm identifies the true underlying active set, i.e.
A[mreach] = A = {1 ≤ j ≤ p; βj 6= 0}.

A proof is given in the Appendix. We note that partial faithfulness (which is often
weaker than faithfulness, see Section 3.2) is sufficient to guarantee correct inference of the
population PC-simple algorithm. The PC-simple algorithm is similar to the PC algorithm
(Spirtes et al., 2000, Section 5.4.2). But the PC algorithm considers all ordered pairs
of variables in (X(1), . . . ,X(p), Y ), while we only consider ordered pairs (Y,X(j), j ∈
{1, . . . , p}. The reason that we do not consider pairs (X(j),X(k)) is implied by the fact
that we are only interested in associations between Y and X(j). Less obvious is the finding
that we can restrict ourselves to consider conditioning sets in the neighborhood of Y only
(instead of both neighborhoods of Y and X(j) as in the PC algorithm).

4.2 Sample version of the PC-simple algorithm

For finite samples, we need to estimate partial correlations. We use the following shorthand
notation:

ρ(Y, j|S) = parcor(Y,X(j)|X(S)), ρ̂(Y, j|S) = p̂arcor(Y,X(j)|X(S)),

ρ(i, j|S) = parcor(X(i),X(j)|X(S)), ρ̂(i, j|S) = p̂arcor(X(i),X(j)|X(S)),
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where the “hat-versions” denote sample partial correlations. The sample partial correla-
tions can be calculated recursively: for any k ∈ S we have

ρ̂(Y, j|S) =
ρ̂(Y, j|S \ {k})− ρ̂(Y, k|S \ {k})ρ̂(j, k|S \ {k})√
{1− ρ̂(Y, k|S \ {k})2}{1− ρ̂(j, k|S \ {k})2}

.

In order to test whether a partial correlation is zero, we apply Fisher’s Z-transform

Z(Y, j|S) =
1

2
log

(
1 + ρ̂(Y, j|S)

1− ρ̂(Y, j|S)

)
. (9)

Classical decision theory in the Gaussian case yields then the following rule when using the
significance level α. Reject the null-hypothesis H0(Y, j|S) : ρ(Y, j|S) = 0 against the two-
sided alternative HA(Y, j|S) : ρ(Y, j|S) 6= 0 if

√
n− |S| − 3|Z(Y, j|S)| > Φ−1(1 − α/2),

where Φ(·) denotes the standard normal cumulative distribution function. The Gaussian
distribution serves as a reference: even in absence of a Gaussian distribution, the rule
above is a thresholding operation.

The sample version of the PC-simple algorithm is obtained by replacing the statements
about parcor(Y,X(j)|X(S)) 6= 0 (including S = ∅) in Algorithm 1 by

√
n− |S| − 3|Z(Y, j|S)| > Φ−1(1− α/2).

The resulting estimated set of variables is denoted by Â(α) = Âm̂reach(α), where m̂reach is
the estimated version of the quantity in (8). The only tuning parameter α of the PC-simple
algorithm is the significance level for testing partial correlations.

We note that the PC-simple algorithm is very different from a greedy forward (or
backward) scheme: it screens many correlations or partial correlations at once and may
delete many variables at once. Furthermore, it is a more sophisticated pursuit of variable
screening than the marginal correlation approach in Fan and Lv (2008) or the low-order
partial correlation method in Wille and Bühlmann (2006). Castelo and Roverato (2006)
extended the latter and considered a limited-order partial correlation approach. However,
this method does not exploit the clever trick of the PC-simple algorithm that it is sufficient
to consider only conditioning sets S which have survived in the previous stepm−1 active
set A[m−1]. Therefore, the algorithm of Castelo and Roverato (2006) is often infeasible
and has to be approximated by a Monte Carlo approach.

The computational complexity of the PC-simple algorithm is difficult to evaluate ex-
actly, but the worst case is polynomial in p: the crude bound is O(ppeff), see Kalisch
and Bühlmann (2007, formula (4)). Since the PC-simple algorithm is a simplified version
of the PC algorithm, its computational complexity is bounded above by that of the PC
algorithm. In fact, we can easily use the algorithm for problems where p ≈ 100 − 5′000,
as demonstrated in Section 6.

5 Asymptotic results in high dimensions

5.1 Consistency of the PC-simple algorithm

We show that the PC-simple algorithm from Section 4.2 is asymptotically consistent for
variable selection, even if p is much larger than n, if we assume that the true underlying
linear model is sparse.
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We consider the linear model in (1). In order to simplify some asymptotic calculations,
we assume a joint Gaussian distribution (see (B1) below). To capture high-dimensional
behavior, we let the dimension grow as a function of sample size and thus, p = pn and
also the distribution of (X,Y ) (including e.g. partial correlations ρ(·, ·|·) = ρn(·, ·|·)), the
regression coefficients βj = βj,n and the active set A = An with peff = peffn = |An|
change with n. Our assumptions are as follows.

(B1) The distribution in model (1)

(X,Y ) ∼ Pn = Npn+1(µX,Y ;n,ΣX,Y ;n)

is Gaussian and Pn satisfies assumption (A1) and the partial faithfulness condition
for all n.

(B2) The dimension pn = O(na) for some 0 ≤ a <∞.

(B3) The cardinality of the active set peffn = |An| = |{1 ≤ j ≤ pn; βj,n 6= 0}| satisfies:
peffn = O(n1−b) for some 0 < b ≤ 1.

(B4) The partial correlations ρn(Y, j|S) = parcor(Y,X(j)|X(S)) satisfy:

inf
{
|ρn(Y, j|S)|; 1 ≤ j ≤ pn, S ⊆ {j}C with ρn(Y, j|S) 6= 0

}
≥ cn,

where c−1
n = O(nd) for some 0 < d < b/2, and 0 < b ≤ 1 is as in (A3).

(B5) The partial correlations ρn(Y, j|S) and ρn(i, j|S) = parcor(X(i),X(j)|X(S)) satisfy:

sup
n,j,S⊆{j}C

|ρn(Y, j|S)| ≤M < 1, sup
n,i6=j,S⊆{i,j}C

|ρn(i, j|S)| ≤M < 1.

The Gaussian assumption in (B1) is not crucial. A more detailed discussion of assumptions
(B1)-(B5) is given in Section 5.2.

Denote by Ân(α) the estimated set of variables from the PC-simple algorithm in Section
4.2 with significance level α.

Theorem 4. Consider the linear model (1) and assume (B1)-(B5). Then there exists a
sequence αn → 0 (n→∞) and a constant 0 < C <∞ such that the PC-simple algorithm
satisfies:

pr[Ân(αn) = An] = 1−O(exp(−Cn1−2d))→ 1 (n→∞),

where d > 0 is as in (B4).

A proof is given in the Appendix. A choice for the value of the tuning parameter
leading to consistency is αn = 2(1 − Φ(n1/2cn/2)) which depends on the unknown lower
bound of partial correlations in (B4). The value αn, although being a significance level of
a single test, is a tuning parameter which allows to control type I and II errors over the
many tests which are pursued in the PC-simple algorithm.
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5.2 Discussion of the conditions of Theorem 4

There is a substantial amount of recent work on high-dimensional and computationally
tractable variable selection, most of it considering (versions of) the Lasso (Tibshirani,
1996) or also the Dantzig selector (Candès and Tao, 2007). Neither of these methods
exploit partial faithfulness and thus, it is interesting to discuss our conditions with a view
towards other established results.

First, we remark that most other works on high-dimensional variable selection make
assumptions on the design matrix but allow for any sparse parameter vector β; an excep-
tion is the work by Candès and Plan (2009). In this paper, our assumption (A2) poses
some restrictions on the non-zero components of β but allows for rather general designs
where the Lasso is inconsistent, see Example 5 below.

For the Lasso, Meinshausen and Bühlmann (2006) proved that a so-called “neighbor-
hood stability” condition is sufficient and almost necessary for consistent variable selection
(the word “almost” refers to the fact that a strict inequality “<” appears in the sufficient
condition whereas for necessity, the corresponding relation is a “≤” relation). Zou (2006)
and Zhao and Yu (2006) gave a different, equivalent condition: in the latter work, it is
called the “irrepresentable” condition. We point out that the neighborhood stability or
irrepresentable condition can quite easily fail to hold (e.g. in Example 5 below) which,
due to the almost necessity of the condition, implies inconsistency of the Lasso for vari-
able selection. The adaptive Lasso (Zou, 2006) or other two-stage Lasso and thresholding
procedures (Meinshausen and Yu, 2009) yield consistent variable selection under substan-
tially weaker conditions than the neighborhood stability or irrepresentable condition, see
also Example 5 below. Such two-stage procedures rely on results for ‖β̂ − β‖q (q = 1, 2)
whose optimal convergence rate to zero is guaranteed under remarkable mild assumptions
(Bickel et al., 2009) (These conditions are not directly comparable with our conditions
(B1)-(B5)).

Regarding our assumption (B1), the Gaussian distribution can be relaxed at the price
of tightening other assumptions and a more involved proof. The inclusion of (A1) is rather
weak since we do not require explicitly any behavior of the covariance matrix ΣX = ΣX;n

in the sequence of distributions Pn (n ∈ N), except strict positive definiteness for all n
(but no explicit bound on the minimal eigenvalue). The partial faithfulness condition
follows from assuming (A2) in Section 2 for every n. It is also interesting to note that
we require partial faithfulness only: dependence relations among covariates enter only
indirectly via conditioning sets S ⊆ {1, . . . p} \ {j} for a partial correlation between the
response Y and some covariate X(j). However, as a word of caution, the result by Robins
et al. (2003) indicates that uniform consistency for variable selection may fail to hold
due to “nearly” partially faithful distributions. Assumption (B2) allows for an arbitrary
polynomial growth of dimension as a function of sample size, i.e. high-dimensionality, while
(B3) is a sparseness assumption in terms of the number of effective variables. Both (B2)
and (B3) are fairly standard assumptions in high-dimensional asymptotics. Assumption
(B4) is a regularity condition, saying that the non-zero partial correlations have to be of
larger order than 1/

√
n. Without such a condition, one gets into the domain of super-

efficiency, e.g. the behavior of the Hodges-Lehmann estimator. Assumptions (B3) and
(B4) are rather mild: note that with b = 1 in (B3), for example for fixed peffn = peff <∞,
the partial correlations can decay as n−1/2+ε for any 0 < ε ≤ 1/2. Finally, assumption (B5)
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is excluding perfect collinearity: since we require all partial correlations to be bounded
by a constant M < 1 for all n ∈ N, this yields some relatively mild restrictions on the
covariance matrix ΣX,Y = ΣX,Y ;n. If the dimension p is fixed (with fixed distribution P
in the linear model), (B2), (B3) and (B4) hold automatically, and (B1) and (B5) remain
as the only conditions.

Although our assumptions are not directly comparable to the neighborhood stability or
irrepresentable condition for the Lasso in general, it is easy to construct examples where
the latter fails to be consistent while the PC-simple algorithm recovers the true set of
variables, as shown by the following example.

Example 5. Consider a Gaussian linear model as in (1) with

p = 4, peff = 3, σ2 = 1, µX = (0, . . . , 0)T ,

ΣX =





1 ρ1 ρ1 ρ2

ρ1 1 ρ1 ρ2

ρ1 ρ1 1 ρ2

ρ2 ρ2 ρ2 1



 , ρ1 = −0.4, ρ2 = 0.2,

β1, β2, β3 fixed i.i.d. realizations from N (0, 1), β4 = 0.

It is shown in Zou (2006, Cor. 1) that the Lasso is inconsistent for this model. On the
other hand, (B1) holds because of (A2), and also (B5) is true (which are all the conditions
for the PC-simple algorithm for a fixed distribution P ). Hence, the PC-simple algorithm
is consistent for variable selection. It should be noted though that also the adaptive Lasso
is consistent for this example.

5.3 Asymptotic behavior of correlation screening

For correlation screening, see formula (5), we do not require any sparsity. We also remark
that correlation screening is the same as “sure independence screening” by Fan and Lv
(2008), but our reasoning, assumptions and mathematical derivations via partial faithful-
ness are very different. We assume:

(C1) as assumption (B1).

(C2) as assumption (B2).

(C3) as assumption (B4) but for marginal correlations cor(Y,X(j)) = ρn(Y, j) only.

(C4) as assumption (B5) but for marginal correlations cor(Y,X(j)) = ρn(Y, j) only.

Denote by Â[1]
n (α) the correlation screening active set estimated from data using sig-

nificance level α, i.e. the first step in the sample version of the PC-simple algorithm.

Theorem 5. Consider the linear model (1) and assume (C1)-(C4). Then there exists a
sequence αn → 0 (n→∞) and a constant 0 < C <∞ such that:

pr[Â[1]
n (αn) ⊇ An] = 1−O(exp(−Cn1−2d))→ 1 (n→∞),

where d > 0 is as in (C3).
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A proof is given in the Appendix. A possible choice of αn is αn = 2(1−Φ(n1/2cn/2)).
As pointed out above, we do not make any assumptions on sparsity. However, for non-
sparse problems, many correlations may be non-zero and hence, Â[1] could still be large,
e.g., almost as large as the full set {1 ≤ j ≤ p}, achieving no effective dimensionality
reduction.

Under some restrictive conditions on the covariance ΣX of the random design, Fan
and Lv (2008) have shown that correlation screening or sure independence screening is
overestimating the active set A, as stated in Theorem 5. However, Theorem 5 shows that
this result holds without any strong assumptions on ΣX but assuming partial faithfulness
instead. Hence, our result justifies correlation screening as a powerful tool in a broader
range of scenarios than what it appears to be from the restrictive setting of Fan and Lv
(2008).

6 Numerical results

6.1 ROC analysis for simulated data

We simulate data according to a Gaussian linear model as in (1) having p covariates with
µX = (0, . . . , 0)T and covariance matrix ΣX;i,j = ρ|i−j|. In order to generate values for
β, we follow (A2): a certain number peff of coefficients βj have a value different from
zero. The values of the nonzero βj ’s are sampled independently from a standard normal
distribution and the indices of the nonzero βj ’s are evenly spaced between 1 and p. We
consider a low- and a high-dimensional setting as follows:

Low-dimensional: p = 19, peff = 3, n = 100; ρ ∈ {0, 0.3, 0.6} with 1000 replicates

High-dimensional: p = 499, peff = 10, n = 100; ρ ∈ {0, 0.3, 0.6} with 300 replicates

We evaluate the performance of the methods using ROC curves which measure the
capacity for variable selection independently from the issue of choosing good tuning pa-
rameters. We compare the PC-simple algorithm (PC, R-package pcalg) with the Lasso
using the LARS algorithm (Efron et al., 2004) (LARS, R-package lars) and with the
Elastic Net (Zou and Hastie, 2005) (ENET, R-package elasticnet). For the latter, we
vary the ℓ1-penalty parameter only while keeping the ℓ2-penalty parameter fixed at the
default value from the R-package elasticnet to construct the ROC curve. In the ROC
plots shown in Figure 2, horizontal and vertical bars indicate 95%-confidence intervals for
the false positive rate (FPR) and the true positive rate (TPR), respectively; definitions
of FPR and TPR are given in Section 6.2. In our PC-simple algorithm, the proposed
default value for the tuning parameter is α = 0.05: its performance is indicated by the
intersection of a vertical line and the ROC curve. A more principled way to choose the
amount of regularization can be done using subsampling: Meinshausen and Bühlmann
(2008) present a generic approach which allows to control the familywise error rate.

We first discuss the results of the low-dimensional settings (Figures 2(a), 2(c), 2(e)).
For small FPR, our PC-simple algorithm is clearly dominating LARS and ENET. If the
correlation among the covariates increases, the performance of ENET gets worse, whereas
the performances of PC-simple and LARS don’t vary much. When focusing on values of
FPR arising from the default value for α in our method, PC-simple outperforms LARS
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(a) Low dimensional, ρ = 0.
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(b) High dimensional, ρ = 0.
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(c) Low dimensional, ρ = 0.3.
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(d) High dimensional, ρ = 0.3.
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(e) Low dimensional, ρ = 0.6.
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(f) High dimensional, ρ = 0.6.

Figure 2: ROC curves for the simulation study in Section 6.1. The horizontal and vertical
bars indicate 95% confidence intervals for the FPR and TPR, respectively. The solid
vertical lines indicate the performance of the PC-simple algorithm using the default α =
0.05.
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and ENET by a large margin. Note that many application areas call for a small FPR, as
discussed also in Section 6.3.

For the high-dimensional settings (Figures 2(b), 2(d), 2(f)), we see that for small FPR,
the difference between the methods is small. LARS performs best, while ENET is worst
and PC-simple is somewhere in between. For larger FPR, this effect becomes stronger. Up
to the FPR which arises by the default value of α = 0.05, PC-simple is never significantly
outperformed by either LARS or ENET.

Finally, we consider the runtimes of the different methods. All calculations were done
on a Dual Core Processor with 2.6 GHz and 32 GB RAM running on Linux and using R
2.5.1. The processor times were averaged in the low and high-dimensional example over
1000 and 300 replications, respectively. The average processor times and standard errors
are given in Table 1.

p ρ PC-simple LARS ENET

19 0 0.004 (4e-5) 0.016 (3e-5) 0.024 (3e-5)
19 0.3 0.004 (4e-5) 0.016 (3e-5) 0.024 (3e-5)
19 0.6 0.005 (5e-5) 0.016 (3e-5) 0.024 (3e-5)

499 0 0.164 (0.003) 0.795 (0.006) 13.23 (0.03)
499 0.3 0.163 (0.002) 0.838 (0.007) 13.41 (0.03)
499 0.6 0.160 (0.002) 0.902 (0.006) 12.91 (0.02)

Table 1: Average runtime (and standard errors) in seconds over 1000 and 300 repetitions
for p = 19 and p = 499, respectively. The runtimes for PC-simple were measured using
the default of α = 0.05 while LARS and ENET computed a whole path of solutions.

We should avoid the conclusion that PC-simple is faster than LARS or ENET since the
runtimes for PC-simple were measured using the default of α = 0.05 only whereas LARS
and ENET compute a whole path of solutions. The purpose of Table 1 is to show that
PC-simple is certainly feasible for high-dimensional problems. In addition, when using
PC-simple on say 10 different (small) values of α, the computation is about of the same
order of magnitude than LARS or ENET for the whole solution path.

Further examples, with p = 1000, peff = 5, n = 50 and equi-correlated design ΣX;i,j =
0.5 for i 6= j and ΣX;i,i = 1 for all i, are reported in Bühlmann (2008).

6.2 Prediction optimal tuned methods for simulated data

We now compare different methods when using prediction optimal tuning. It is known
that the prediction-optimal tuned Lasso overestimates the true model (Meinshausen and
Bühlmann, 2006). But the adaptive Lasso (Zou, 2006) and the relaxed Lasso (Mein-
shausen, 2007) correct Lasso’s overestimation behavior and prediction-optimal tuning for
these methods yields a good amount of regularization for variable selection.

We use our PC-simple algorithm for variable selection and use then the Lasso or
the adaptive Lasso to estimate coefficients for the sub-model selected by the PC-simple
algorithm. We compare it with the Lasso, the adaptive Lasso and the relaxed Lasso. For
simplicity, we do not show results for the elastic net (which was found to be worse in terms
of ROC-curves than the Lasso, see Section 6.1).
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We simulate from a Gaussian linear model as in (1) with p = 1000, peff = 20, n = 100
and:

µX = (0, . . . , 0)T , ΣX;i,j = 0.5|i−j|, σ2 = 1,

β1, . . . , β20 i.i.d. ∼ N (0, 1), β21 = . . . = β1000 = 0,

with 100 replicates.
We consider the following performance measures:

‖β̂ − β‖22 =
∑p

j=1(β̂j − βj)
2 (MSE Coeff)

EX [{XT (β̂ − β)}2] = (β̂ − β)cov(X)(β̂ − β)T (MSE Pred)∑p
j=1 I(β̂j 6= 0, βj 6= 0)/

∑p
j=1 I(βj 6= 0) (true positive rate (TPR))∑p

j=1 I(β̂j 6= 0, βj = 0)/
∑p

j=1 I(βj = 0) (false positive rate (FPR))

(10)

where I(·) denotes the indicator function.
The methods are used as follows. Prediction optimal tuning is pursued with a vali-

dation set having the same size as the training data. The Lasso is computed using the
lars-package from R. For the adaptive Lasso, we first compute a prediction-optimal Lasso
as initial estimator β̂init, and the adaptive Lasso is then computed by solving the following
optimization problem:

argminβ∈Rp(

n∑

i=1

(Yi −XT
i β)2 + λ

p∑

j=1

|βj |/|β̂init,j |),

where λ is chosen again in a prediction-optimal way. The computations are done with the
lars-package from R, using re-scaled covariates for the adaptive step. The relaxed Lasso
is computed with the relaxo-package from R. Our PC-simple algorithm with the Lasso for
estimating coefficients is straightforward to do using the pcalg- and lars-packages from
R: optimal tuning is with respect to the α-parameter for the PC-simple algorithm and the
penalty parameter for Lasso. For the PC-simple algorithm with the adaptive Lasso, we
first compute weights wj as follows: if the variable has not been selected, we set wj = 0;
if the variable has been selected, we let wj be the minimum value of the test statistic√

n− 3− |S|Z(Y, j|S) (see Section 4.2) over all iterations of the PC-simple algorithm.
Then we compute the adaptive Lasso by solving the following optimization problem:

argminβ∈Rp(

n∑

i=1

(Yi −XT
i β)2 + λ

p∑

j=1

w−1
j |βj |),

i.e., the weights for the adaptive step are from the PC-simple algorithm.
Figure 3 displays the results. As expected, the Lasso is yielding too many false posi-

tives while the adaptive Lasso and the relaxed Lasso have much better variable selection
properties. The PC-simple based methods clearly have lowest FPR while paying a price in
terms of power, i.e., the TPR, and in terms of mean squared errors (MSE Coeff and MSE
Pred). In many applications, a low FPR is highly desirable even when paying a price in
terms of power. For example, in molecular biology where a covariate represents a gene,
only a limited number of selected genes (covariates) can be experimentally validated and
hence, methods with a low FPR are preferred, in the hope that most of the top-selected
genes are relevant. This type of application is briefly sketched in the next section.
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Figure 3: Boxplots of performance measures (see (10)) and runtimes for the simulation
study in Section 6.2 considering the following prediction optimal tuned methods: the PC-
simple algorithm with Lasso coefficient estimation (pcl), the PC-simple algorithm with
adaptive Lasso (pcal), adaptive Lasso (al), relaxed Lasso (r) and Lasso (l).

6.3 Real data: riboflavin production by Bacillus subtilis

We consider a high-dimensional real data set about riboflavin (vitamin B2) production
by the bacterium B. subtilis, kindly provided by DSM Nutritional Products. There is a
continuous response variable Y which measures the logarithm of the production rate of
riboflavin, and there are p = 4088 covariates corresponding to the logarithms of expression
levels of genes. One of the major goals is to genetically modify B. subtilis in order to
increase its production rate for riboflavin. An important step to achieve this goal is to
find genes which are most relevant for the production rate. We pursue this step by variable
(i.e. gene) selection in a linear model.

We use the methods PC-simple, LARS and ENET as for the simulated data in Section
6.1. We run PC-simple on the full data set, with various values of α. Then we compute
LARS and ENET and choose the tuning parameters such that the same number of selected
variables arise as for PC-simple. We show the results from a genetically homogeneous
group of n = 72 individuals.

Table 2 indicates that the variable selection results of LARS and ENET are more
similar than the results of PC-simple and any of these two methods. Thus, the PC-simple
algorithm seems to extract information, i.e. selects genes, in a “rather different” way than
the penalized methods LARS and ENET. We view this property as very desirable: for
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any large-scale problem, we want to see different aspects of the problem by using different
methods; and ideally, results from different methods can be combined to obtain better
results than what is achievable with a single procedure. We remark that we still find a

α for PC-simple selected var. PC-LARS PC-ENET LARS-ENET

0.001 3 0 0 2
0.01 4 2 1 3
0.05 5 2 1 3
0.15 6 3 2 3

Table 2: Variable selection for a real data set on riboflavin production by B. subtilis. The
columns show the number of selected variables (selected var.), the number of variables that
were selected by both PC-simple and LARS (PC-LARS), the number of variables that were
selected by both PC-simple and ENET (PC-ENET), and the number of variables that were
selected by both LARS and ENET (LARS-ENET).

remarkable overlap of the few selected genes among p = 4088 candidates and in fact, it is
highly significant when calibrating with a null-distribution which consists of pure random
noise only.

7 Discussion

The PC-simple algorithm is a very useful method for inferring associations in a high-
dimensional (but sparse) linear model where the number of covariates can greatly exceed
the sample size: we support this claim by asymptotic theory (Theorems 4-5), some results
on simulated and real data in comparison to the Lasso and the Elastic Net, and we provide
an efficient implementation of our PC-simple algorithm in the R-package pcalg which
allows computations for high-dimensional problems with thousands of covariates. The PC-
simple algorithm is a complementary approach to Lasso-type estimation: in practice, it is
very valuable to have such an alternative method in the tool-kit for high-dimensional data
analysis. In addition, the fact that the PC-simple algorithm performs well for regression
problems yields supporting evidence that this continues to be true in the context of high-
dimensional graphical modeling and causal analysis (Spirtes et al., 2000; Kalisch and
Bühlmann, 2007).

A key part of our approach is the introduction of the concept of partial faithfulness.
This concept is loosely related to and usually weaker than faithfulness in graphical mod-
eling (Spirtes et al., 2000), see Section 3.2. In the regression setting, we show that partial
faithfulness holds generically (Theorem 1) when excluding some adversarial constellations
for the non-zero regression coefficients via assumption (A2).

8 Appendix 1: Proofs

Proof of Theorem 1:

Consider the linear model (1) satisfying assumptions (A1) and (A2). In order to prove
that the partial faithfulness assumption holds almost surely, it suffices to show that the
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following holds for all j ∈ {1, . . . , p} and S ⊆ {j}C :

βj 6= 0 =⇒ parcor(Y,X(j)|X(S)) 6= 0 a.s.

(with respect to the distribution generating the βj ’s).
Thus, let j ∈ {1, . . . , p} such that βj 6= 0, and let S ⊆ {j}C . We recall that

parcor(Y,X(j)|X(S)) = 0 if and only if the partial covariance parcov(Y,X(j)|X(S)) be-
tween Y and X(j) given X(S) equals zero (cf. Anderson (1984, page 37, definition 2.5.2)).
Partial covariances can be computed using the recursive formula given in Anderson (1984,
page 43, equation (26)). This formula shows that the partial covariance is linear in its
arguments, and that parcov(ǫ,X(j)|X(S)) = 0 for all j ∈ {1, . . . , p} and S ⊆ {j}C . Hence,

parcov(Y,X(j)|X(S)) = parcov(δ +

p∑

r=1

βrX
(r) + ǫ,X(j)|X(S))

=

p∑

r=1

βrparcov(X(r),X(j)|X(S))

= βjparcov(X(j),X(j)|X(S)) +

p∑

r=1,r 6=j

βrparcov(X(r),X(j)|X(S)).

Since βj 6= 0 by assumption, and since parcov(X(j),X(j)|X(S)) 6= 0 by assumption (A1),
the only way for parcov(Y,X(j)|X(S)) to equal zero is if there is a special parameter
constellation of the βr’s, such that

p∑

r=1,r 6=j

βrparcov(X(r),X(j)|X(S)) = −βjparcov(X(j),X(j)|X(S)). (11)

But such a parameter constellation has Lebesgue measure zero under assumption (A2). 2

Proof of Corollary 1:

The implication “=⇒” follows from the fact that βj 6= 0 in the linear model (1) if and only

if parcor(Y,X(j)|X({j}C )) 6= 0. The other implication “⇐=” follows from the definition of
partial faithfulness, by taking the negative of expression (2). 2

Proof of Theorem 2:

Suppose that (X,Y ) = (X(1), . . . ,X(p), Y ) has a multivariate normal distribution and
is weakly faithful to a DAG G in which any edges between Y and the X(j)’s, j =
1, . . . , p, are pointing towards Y . We will show that this implies that the distribution
of (X,Y ) is partially faithful, by showing that parcor(Y,X(j)|X({j}C )) 6= 0 implies that
parcor(Y,X(j)|X(S)) 6= 0 for all S ⊆ {j}C .

Thus, let j ∈ {1, . . . , p} such that parcor(Y,X(j)|X({j}C )) 6= 0. This implies that Y

and X(j) are dependent given X({j}C). In turn, this implies that Y and X(j) are not d-
separated by X({j}C ) in the DAG G, meaning that X({j}C) does not block all d-connecting
paths between X(j) and Y . Note that all paths between X(j) and Y must be of the form
X(j)−· · ·−. . . · · ·−X(r) → Y , where − denotes an edge of the form← or→. First suppose
that r 6= j. Then, because X(r) cannot be a collider on the given path (since we know that
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the edge from X(r) to Y is pointing towards Y ), the path is blocked by X(r) ∈ X({j}C),

and hence the path is blocked by X({j}C ). Thus, since X({j}C) does not block all paths
between X(j) and Y , there must be a path where r = j, meaning that there must be an
edge between X(j) and Y : X(j) → Y . Such a path X(j) → Y cannot be blocked by any
set X(S), S ⊆ {j}C . Hence, there is no set S that d-separates X(j) and Y . By weak
faithfulness, this implies that X(j) and Y are dependent given any set S ⊆ {j}C . Finally,
by the multivariate normality assumption, this is equivalent to parcor(Y,X(j)|X(S)) 6= 0
for all S ⊆ {j}C . 2

Proof of Theorem 3:

By definition and partial faithfulness, A ⊆ A[mreach]. Hence, we only need to show that A
is not a strict subset of A[mreach]. We do this using contra-position. Thus, suppose that
A ⊂ A[mreach] strictly. Then there exists a j ∈ A[mreach] such that j /∈ A. Fix such an index
j. Since j ∈ A[mreach], we know that

parcor(Y,X(j)|X(S)) 6= 0 for all S ⊆ A[mreach−1] \ {j} with |S| ≤ mreach − 1. (12)

This statement for sets S with |S| = mreach − 1 follows from the definition of iteration
mreach of the PC-simple algorithm. Sets S with lower cardinality are considered in previous
iterations of the algorithm, and since A[1] ⊇ A[2] ⊇ . . ., all subsets S ⊆ A[mreach−1] with
|S| ≤ mreach − 1 are considered.

We now show that we can take S = A in (12). First, note that the supposition
A ⊂ A[mreach] and our choice of j imply that

A ⊆ A[mreach] \ {j} ⊆ A[mreach−1] \ {j}.

Moreover, A ⊂ A[mreach] implies that |A| ≤ |A[mreach]|−1. Combining this with |A[mreach]| ≤
mreach (see the definition of mreach in (8)), yields that |A| ≤ mreach − 1. Hence, we can
indeed take S = A in (12), yielding that parcor(Y,X(j)|X(A)) 6= 0.

On the other hand, j /∈ A implies that βj = 0, and hence parcor(Y,X(j)|X(A)) = 0.
This is a contradiction, and hence A cannot be a strict subset of A[mreach]. 2

Proof of Theorem 4:

A first main step is to show that the population version of the PC-simple algorithm infers
the true underlying active set An, assuming partial faithfulness (instead of faithfulness as
e.g. in graphical modeling). We formulated this step in Theorem 3 as a separate result,
and its proof is given above.

Having established Theorem 3, the arguments for controlling the estimation error due
to finite sample size are similar as for proving Theorem 1 in Kalisch and Bühlmann (2007).
First, we show uniform consistency for estimating partial correlations up to order peffn.

We use the following shorthand notation: X(0) = Y and K
peffn

i,j = {S ⊆ {0, . . . , pn} \
{i, j}; |S| ≤ peffn}. Then

sup
i,j;S∈K

peffn
i,j

pr[|ρ̂n;i,j|S − ρn;i,j|S| > γ] ≤ C1(n− peffn) exp(n− peffn − 4) log

(
4− γ2

4 + γ2

)
,(13)

where 0 < C1 < ∞ depends on M in (B5) only. The bound in (13) appears in Kalisch
and Bühlmann (2007, Corollary 1): for proving it, we require the Gaussian assumption
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for the distribution (without partial faithfulness) and (B2), (B3) and (B5). It is then
straightforward to derive uniform consistency of Z-transformed partial correlations: the
details are given in Kalisch and Bühlmann (2007, Lemma 1). Next, we consider a version
of the PC-simple algorithm which stops after mreach iterations: the type I and type II
errors (i.e. false positive and false negative decisions) can be controlled using the union
bound and for the type II error, we need assumption (B4) in addition. The choice of
αn = 2(1−Φ(n1/2cn/2)), ensuring control over many tests in the PC-simple algorithm, is
the one which is used in Kalisch and Bühlmann (2007), and the arguments are analogous as
for proving Lemma 4 in Kalisch and Bühlmann (2007). Finally, we argue that pr[m̂reach =
mreach]→ 1 (analogous to Lemma 5 in Kalisch and Bühlmann (2007)) which then allows
to complete the proof. 2

Proof of Theorem 5:

By definition, An ⊆ A[1], where the latter is the set of variables from correlation screening.
Denote by Zn(Y, j) the quantity as in (9) with S = ∅ and by zn(Y, j) its population

analogue, i.e., the Z-transformed population correlation. An error occurs when screening
the jth variable if Zn(Y, j) has been tested to be zero but in fact zn(Y, j) 6= 0. We denote
such an error event by EII

j whose probability can be bounded as

sup
j

pr[EII
j ] ≤ O(n) exp(−C1nc2

n),

for some 0 < C1 < ∞, see Kalisch and Bühlmann (2007, formula (17)) (no sparsity
assumption is used for this derivation). Thus, the probability of an error occurring in the
correlation screening procedure is bounded by

pr[∪1≤j≤pnEII
j ] = O(pnn) exp(−C1nc2

n) = O(exp((1 + a) log(n)−C1n
1−2d))

= O(exp(−C2n
1−2d))

for some 0 < C2 <∞. This completes the proof. 2
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Wille, A. and Bühlmann, P. (2006). Low-order conditional independence graphs for
inferring genetic networks. Stat. Appl. Genet. Mol. Biol. 5 1–32.

23



Zhang, C.-H. and Huang, J. (2008). The sparsity and bias of the Lasso selection in
high-dimensional linear regression. Ann. Statist. 36 1567–1594.

Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. J. Mach. Learn.
Res. 7 2541–2563.

Zou, H. (2006). The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc.
101 1418–1429.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the Elastic
Net. J. Roy. Statist. Soc. Ser. B 67 301–320.

24


