Boosting for high-dimensional linear models

Peter Bithlmann
ETH Ziirich, Switzerland

February 2, 2004

Abstract

We prove that boosting with the squared error loss, LaBoosting, is consistent for
very high-dimensional linear models, where the number of predictor variables is allowed
to grow essentially as fast as O(exp(sample size)), assuming that the true underlying
regression function is sparse in terms of the £;-norm of the regression coefficients.
In the language of signal processing, this means consistency for de-noising using a
strongly overcomplete dictionary if the underlying signal is sparse in terms of the
{1-norm.

L,Boosting is computationally attractive. We propose an AIC-based estimate for
tuning, namely choosing the number of boosting iterations. This makes LoBoosting
computationally even more attractive since boosting is not required to be run multiple
times for cross-validation as commonly used in practice.

We demonstrate LaBoosting for simulated data, where the predictor dimension is
large in comparison to sample size, and for a difficult tumor-classification problem
with gene expression microarray data.

Heading: Boosting for high-dimensional regression

1 Introduction

Freund and Schapire’s (1996) AdaBoost algorithm for classification has attracted much
attention in the machine learning community (see also Schapire (2002) and the references
therein) as well as in related areas in statistics (Breiman, 1998; Friedman et al., 2000),
mainly because of its good empirical performance in a variety of data sets. Boosting meth-
ods have been originally introduced as multiple prediction schemes, averaging estimated
predictions from re-weighted data. Later, Breiman (1998, 1999) noted that the AdaBoost
algorithm can be viewed as a gradient descent optimization technique in function space.
This important insight opened a new perspective, namely to use boosting methods in other
contexts than classification. For example, Friedman (2001) developed boosting methods
for regression where boosting is implemented as an optimization with the squared error
loss function: this is what we call LoBoosting. It is essentially the same as Mallat and
Zhang’s (1993) matching pursuit algorithm in signal processing.

Recently, Efron et al. (2004) made for linear models a connection between LsBoosting
and the ¢;-penalized Lasso (Tibshirani, 1996) or basis pursuit (Chen et al., 1999) method.
Roughly speaking, LoBoosting approximately yields the set of all Lasso solutions (when
varying over the penalty parameter). This intriguing insight may be useful to get a
rough picture about LoBoosting: it does variable selection and shrinkage, similar to Lasso.
However, it should be stated clearly that the methods are not the same.

As the main result, we prove here that LsBoosting for linear models yields consistent
estimates in the very high-dimensional context, where the number of predictor variables
is allowed to grow essentially as fast as O(exp(sample size)), assuming that the true un-
derlying regression function is sparse in terms of the £1-norm of the regression coefficients.
This result is, to our knowledge, the first about boosting in the presence of (fast) growing
dimension of the predictor. Some consistency results for boosting with fixed predictor
dimension include Mannor et al. (2002), Jiang (2004), Lugosi and Vayatis (2004) as well
as Zhang and Yu (2003). We believe that it is exactly for the case of high-dimensional
predictors where boosting, among other methods, has a substantial advantage over more
classical approaches, as demonstrated with some empirical examples in Bithlmann and Yu
(2003); notably, many real data-sets nowadays are of such high-dimensional nature. Con-
sistent estimation for very high-dimensional, but sparse functions may be achieved with
other methods than boosting: for example, Bickel and Levina (2003) prove Bayes risk
consistent classification of diagonal linear discriminant analysis for very high-dimensional
predictors whose covariance matrix satisfies a regularity constraint in terms of its condi-
tion number. We think that besides the well-documented good empirical performance of
boosting, it is important to identify it as a method which can consistently recover very
high-dimensional, sparse functions.

Of course, we can also think of our result as a consistency property for de-noising using
LsBoosting with a strongly overcomplete dictionary. In contrast to a complete dictionary,
e.g. Fourier- or wavelet-basis, the strongly overcomplete noisy case is not well understood.
Our result yields at least the basic property of consistency.

LyBoosting has an important computational advantage over Lasso (although the Lars
algorithm from Efron et al. (2004) is even faster). Instead of having to search for a
best penalty (tuning) parameter in Lasso (over a grid of candidate values), which requires
solving many linear programming problems (up to numerical convergence), we can do one

sweep of boosting, which involves only fitting simple least squares regression many times.
Moreover, for the tuning parameter in boosting, which is the number of boosting iterations,
we develop some easily computable definition of degrees of freedom for LyBoosting, and
we then propose its use in the (corrected) AIC criterion. Unlike cross-validation, our
AIC-type tuning estimator does not require boosting to be run multiple times. This
makes the fully data-driven boosting computationally attractive and much faster than
cross-validating Lasso (and sometimes faster than cross-validating the Lars algorithm from
Efron et al. (2004)).

We demonstrate on some simulated examples how our LsBoosting performs for (high-
dimensional) linear models, in comparison to ordinary least squares, forward variable
selection and a method which has been designed for high-dimensional regression (Gold-
enshluger and Tsybakov, 2001). We also consider a difficult tumor-classification problem
with gene expression microarray data: the predictive accuracy of LoBoosting is compared
with four other, commonly used classifiers for microarray data, and we briefly indicate the
interpretation of the LoBoosting-fit along the lines of a linear model fit.

2 [,Boosting with componentwise linear least squares

To explain boosting for linear models, consider a regression model

p .
Yi=Y X7 e i=1,...n,
j=1

with p predictor variables (the jth component of a p-dimensional vector x is denoted by
$(j)) and a random, mean zero error term £. More precise assumptions for the model are
given in section 3.

We first specify a base procedure: given some input data {(X;,U;); i = 1,...,n},
where Uy, ..., U, denote some (pseudo-)response variables which are not necessarily the
original Y7,...,Y,, the base procedure yields an estimated function

~

g(-) = Q(X,U)(')a

based on X = (X7,..., XY U = (Uy,...,U,)T. Here, we will exclusively consider the
componentwise linear least squares base procedure:

E?:l UiXi(j)

p —_ 3.8 p _ L2a=1Yiti .
g(X,U)(:L-) _BSCB) ﬁ] - n (.7 -]-a"'ap)a
S (X))
S = argminZ(Uz- — Bsz-(j))Q. (2.1)

1<j<p 35
Thus, the componentwise linear least squares base procedure performs a linear least
squares regression against the one selected predictor variable which reduces residual sum
of squares most.

Boosting using the squared error loss, LoBoosting, has a simple structure. Boosting
algorithms using other loss functions are described in Friedman (2001).

LsBoost algorithm

Step 1 (initialization). Given data {(X;,Y;);4 = 1,...,n}, apply the base procedure
yielding the function estimate

FO() =40,
where § = g(x,y) is estimated from the original data. Set m = 1.

Step 2. Compute residuals U; = Y; — F(™(X;) (i = 1,...,n) and fit the real-valued base
procedure to the current residuals. The fit is denoted by gm+1(-) = g(x,v)(-) which is an
estimate based on the original predictor variables and the current residuals.

Update

PO () = F () G (),

Step 3 (iteration). Increase the iteration index m by one and repeat Step 2 until a stopping
iteration M is achieved.

The estimate F'(™)(.) is an estimator of the regression function E[Y'|X =]. LyBoosting
is nothing else than repeated least squares fitting of residuals (cf. Friedman (2001),
Bithlmann and Yu (2003)). With m = 2 (one boosting step), it has already been pro-
posed by Tukey (1977) under the name “twicing”. In the non-stochastic context, the
LyBoosting algorithm is known as “Matching Pursuit” (Mallat and Zhang, 1993) which is
popular in signal processing for fitting overcomplete dictionaries.

It is often better to use small step sizes: we advocate here to use the step-size v in the
update of F(™+1) in step 2 which then becomes

B () = () 4 vgan (), 0< v < 1, (22)

where v is constant during boosting iterations and small, e.g. v = 0.1. The parameter
v can be seen as a shrinkage parameter or alternatively, describing the step-size when
up-dating F(™+1(.) along the function §,,11(-). Small step-sizes (or shrinkage) make the
boosting algorithm slower and require a larger number M of iterations. However, the
computational slow-down often turns out to be advantageous for better out-of-sample
empirical prediction performance, cf. Friedman (2001), Bithlmann and Yu (2003). There
are also some theoretical reasons to use boosting with v (infinitesimally) small (Efron et
al. 2004).

2.1 Stopping the boosting iterations

Boosting needs to be stopped at a suitable number of iterations, to avoid overfitting. The
computationally efficient AIC, criterion in (2.3) below can be used in our context where
the base procedure has linear components.

Our goal here is to assign degrees of freedom for boosting. Denote by

HO = XOXO)T XD, j=1,...p,

the n X n hat-matrix for the linear least squares fitting operator using the jth predictor
variable X() = (X%J),...,XT(L]))T only; ||z||> = 2”7z denotes the Euclidean norm for a
vector z € RP. Tt is then straightforward to show (cf. Bithlmann and Yu, 2003) that the
LsBoosting hat-matrix, when using the step size 0 < v < 1, equals,

By, =1— (I — VH(Sl))(I _ I/H(‘éz)) o (I _ I/H(‘ém)),

where S; € {1,...,d} denotes the component which is selected in the componentwise least
squares base procedure in the 7th boosting iteration.

We can now use a corrected version of AIC (cf. Hurvich et al. (1998)) to define a
stopping rule of boosting:

1 + trace(Bp,)/n
1 — (trace(By,) +2)/n’

AIC,(m) = log(6?) +
62 =n"1 i(Yi — (BnY))% Y =(11,..., V). (2.3)

An estimate for the number of boosting iterations is then

M = argmin AIC.(m),

1<m<mupp

where myy, is a large, upper bound for the candidate number of boosting iterations.

3 Consistency of Ly;Boosting for high-dimensional linear model

We present here a consistency result for LoBoosting in linear models where the number of
predictors is allowed to grow very fast as the sample size n increases. Consider the model

YL:fn(XZ)_l_s’w 1=1,...,n,

Pn
(@) =Y Bina?), z e RPn, (3.1)
j=1

where X1,...,X, are i.i.d. with]E|X(j)|2 =1forallj=1,...,p, and €1,...,¢&, are i.i.d.,
independent from {X;;1 < s <n}, withE[¢] = 0. The number of predictors p,, is allowed
to grow with sample size n. Therefore, also the predictor X; = X;, and the response
Y; = Y;, depend on n, but we usually ignore this in the notation. The scaling of the
predictor variables E|X () |2 = 1 is not necessary for running LsBoosting, but it allows to
identify the magnitude of the coefficients 3;,, (see also assumption (A1) below).

We make the following assumptions.

(A1) The dimension of the predictor in model (3.1) satisfies p, = O(exp(Cn'~¢)) (n —
00), for some 0 < ¢ <1, 0 < C < o0.

(A2) suppen D252 1Bjin| < oo.

(A3) supi<<p, |X0)||oo < 00, where || X ||oo = Sup,ecq | X (w)| (2 denotes the underlying
probability space).

(A4) Ele|® < oo for some s > 2/¢ with £ from (Al).

Assumption (A1) allows for a very large predictor dimension relative to the sample size n.
Assumption (A2) is a £;-norm sparseness condition (it could be generalized to 3357, |8jn| —
oo slow enough as n — 00, at the expense of other restrictions on p, and m, in Theorem
1 below). Even if p, grows, all predictors may be relevant but most of them contribute
only with small magnitudes (small |3;,|). Assumption (A2) holds for regressions where
the number of effective predictors is finite and fixed: that is, the number of B;, # 0 is
independent from n and finite. Assumption (A3) about the boundedness of the predictor
variables can be relaxed at the price of a more restrictive growth of p = p,,, see Remark 2
below.

Theorem 1 Consider the model (3.1) satisfying (A1)-(A4). Then, the boosting estimate

Fm() = ﬁ’r(bm)() with the componentwise linear learner from (2.1) satisfies: for some
sequence (My)nen, which is allowed to be random and depending on the realizations of the
data, with m, = op(né/*) (n — o),

Ex|F{™)(X) — fo(X)]> = 0p(1) (n —),

where X denotes a new predictor variable, independent of and with the same distribution
as the data.

A proof is given in section 6. Theorem 1 says that LoBoosting recovers the true sparse
regression function even if the number of predictor variables is essentially exponentially
increasing with sample size n. Notably, no assumptions are needed on the correlation
structure of the predictor variables.

Remark 1. The restriction about the increase of the boosting iteration my, as n — oo
is probably far from the fastest possible whose exploration is beyond our scope. However,
the qualitative behavior of having m,, to grow slower with a fast growing p,, (£ > 0 small)
seems correct since a large p, would more easily lead to overfitting (assuming a fixed
“signal intensity” sup,en Y5~ |Bjn|). Moreover, the fact that m = m,, is allowed to be
random yields a theoretical framework which is closer to practice where m is chosen via
the AIC, statistic in (2.3) and hence depending on the realizations of the data.

Remark 2. Assumption (A2) requires boundedness of the predictor variables. Theo-
rem 1 also holds under the assumption

sup E|XY|* < oo for some s > 4
1<5<pn

(and using another restriction for m = my,) if the growth of dimension is restricted to
pn = O(n®) where @ = «a(s) > 0 is a number, depending on the number of existing
moments s, which converges monotonically to oo as s increases, i.e. any polynomial
growth of p, is allowed if the number of moments s is sufficiently large.

4 Numerical results

4.1 Low-dimensional regression surface within high-dimensional predic-
tor space

We consider the model

X NNlo(O,V), Y = f(X) + e,
f(X)=a(V)1 +5X; +2X, + X3), a(V) a constant, € ~ N (0,2?). (4.1)

The covariance matrix for the predictor variable X and the constant a(V') are chosen as:
V= Il(), G(V) =1 (42)

for uncorrelated predictors; or for block-correlated predictors,

1 b ¢ 0 O\
1 b ¢ 0
b 1 b ¢ O 0
V= 0 ¢ b 1 b ¢ ’
: .. . o0
0 0 ¢ 1 b ¢
0 0 ¢ b 1 b
0 0 ¢ b 1
b=0.677,c =0.323, a(V) = 0.779. (4.3)

The constant a(V) is such that the signal to noise ratio Var(f(X))/o? is the same for
both model specifications. The model (4.1) with either specification (4.2) or (4.3) has
only 3 effective predictors, all of them contributing to the regression function with different
magnitudes (different coefficients). We choose sample size n = 20, i.e. we generate 20 i.i.d.
realizations (X;,Y;), 4 = 1,...20 from the model. Relative to the number of predictor
variables p = 10, the problem is high-dimensional with a low-dimensional (effective p = 3)
true underlying structure.

We use LyBoosting, using shrinkage factor v = 0.1 (see (2.2)) and the corrected AIC
criterion for stopping the boosting iterations (see (2.3)). We compare it with forward
variable selection for optimizing the classical AIC criterion and with ordinary least squares
(OLS) without variable selection. Table 4.1 and Figure 4.1 report the mean squared
error MSE = E[(f(X) — f(X))?] where X is a new test observation, independent from,

predictor ‘ LoBoost ‘ forward var. sel. ‘ OLS
uncorrelated (4.2) | 2.318 (0.238) | 3.648 (0.421) | 5.674 (0.556)
correlated (4.3) | 1.649 (0.181) | 2.893 (0.373) | 5.674 (0.556)

Table 4.1: Mean squared error E[(f(X)— f(X))?] for LyBoosting, forward variable selection
and ordinary least squares in model (4.1) with specifications (4.2) and (4.3). Estimated
standard errors from independent model simulations are given in parentheses.

but with the same distribution as the training data. All results are based on 50 model
simulations. Figure 4.1 displays the resistance of boosting against overfitting and also
the good performance of the corrected AIC criterion in (2.3) for stopping the boosting
iterations.

uncorrelated design

© -
w — L2Boost
- fwd.var.sel.
WS --- OLS
%)
L T b
o -
N AIC stopped
T T T T T T
0 100 200 300 400 500
boosting iterations
correlated design
© -
n - —— L2Boost
- fwd.var.sel.
WS --- OLS
%)
=

AIC stopped
T
0 100 200 300 400 500

boosting iterations

Figure 4.1: Mean squared error E[(f(X)— f(X))?] for LyBoosting as a function of boosting
iterations (solid line), forward variable selection (dashed line) and ordinary least squares
(dashed-dotted line) in model (4.1) with specifications (4.2) (top panel) and (4.3) (bottom
panel). The performance when estimating the number of boosting iterations with the
corrected AIC criterion is indicated by the circle “AIC stopped”.

4.2 High-dimensional regression surface with /; coefficients

We consider here a regression model which fits into the theory of an adaptive estima-
tion procedure for high-dimensional linear regression, presented by Goldenshluger and
Tsybakov (2001).

The model is

p
X ~Np(0,1), Y =8 X9) 4, e~ N(0,1),
j=1

B1,- .., Bp independent, B; ~ N(O,ajz), (4.4)

where €, X and f(,...,0, are independent of each other. The values 0]2- are decreasing

as j increases. Thus, absolute values of the regression coefficients |3;| have a tendency
to become small for large j. A precise description of the model is given in Appendix A.
To summarize, the model is such that p = p, and 8; = B, (j = 1,...,p,) depend on n,
satisfying

Pn
supz |Bjn| < o0,
nENj_l

which is our assumption (A1) from section 3. Sample size is chosen as n = 100 and the
resulting dimension of the predictor then equals p = 23.

We use LyBoosting, using shrinkage v = 0.1 (see (2.2)) and the estimated number of
boosting iterations with the corrected AIC criterion as in (2.3), and we compare it with
forward variable selection for optimizing the classical AIC criterion, with ordinary least
squares (OLS) without variable selection and with the procedure from Goldenshluger and
Tsybakov (2001). Table 4.2 and Figure 4.2 display the results. All the results are based

‘ LoBoost ‘ G&T method ‘ forward var. sel. ‘ OLS
MSE | 0.132 (0.006) | 0.195 (0.047) | 0.279 (0.019) | 0.313 (0.017)

Table 4.2: Mean squared error E[(f(X) — f(X))2] for LyBoosting, the method from Gold-
enshluger and Tsybakov (G&T), forward variable selection and ordinary least squares in
model (4.4). Estimated standard errors from independent model simulations are given in
parentheses.

squared errors

0.5

0.4

03

===

0.1

T T T T
L2Boost G&T fwd.var.sel oLs

Figure 4.2: Boxplots (without outliers) of squared errors (f(X) — f(X))? for LoBoosting,
the method from Goldenshluger and Tsybakov (G&T), forward variable selection and
ordinary least squares in model (4.4).

on 50 independent model simulations. The method from Goldenshluger and Tsybakov
(2001) produced one outlier with very large squared error (not shown in the boxplot), but
Figure 4.2 still shows the substantial advantage of boosting.

Moreover, the method from Goldenshluger and Tsybakov (2001) depends on the index-
ing of the predictor variables and is tailored for regression problems where the coefficients
B have a tendency to decay as j increases (e.g. in time series where j indicates the jth
lagged variable). All other methods are not depending on indexing the predictor variables.
We also ran the method from Goldenshluger and Tsybakov (2001) on the same model but
with index-reversed regression coefficients

Biy---Pas = Pas, ..., B1, B as in (4.4). (4.5)
The mean squared error was then
MSE for G&T method with (4.5): 0.224 (0.025)

which shows very clearly the sensitivity of indexing the variables.

4.3 Gene expression microarray data

We consider a dataset which monitors p = 7129 gene expressions in 49 breast tumor sam-
ples using the Affymetrix technology, see West et al. (2001). After thresholding to a floor
of 100 and a ceiling of 16,000 expression units, we applied a base 10 log-transformation and
standardized each experiment to zero mean and unit variance. For each sample, a binary
response variable is available, describing the status of lymph node involvement in breast
cancer. The data are available at http://mgm.duke.edu/genome/dna micro/work/.

We use LoBoosting although the data has the structure of a binary classification prob-
lem; Biithlmann and Yu (2003) argue why LoBoosting is also a reasonable procedure for
binary classification (but we have not given a proof for Theorem 1 in case of heteroscedas-
tic errors which would be needed for the classification case). The only modification is the
AIC stopping criterion: instead of (2.3), we use

AIC(m) = —2 - log-likelihood + 2 - trace(By,),

with the Bernoulli log-likelihood. Instead of LsBoost, we could also use the LogitBoost
algorithm (Friedman et al., 2000): for stopping, the penalty-term in the AIC criterion
above might then need some modification since LogitBoost involves another operator than
B

We estimate the classification performance by a cross-validation scheme where we ran-
domly divide the 49 samples into balanced training- and test-data of sizes 2n/3 and n/3,
respectively, and we repeat this 50 times. We compare LsBoosting with AIC-stopping
(as described above) with four other classification methods: 1-nearest neighbors, diagonal
linear discriminant analysis, support vector machine (from the R-package e1071) with ra-
dial basis kernel, and a forward selection penalized logistic regression model. For 1-nearest
neighbors, diagonal linear discriminant analysis and support vector machines, we use the
200 genes which have the best Wilcoxon score in a two-sample problem (estimated from the
training dataset only), which is recommended to improve the classification performance,

10

| LoBoost | FPLR | 1-NN | DLDA | SVM
misclassifications | 30.50% | 35.25% | 43.25% | 36.12% | 36.88%

Table 4.3: Cross-validated misclassification rates for lymph node breast cancer data.
LyBoosting is with linear least squares and AIC-stopping (LoBoost), forward variable
selection penalized logistic regression (FPLR), 1-nearest-neighbor rule (1-NN), diagonal
linear discriminant analysis (DLDA) and a support vector machine (SVM); the latter three
are based on 200 best genes (on each training dataset) according to a Wilcoxon score.

see Dudoit et al. (2002). Our L2Boosting and the forward variable selection penalized
regression are run without pre-selection of genes.

For this difficult classification problem, our LeBoosting with componentwise linear
least squares performs well. It is also interesting to note that the minimal cross-validated
misclassification rate as a function of boosting iterations is 29.25%. It shows that the
AIC-stopping rule is very accurate for this example. The only method which we know to
be better is the recently proposed Pelora algorithm (Dettling and Bithlmann, 2003) which
does supervised gene grouping: its misclassification rate is 27.88%.

We also show in Figure 4.3 the estimated regression coefficients for the 42 genes which
have been selected during the boosting iterations until A7C-stopping; the AIC-curve is
also shown in Figure 4.3. For comparing the influence of different genes, we show scaled
coeflicients Bv Var X(9) which are the coefficients when standardizing the genes to unit
variance. There is one gene whose positive expression strongly points towards the class
with Y = 0 (having negative estimated regression coefficient) and there are 5 genes whose

sorted regression coefficients AIC statistic

o S
[T &® N
o - D
o

o
S . o0 0
o
W o
8 |° <
S -
! o
S
o
—
g
]
3 o Q 108
? T T T T T T T T T T
0 10 20 30 40 0 50 100 150 200
selected genes boosting iterations

Figure 4.3: Lymph node breast cancer data. Left: scaled regression coefficients
BjVVar X () (plotted in increasing order) from LyBoosting for the selected 42 genes. Right:
AIC-statistic as a function of LoBoosting iterations with minimum at 108.

11

positive expressions (individually) point towards the class with Y = 1. The smallest
standardized regression coefficient corresponds to a gene which appears as the second best
when ranking all the genes with the score of a two-sample Wilcoxon test; the five largest
standardized coefficients correspond to the Wilcoxon-based ranks 7, 6, 1, 121, 3 among
all the genes. But it should be emphasized that, as usual, our estimated regression model
goes well beyond describing the effects of single genes.

5 Conclusions

We consider LoBoosting for fitting linear models. The method does variable selection and
shrinkage, a property which is very useful in practical applications. This indicates that
LsBoosting is related to the ¢;-penalized Lasso, but the methods are not the same.

As a useful device, we propose a simple estimate for the number of boosting iterations,
which is the tuning parameter of the method, by using a corrected AIC, criterion. This
makes the computationally efficient boosting even more attractive, since we do not have
to run boosting multiple times in a cross-validation set-up.

We then present some theory for very high-dimensional regression (or for de-noising
with strongly overcomplete dictionaries), saying that if the underlying true regression
function is sparse in terms of the ¢;-norm of the regression coefficients, the LoBoosting
method consistently estimates the true regression function, even when the number of
predictor variables grows like p = O(exp(n!~¢) for some (small) ¢ > 0. Notably, no
assumptions are made one the correlation structure of the predictors. Thus, we identify
LsBoosting as a method which is able, under mild assumptions, to consistently recover
very high-dimensional, sparse functions.

6 Proofs

6.1 A population version

The LsBoosting algorithm has a population version which is known as “matching pursuit”
(Mallat and Zhang, 1993) or “weak greedy algorithm” (cf. Temlyakov (2000)).

Consider the Hilbert space Lo(P) = {f;||fl|l3 = [f(z)?dP(z) < oo} with inner prod-
uct (f,g) = [f(z)g(z)dP(z). Here, the probability measure P is generating the predictor
X in model (3.1). To be precise, the probability measure P = P,, depends on n since the
dimensionality of X is growing with n: we are actually looking at a sequence of Hilbert
spaces Ly(P,) but we often ignore this notationally (a uniform bound in (6.5) will be a
key result to deal with such sequences of Hilbert spaces).

Denote the components of X by

Define the following sequence of remainder functions, called matching pursuit or weak
greedy algorithm:

Ro.f = f,
Rmf = Rm_lf - <Rm_1fa gSm> 48y, M = 1a27 s (61)

12

where S, would be ideally chosen as

Sm = argmax, <<y, | (R™ ' f,95) |

The choice function S, is often infeasible to realize in practice. A weaker criterion is: for
every m (under consideration), choose any S,,, which satisfies

|[(R™ ' f,gs,)| >b- sup |[(R™'f,g;)| for some 0 <b< 1. (6.2)
1<j<pn
Of course, the sequence R™f = R™S f depends on S1,Ss,...,Sy, how we actually make

the choice in (6.2). Again, we will ignore this notationally.
It easily follows that

,_\

m—

f Z R fa gS]+1 9811 Rmf7

=0

<.

and
IR™ 113 = IR™ f113 — [{R™ ' f, 98) I” (6.3)

6.1.1 Temlyakov’s result

Temlyakov (2000) gives a uniform bound for the algorithm in (6.1) with (6.2).
If the function f is representable as

Zﬂgg] Z 1Bj| < B < o0, (6.4)

which is true by our assumption (A1), then
IR™f|| < B(1+mb?)Y/CC+)) 0 < b <1 asin (6.2). (6.5)

To make the point clear, this bound holds also for sequences R™f = R™S" f which depend
on the choice function S in (6.2) and on the sample size n (since X ~ P depends on n
and also the function of interest f = f): all we have to assume is the condition (6.4).

6.2 Asymptotic analysis as sample size increases

The LyBoosting algorithm can be represented analogously to (6.1). We introduce the
following notation:

(f, 1Zf X;), and [|f[%, = n 13 F(X0)?
=1

for functions f,g : RP» — R. As before, we denote by Y = (Y1,...,Y,)T the vector of
response variables.

13

Define
Ryf=f- <Y’9$1>(n) 95,
Rpf=Rplf - <R;"—1,ggm>(n) 9., m=23,...,
where

31 = arg‘max| (Y,gj)(”) [,
1<j<pn

Sm—argmax|<Rm 1f,g]> |, m=2,3,...
1<j<pn, (n)

Note that we emphasize here the dependence of Rﬂ on n since finite-sample estimates
<an71f, gj>(: are involved.
n

The strategy is now to establish a finite-sample analogue of (6.2), and then invoke
Temlyakov’s (2000) result from (6.5).

6.2.1 TUniform laws of large numbers

Lemma 1 Under the assumptions (A1)-(A4), with 0 < & < 1 as in (A1),
(i) $UP1<j p<p, men N~ 2iey 95(Xi)gr(Xi) —Elg; (X)ge (X)]| = Cua = Op(n=4/?),
(i) Sup1<jcp, nen|n ' iy gj(Xi)eil = Cu2 = Op(n~¢7?),
(i#i) Supi<jcp, men n " Y0 f(Xi)g;(Xs) —E[f (X:)g;(X)]| = (a3 = Op(n ¢/?),
(iv) $UP1<jcp, nen|n " Xisy 95(Xi)Yi —E[gj(X)Y]| = (ua = Op(n=4/2),
(v) [n ' 00 F(Xa) —E[f(X)?]| = a5 = Op(n¢?),
(vi) |n"t Y0 f(Xie: —E[f (X)e]| = Gue = Op(n™¢/?)
(vii) |n~" Yo7, €2 —E[e%]| = Gur = Op(n™'/?)

Proof: For assertion (i), denote by M = sup; ||g;(X)|lc, see assumption (A3). Then,
Bernstein’s inequality yields for every v > 0,

P[> sup lzg] —E[g;(X)gr(X)]| > 7]
1< k<prneN

2, 1—¢
< p22 — T ,
> Pn eXp(2(0§+M2’Yn§/2)>
is an upper bound for Var(g;(X)gx(X)) for all j,k (e.g. o7 = M*). Since
p2 = O(exp(2C(n'~%))), the right-hand side of the inequality above becomes arbitrarily
small for n sufficiently large and v > 0 large.

where 03

14

For proving assertion (ii), we have to deal with the unboundedness of the ¢;’s in order
to apply Bernstein’s inequality. Define the truncated variables

_ {si, if |e;] < M,

& sign(e;) My, if |g;| > M.

Then, for v > 0,

n
P[né? sup |n! Z 9i(Xi)ei| > 7]
1<j<pn,meN =1

IN

n
Pt sup |n7 Y gi(Xi)el” —Elg; (X)e™]| > /3]
1<j<pameN

+ P0? sup |07 gi(Xi) (e —)| > /3]
1<j<pn,meN im1

n
+]P[nf/2 sup \n_l ZE[gj(Xi)(Ei - 5?)” > /3]
1<j<pn,neN i=1

= I+1II+III,

since E[g;(X)e] =E[g;(X)]E[e] = 0. We can bound I again by using Bernstein’s inequality:

2 1-¢
7" /9n
1<p,2 _ , 6.6

2

where o

is an upper bound for Var(g;(X)e') (e.g. sup; [|g;(X)||2Ele[*). When using
M, = nt/?,

we can make the right hand since in (6.6) arbitrarily small since p, = O(exp(Cn'!¢)):
thus, for every § > 0,

I < ¢ for n sufficiently large, v sufficiently large. (6.7)
A bound for IT can be obtained as follows:

IT < Psome |g;| > M,] < nP[le| > M,,] < nM,, *E|e|*®
= O(n' %) = o(1) (n —) (6.8)

since s > 2/¢ by assumption (A4).
For I1I we use the bound

TIT < Wpuer2 gup, ig; () (e <)) [>/3): (6.9)
Note that by the independence of ¢ (and £'") from g;(X),

Elg;(X)(e — €")] =Eg; (X)[E[e — €"].

15

Hence, an upper bound is
[Bg;(X)(e — €)]| < M[E[e — €"]].
The latter can be bounded as

‘]E[e _ 6”” < | ot (Sign(.’l))Mn - 37)dP5(.’E)| < /][[|z|>Mn](Mn + |.’E‘)dPE(.’E)

— MPllel > M)+ [[olia P (a)
< M, Elel® + @le*)*(P[le| > M)
= OM}!™%) + O(M;*/?) = o(M; ') = o(n"¢/?)
since s > 2/¢ > 2 (0 < ¢ < 1). Hence, by using (6.9):
111 = 0 for n sufficiently large, v > 0 sufficiently large,

and together with (6.7) and (6.8), this proves assertion (ii).
Assertion (iii) follows from (i):

—1
—E
L Zf [F(X)g; (X))
pn
-1
: ;Wn‘lszkgg,nm Zgﬂ —Elg;(X)gx(X]]
p'ﬂ
S 2Nl up I Zgﬂ —E[g; (X)gc(20)]
Pn
< Z |ﬁr,n‘<n,1 = Op(n_g/Q)_

r=1
Assertion (iv) follows from (ii) and (iii):

sup IZQJ 1)Yi —Elg;(X)Y]]

1SJ'SPn,n€N

< sup [n”! Zf(Xi)gj(Xi) —E[f(X)g;(X)]|

1<j<pn,neN

t Sub 129) i)€il < ¢ +¢n2 = Op(n).
ISjSpn,nEN

Assertion (v) follows from (i):
™t Y f(XG)? ~BF(X)]]
i=1

< O SO0 < Bl e]

1<j,k<pn,neN

IN

Pn
(Z |/8j,n|)2gn,1 = OP(ni‘S/z)'
j=1

16

Assertion (vi) follows by

(n2 = Op(n¢/?).

In) f(X)e —EIf(X)ell <D 1Bjm
=1

=1

Finally, assertion (vii) is trivial. O

6.2.2 Recursive analysis of LyBoosting

Denote by
Cn = max{Cn1, Cn2s Cn3s Cnts Cnss Cns Cnyr} = Op(n8/?)

which is a bound for all assertions (i)-(vii) in Lemma 1. Also, we denote by w a realization
of all n data-points and we often abbreviate m,(w) by m.

Lemma 2 Under the assumptions of Lemma 1, there exists a constant 0 < C, < o0,
independent from n and m, such that

o (B L) = (B g5) | < Gl

where U, is a random variable satisfying 0 < U, < C, on the set A, = {w; |(p(w)| < 1}.

Note that Lemma 1 implies that P[A,] — 1 (n — o0). The constant C, is depending on
SUD,eN Z§l1 |Bjn| and Var(e).

Proof: We proceed recursively. For m = 1, and using the definition of IA%}L I,

Rif.a.N — (Rt g,
o [(Rfas) — (Rid.as)|
< N (f g) N
< 3 [~ o +1 (Yot) 5w 1(5,0), = (9095
= I+1I.
From Lemma 1 (iii)
I'<Gn (6.10)

Regarding I1, we can bound the first factor using the Cauchy-Schwarz inequality,
[(Y296,) 1 1< ¥, oy (6.11)

Furthermore,

24t =1+4Cn, (6.12)

lgs, 12 = llgg, I2 + (lgs, 12y — 9, I1P) < llgs,

due to Lemma 1 (i) and the norming of the predictor ||g;|| =1 for all j. Similarly,
Y1y = 1Y 12+ (I1f + el — 1 +ell?)

< Y12+ A2 — 1F2+ lleliZ, — lel?]+ 21 {f,€) gy |
< Y| + 4¢n.

N

17

Thus, the bound in (6.11) becomes

[(Yo95,) 1< UV +46) 20+ G2 (6.13)
(n)
The second factor in IT can be bounded by Lemma 1 (i):
5 [08,005))= (950090) | < o 1032900 — (95980 | S G (6:14)

Hence by (6.13),
IT < 1+ G) (Y|P + 4¢) V2,
and therefore, by (6.10),
sup | <ﬁf£f, gj> - <ﬁf7€f’ gj> | <(nt+ Cn(l + Cn)l/Q(”YH2 + 4Cn)1/2
1<j<pn (n)
< (n(1 4 Cy1) on the set A,. (6.15)
for some C,; which depends on ||Y]|? = ||f||2 + Var(e) < (§l1 1Bin|)? + Var(e), e.g. we

can choose it depending on sup,, Z?Zl |Bjn| and Var(e).
For general m, by the definition of R f,
sup | (Rf,0,) = (Rig;)l
(n)

1<j<pn

Rm—l’ . o Rm—l’) + Rm_l . X N
1§f§on|< " fg”><n) < n fgﬂ>| 1B Flimy 193,)€

= IIT+1V, (6.16)

IN

using the analogous reasoning as in (6.11) with the Cauchy-Schwarz inequality and invok-
ing the analogous bound as in (6.14)

156}y, - (o)
1§j§I;9n| 980291) 1y~ (9895 | < Cn

The first term 111 will be controlled from an induction with m — 1 instead of m, as
used in the last displayed formula of the proof.
For the second term IV, we develop a bound for || B3 f||():

pm £112 _ ||pm—1pg012 _ pm—1 . 2 pm—1 R 211 ,. 112
1B £y = VR 1y = 2 (R o,) P+ (B o0, Pllos,

_ pm—1 12 pm—1 N 2709 2
= R W~ (B s,) @~ g,) (6.17)

Since
lgs, 2 <1+ G
(see (6.12)), we obtain for (6.17):
1B 7y < BT I = | (RR Fogs) 170 = Ga)
< [[RIUFY2, on the set A, = {w; [¢a(w)] < 1}.

18

Proceeding recursively,
||R7Tf||%n) < ||1%$Lf||%n) on the set 4,
< (Nl +1 (Y, 95,) 19, llo)? < 12 + Cuz o the st A,

for some constant Cio, independent from m,n and which we can choose depending on
sup,, gll |Bjn| and Var(e) (the last inequality follows from Lemma 1). Hence

IV < (1 + G)Y2(|f]1? + Ciz) on the set A,
< (pCy3 on the set A, (6.18)

for some constant C,3 which we can choose depending on sup,, gll |Bjn| and Var(e).
Now set C, = max(1 + C,1,C.3). We then get inductively, by (6.15) and repeatedly
using (6.16) and (6.18),

sup | <Rzlf, gj> - <Rzl,gj> | < (m—1)GCx + (,Cy on the set Ay,
1<5<pn (n)
= m(,Cy on the set A,,

which completes the proof of Lemma 2. O

We are now ready to establish a finite-sample analogue of (6.2). We have
(s, 9j>(n) = (B fo0) + ((Rf.g;) = (Rif.g;)):
Hence, by invoking Lemma 2 we get

sup | <1%Z‘f, gj> |> sup | <R,Tf, gj> | — m(,Cy on the set A,. (6.19)
1<j<pn,n€N (n) " 1<j<pn,neN

(n)

Consider the set By, = {w; supi<j<p, nen | <R7Tf, gj> | > 2m(,C.}. Then, by (6.19),
sup | <R;”f, gj> | >0.5 sup | <anf, gj> | on the set A, N B,. (6.20)
1<j<pn,neN (n) 1<j<pn,m€N

We can now invoke Temlyakov’s result in (6.5), since the condition (6.2) holds on the set
A, N By, (as established in (6.20)),

1B Il = @x[(F™ (X) = £(X))*)'? < B(L+m/4)~'/1°
= 0(1) on the set A, N By, (6.21)
by choosing m = my(w) — oo (n — oo) (slow enough) for w € A4, N B,.
For w € BY = {w; SUP1 < j<p, neN | <}A2;l”f, gj>| < 2m(,C.}, by using formula (5.2)
from Temlyakov (2000) with b, as defined there,

IBEA2 < sup |[(RIfg) bm < sup (R f05) (14 mllY)

1<j<pn,neN 1<j<pn,neN
< (m+1) sup | <anf, gj> |C, C > 0 a constant
1<j<pn,neN
< 2m(m +1)¢,C,C on the set BS. (6.22)

19

For bounding the number b,,, we have used the norm reducing property in (6.3).

The proof of Theorem 1 is then complete by (6.21), by (6.22) together with the as-

sumption m = op(nf/*) and ¢, = Op(n ¢?) from Lemma 1, and by observing that
P[(A, N B,)UBY] > P[A4,;] = 1 (n — oo0) due to Lemma 1. O

References

[1]

2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

Bickel, P. and Levina, E. (2003). Some theory for Fisher’s linear discriminant func-
tion, “naive Bayes”, and some alternatives when there are many more variables than
observations. Preprint. Department of Statistics, Univ. of Calif., Berkeley.

Breiman, L. (1998). Arcing classifiers. Ann. Statist. 26, 801-849 (with discussion).

Breiman, L. (1999). Prediction games & arcing algorithms. Neural Computation 11,
1493-1517.

Biithlmann, P. and Yu, B. (2003). Boosting with the Loloss: regression and classifica-
tion. J. Amer. Statist. Assoc. 98, 324-339.

Chen, S.S., Donoho, D.L., Saunders, M.A. (1999). Atomic decomposition by basis
pursuit. STAM J. Scient. Comp. 20(1), 33-61.

Dettling, M. and Bithlmann, P. (2003). Finding predictive gene groups from microar-
ray data. To appear in J. Multiv. Anal.

Dudoit, S., Fridlyand, J. and Speed, T. (2002). Comparison of discrimination methods
for the classification of tumors using gene expression data. J. Amer. Statist. Assoc.
97, 77-87.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression.
To appear in Ann. Statist.

Freund, Y. and Schapire, R.E. (1996). Experiments with a new boosting algorithm. In
Machine Learning: Proc. Thirteenth International Conference, pp. 148-156. Morgan
Kauffman, San Francisco.

Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine.
Ann. Statist. 29, 1189-1232.

Friedman, J.H., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a
statistical view of boosting. Ann. Statist. 28, 337407 (with discussion).

Goldenshluger, A. and Tsybakov, A. (2001). Adaptive prediction and estimation in
linear regression with infinitely many predictors. Ann. Statist. 29, 1601-1619.

Hurvich, C.M., Simonoff, J.S. and Tsai, C.-L. (1998). Smoothing parameter selection
in nonparametric regression using an improved Akaike information criterion. J. Roy.
Statist. Soc., Ser. B, 60, 271-293.

Jiang, W. (2004). Process consistency for AdaBoost. To appear in Ann. Statist.

20

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

Lugosi, G. and Vayatis, N. (2004). On the Bayes-risk consistency of regularized boost-
ing methods. To appear in Ann. Statist.

Mallat, S and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries.
IEEE Trans. Signal Proc. 41, 3397-3415.

Mannor, S., Meir, R. and Zhang, T. (2002). The consistency of greedy algorithms
for classification. To appear in COLT (fifteenth annual conference on computational
learning theory).

Schapire, R. E. (2002). The boosting approach to machine learning: an overview. In
MSRI Workshop on Nonlinear Estimation and Classification (D. D. Denison, M. H.
Hansen, C. C. Holmes, B. Mallick and B. Yu, Eds.). Springer, New York. Press.

Temlyakov, V.N. (2000). Weak greedy algorithms. Adv. Comp. Math. 12, 213-227.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist.
Soc., Ser. B, 58, 267-288.

Tukey, J.W. (1977). Ezploratory data analysis. Addison-Wesley, Reading, MA.

van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical
Processes: With Applications to Statistics. Springer, New York.

West, M., Blanchette, C., Dressman, H., Huang, E., Ishida, S., Spang, R., Zuzan, H.,
Olson, J., Marks, J., Nevins, J. (2001). Predicting the clinical status of human breast
cancer by using gene expression profiles. Proc. Nat. Acad. Sci. 98, 11462-11467.

Zhang, T. and Yu, B. (2003). Boosting with early stopping: convergence and consis-
tency. Technical Report 635, Dept. of Statistics, Univ. of Calif., Berkeley. Available
from http://www.stat.berkeley.edu/users/binyu/publications.html

Appendix A: The model (4.4)

The model (4.4) is as follows. Define a; = j°5!. Let the parameter x be the solution of the
equation o2n~' 3777, a;)\; = k, where we denote by \; = (1 — ka;). For n = 100, the solution is

& = 0.199. Determine the predictor dimension p = max;{a; < '} = 23. The variances are

o3 = Aj(nka;) ", j=1,...,23, n=100.

It can be shown that such regression coeflicients belong with high probability to
{(Bjn)j; SFm, a? ;{n < 1} (note that p = p,, depends on n via the parameter k = ky,).

J=177

21

