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BOOSTING FOR HIGH-DIMENSIONAL LINEAR MODELS
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We prove that boosting with the squared error loss, L2Boosting,
is consistent for very high-dimensional linear models, where the num-
ber of predictor variables is allowed to grow essentially as fast as
O(exp(sample size)), assuming that the true underlying regression
function is sparse in terms of the `1-norm of the regression coeffi-
cients. In the language of signal processing, this means consistency for
de-noising using a strongly overcomplete dictionary if the underlying
signal is sparse in terms of the `1-norm. We also propose here an AIC-
based method for tuning, namely for choosing the number of boosting
iterations. This makes L2Boosting computationally attractive since it
is not required to run the algorithm multiple times for cross-validation
as commonly used so far. We demonstrate L2Boosting for simulated
data, in particular where the predictor dimension is large in compar-
ison to sample size, and for a difficult tumor-classification problem
with gene expression microarray data.

1. Introduction. Freund and Schapire’s (1996) AdaBoost algorithm
for classification has attracted much attention in the machine learning com-
munity (cf. Schapire, 2002, and the references therein) as well as in related
areas in statistics (Breiman, 1998; Friedman et al., 2000), mainly because of
its good empirical performance in a variety of data sets. Boosting methods
have been originally introduced as multiple prediction schemes, averaging
estimated predictions from re-weighted data. Later, Breiman (1998, 1999)
noted that the AdaBoost algorithm can be viewed as a gradient descent
optimization technique in function space. This important insight opened a
new perspective, namely to use boosting methods in other contexts than
classification. For example, Friedman (2001) developed boosting methods
for regression which are implemented as an optimization using the squared
error loss function: this is what we call L2Boosting. It is essentially the
same as Mallat and Zhang’s (1993) matching pursuit algorithm in signal
processing.

Recently, Efron et al. (2004) made a connection for linear models between
forward stagewise linear regression (FSLR), which seems closely related to
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L2Boosting, and the `1-penalized Lasso (Tibshirani, 1996) or basis pursuit
(Chen et al., 1999). Roughly speaking: under some restrictive assumptions
on the design matrix of a linear model, FSLR approximately yields the
set of all Lasso solutions (when varying over the penalty parameter). This
intriguing insight may be useful to get a rough picture about L2Boosting
via its relatedness to FSLR: it does variable selection and shrinkage, similar
to the Lasso. However, it should be stated clearly that the methods are not
the same: an example showing a distinct difference between L2Boosting and
the Lasso is presented in section 4.3. Moreover, we point out in section 2.1
that FSLR and L2Boosting are different algorithms as well.

As the main result, we prove here that L2Boosting for linear models yields
consistent estimates in the very high-dimensional context, where the number
of predictor variables is allowed to grow essentially as fast as O(exp(sample
size)), assuming that the true underlying regression function is sparse in
terms of the `1-norm of the regression coefficients. This result is, to our
knowledge, the first about boosting in the presence of (fast) growing di-
mension of the predictor. Some consistency results for boosting with fixed
predictor dimension include Mannor et al. (2002), Jiang (2004), Lugosi and
Vayatis (2004) as well as Zhang and Yu (2003). Except Jiang’s (2004) result,
these authors consider versions of boosting with either `1-constraints for the
boosting aggregation coefficients or, as in Zhang and Yu (2003), with a re-
laxed version of boosting which we found very difficult to use in practice due
to the non-obvious tuning of the relaxation, i.e. how fast the boosting aggre-
gation coefficients should decay. The result by Zhang and Yu (2003) may be
generalized without too much effort to a setting with increasing dimension
of the predictor variable, but their theoretical work includes only a rigorous
treatment of the classification problem (besides the above mentioned disad-
vantage of their relaxed boosting algorithm). We believe that it is mainly
for the case of high-dimensional predictors where boosting, among other
methods, has a substantial advantage over more classical approaches. Some
evidence for this will be given in section 4.1, and other supporting empirical
results have been reported in Bühlmann and Yu (2003) in the different con-
text of low- or high-dimensional additive models for comparing L2Boosting
with more traditional methods such as backfitting or MARS (restricted to
additive function estimates). Notably, many real data-sets nowadays are of
high-dimensional nature. Besides the well-documented good empirical per-
formance of boosting, we identify it here as a method which can consistently
recover very high-dimensional, sparse functions.

We may also view our result as a consistency property for de-noising
using L2Boosting with a strongly overcomplete dictionary. In contrast to a
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complete dictionary, e.g. Fourier- or wavelet-basis, the strongly overcomplete
noisy case is not well understood. Our result yields at least the basic property
of consistency.

Besides the theoretical consistency result, we propose here a computation-
ally efficient approach for the tuning parameter in boosting, i.e. the number
of boosting iterations. We give some easily computable definition of degrees
of freedom for L2Boosting, and we then propose its use in the corrected AIC
criterion. Unlike cross-validation, our AIC-tuning does not require boosting
to be run multiple times. This makes the AIC-type data-driven boosting
computationally attractive: depending on the data, it is sometimes as fast
as the very efficient LARS algorithm for the Lasso with tuning by its default
10-fold cross-validation (Efron et al. (2004); lars package in R CRAN (1997
ff.).

We demonstrate on some simulated examples how our L2Boosting per-
forms for (low- and) mainly high-dimensional linear models, in comparison
to the Lasso, forward variable selection, Ridge regression, ordinary least
squares and a method which has been designed for high-dimensional re-
gression (Goldenshluger and Tsybakov, 2001). We also consider a difficult
tumor-classification problem with gene expression microarray data: the pre-
dictive accuracy of L2Boosting is compared with four other, commonly used
classifiers for microarray data, and we briefly indicate the interpretation of
the L2Boosting-fit along the lines of a linear model fit.

2. L2Boosting with componentwise linear least squares. To ex-
plain boosting for linear models, consider a regression model

Yi =

p∑

j=1

βjX
(j)
i + εi, i = 1, . . . , n,

with p predictor variables (the jth component of a p-dimensional vector x
is denoted by x(j)) and a random, mean zero error term ε. More precise
assumptions for the model are given in section 3.

We first specify a base procedure: given some input data {(Xi, Ui); i =
1, . . . , n}, where U1, . . . , Un denote some (pseudo-)response variables which
are not necessarily the original Y1, . . . , Yn, the base procedure yields an es-
timated function

ĝ(·) = ĝ(X,U)(·),

based on X = [X
(j)
i ]i=1,...,n;j=1,...,p, U = (U1, . . . , Un)T . Here, we will exclu-
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sively consider the componentwise linear least squares base procedure:

ĝ(X,U)(x) = β̂Ŝx
(Ŝ), β̂j =

∑n
i=1 UiX

(j)
i∑n

i=1(X
(j)
i )2

(j = 1, . . . , p),

Ŝ = arg min
1≤j≤p

n∑

i=1

(Ui − β̂jX(j)
i )2.(2.1)

Thus, the componentwise linear least squares base procedure performs a
linear least squares regression against the one selected predictor variable
which reduces residual sum of squares most.

Boosting using the squared error loss, L2Boosting, has a simple structure.
Boosting algorithms using other loss functions are described in Friedman
(2001).

L2Boosting algorithm

Step 1 (initialization). Given data {(Xi, Yi); i = 1, . . . , n}, apply the base
procedure yielding the function estimate

F̂ (1)(·) = ĝ(·),

where ĝ = ĝ(X,Y) is estimated from the original data. Set m = 1.

Step 2. Compute residuals Ui = Yi − F̂ (m)(Xi) (i = 1, . . . , n) and fit the
real-valued base procedure to the current residuals. The fit is denoted by
ĝ(m+1)(·) = ĝ(X,U)(·) which is an estimate based on the original predictor
variables and the current residuals.
Update

F̂ (m+1)(·) = F̂ (m)(·) + ĝ(m+1)(·).

Step 3 (iteration). Increase the iteration index m by one and repeat Step 2
until a stopping iteration M is achieved.

F̂ (M)(·) is an estimator of the regression function IE[Y |X = ·]. L2Boosting
is nothing else than repeated least squares fitting of residuals (cf. Friedman
(2001), Bühlmann and Yu (2003)). With m = 2 (one boosting step), it has
already been proposed by Tukey (1977) under the name “twicing”. In the
non-stochastic context, the L2Boosting algorithm is known as “Matching
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Pursuit” (Mallat and Zhang, 1993) which is popular in signal processing for
fitting overcomplete dictionaries.

It is often better to use small step sizes: we advocate here to use the
step-size ν in the update of F̂ (m+1) in step 2 which then becomes

F̂ (m+1)(·) = F̂ (m)(·) + νĝ(m+1)(·), 0 < ν ≤ 1,(2.2)

where ν is constant during boosting iterations and small, e.g. ν = 0.1. The
parameter ν can be seen as a shrinkage parameter or alternatively, describing
the step-size when up-dating F̂ (m+1)(·) along the function ĝ(m+1)(·). Small
step-sizes (or shrinkage) make the boosting algorithm slower and require a
larger number M of iterations. However, the computational slow-down often
turns out to be advantageous for better out-of-sample empirical prediction
performance, cf. Friedman (2001), Bühlmann and Yu (2003).

2.1. Forward stagewise linear regression. L2Boosting with component-
wise linear least squares is related to forward stagewise linear regression
(FSLR), as pointed out by Efron et al. (2004). FSLR differs from L2Boosting
with componentwise linear least squares in the update of the new estimate
F̂m: instead of using (2.2) which becomes

F̂m(x) = F̂m−1(x) + νβ̂Ŝmx
(Ŝm),

where β̂Ŝm is the least squares estimate when fitting the current residuals

against the best predictor variable x(Ŝm), FSLR updates

F̂m;FSLR(x) = F̂m−1;FSLR(x) + ν sign(β̂Ŝm)x(Ŝm).

Note that this description of FSLR is equivalent to the one in Efron et al.
(2004). In our limited experience, FSLR has about the same prediction ac-
curacy as L2Boosting with componentwise linear least squares. However, we
give here two reasons to favor boosting over FSLR. First, the update in
FSLR is not scale-invariant whereas the boosting update is on the scale of
the current residuals via the magnitude of the least squares estimate β̂Ŝm . It
implies that FSLR is often more sensitive to the choice of ν than boosting.
In particular, in case of an orthogonal linear model, L2Boosting has a uni-
form approximation property for the soft-threshold estimator over all values
of the threshold parameter, whereas this nice property does not hold any-
more for FSLR (Bühlmann and Yu, 2005). Second, the number of boosting
iterations can be reasonably well estimated via degrees of freedom defined
as the trace of a boosting hat matrix, as to be described in section 2.2.
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Defining reasonable degrees of freedom which are simple to compute seems
not easily possible for FSLR. This has also been pointed out by Efron et al.
(2004, comment after formula (4.11)), and they suggest the computationally
intensive bootstrap to cope with this problem.

We emphasize that Efron et al. (2004) do not advocate to use FSLR in
practice. They rather focus on the more interesting LARS algorithm.

2.2. Stopping the boosting iterations. Boosting needs to be stopped at
a suitable number of iterations, to avoid overfitting. The computationally
efficient AICc criterion in (2.3) below can be used in our context where the
base procedure has linear components.

Our goal here is to assign degrees of freedom for boosting. Denote by

H(j) = X(j)(X(j))T /‖X(j)‖2, j = 1, . . . , p,

the n × n hat-matrix for the linear least squares fitting operator using the

jth predictor variable X(j) = (X
(j)
1 , . . . , X

(j)
n )T only; ‖x‖2 = xTx denotes

the Euclidean norm for a vector x ∈ Rn. It is then straightforward to show
(Bühlmann and Yu, 2003) that the L2Boosting hat-matrix, when using the
step size 0 < ν ≤ 1, equals,

Bm = I − (I − νH(Ŝm))(I − νH(Ŝm−1)) . . . (I − νH(Ŝ1)),

where Ŝi ∈ {1, . . . , p} denotes the component which is selected in the com-
ponentwise least squares base procedure in the ith boosting iteration.

Using the trace of Bm as degrees of freedom, we employ a corrected version
of AIC (Hurvich et al., 1998, cf.) to define a stopping rule for boosting:

AICc(m) = log(σ̂2) +
1 + trace(Bm)/n

1− (trace(Bm) + 2)/n
,

σ̂2 = n−1
n∑

i=1

(Yi − (BmY)i)
2, Y = (Y1, . . . , Yn)T .(2.3)

An estimate for the number of boosting iterations is then

M̂ = arg min
1≤m≤mupp

AICc(m),

where mupp is a large, upper bound for the candidate number of boosting
iterations.
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3. Consistency of L2Boosting in high dimensions. We present
here a consistency result for L2Boosting in linear models where the number
of predictors is allowed to grow very fast as the sample size n increases.
Consider the model

Yi = fn(Xi) + εi, i = 1, . . . , n,

fn(x) =

pn∑

j=1

βj,nx
(j), x ∈ Rpn,(3.1)

where X1, . . . , Xn are i.i.d. with IE|X (j)|2 ≡ 1 for all j = 1, . . . , pn and
ε1, . . . , εn are i.i.d., independent from {Xs; 1 ≤ s ≤ n}, with IE[ε] = 0. The
case with heteroscedastic εi’s and potential dependence between εi and Xi is
discussed in Remark 3 below. The number of predictors pn is allowed to grow
with sample size n. Therefore, also the predictor Xi = Xi,n and the response
Yi = Yi,n depend on n, but we usually ignore this in the notation. The
scaling of the predictor variables IE|X (j)|2 = 1 is not necessary for running
L2Boosting, but it allows to identify the magnitude of the coefficients βj,n
(see also assumption (A1) below).

We make the following assumptions.

(A1) The dimension of the predictor in model (3.1) satisfies
pn = O(exp(Cn1−ξ)) (n→∞), for some 0 < ξ < 1, 0 < C <∞.

(A2) supn∈N
∑pn

j=1 |βj,n| <∞.

(A3) sup1≤j≤pn,n∈N ‖X(j)‖∞ < ∞, where ‖X‖∞ = supω∈Ω |X(ω)| (Ω de-
notes the underlying probability space).

(A4) IE|ε|s <∞ for some s > 4/ξ with ξ from (A1).

Assumption (A1) allows for a very large predictor dimension relative to the
sample size n. Assumption (A2) is a `1-norm sparseness condition (it could
be generalized to

∑pn
j=1 |βj,n| → ∞ sufficiently slowly as n → ∞, at the

expense of additional restrictions on pn). Even if pn grows, all predictors
may be relevant but most of them contribute only with small magnitudes
(small |βj,n|). Assumption (A2) holds for regressions where the number of
effective predictors is finite and fixed: that is, the number of βj,n 6= 0 is
independent from n and finite. Assumption (A3) about the boundedness
of the predictor variables can be relaxed at the price of a more restrictive
growth of p = pn, see Remark 1 below.

Theorem 1. Consider the model (3.1) satisfying (A1)-(A4). Then, the

boosting estimate F̂ (m)(·) = F̂
(m)
n (·) with the componentwise linear base

procedure from (2.1) satisfies: for some sequence (mn)n∈N with mn → ∞
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(n→∞) sufficiently slowly,

IEX |F̂ (mn)
n (X)− fn(X)|2 = oP (1) (n→∞),

where X denotes a new predictor variable, independent of and with the same
distribution as the X-component of the data (Xi, Yi) (i = 1, . . . , n).

A proof is given in section 6. Theorem 1 says that L2Boosting recovers
the true sparse regression function even if the number of predictor variables
is essentially exponentially increasing with sample size n. Notably, no as-
sumptions are needed on the correlation structure of the predictor variables.

Remark 1. Assumption (A3) requires boundedness of the predictor vari-
ables. Theorem 1 also holds under the assumption

sup
1≤j≤pn

IE|X(j)|s <∞ for some s ≥ 4

if the growth of dimension is restricted to pn = O(nα) where α = α(s) > 0
is a number, depending on the number of existing moments s, which con-
verges monotonically to ∞ as s increases, i.e. any polynomial growth of pn
is allowed if the number of moments s is sufficiently large.

Remark 2. For the Lasso, a consistency for high-dimensional regres-
sion has been given by Greenshtein and Ritov (2004). Their result covers
the case where pn = O(nα) for any α > 0 and the `1-norm of the coeffi-
cients

∑pn
j=1 |βj,n| is allowed to grow with n, see also Remark 1 above. We

should keep in mind however, that the Lasso is a different estimator than
L2Boosting, as will be demonstrated on an empirical example in section 4.3.

Remark 3. Theorem 1 also holds for possibly heteroscedastic errors εi
which are potentially dependent of Xi, by assuming (X1, Y1), . . . , (Xn, Yn)
i.i.d. and suitable moment conditions for Yi. For the case with bounded Yi,
a proof follows as for Corollary 1 below.

3.1. Binary classification. The case of binary classification with Yi ∈
{0, 1} can be essentially deduced from squared error regression. Bühlmann
and Yu (2003) argue why L2Boosting is also a reasonable procedure for
binary classification. We can always write

Yi = fn(Xi) + εi,

fn(x) = IE[Y |X = x] = IP[Y = 1|X = x], εi = Yi − fn(Xi),(3.2)
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where the ε1, . . . , εn are independent but heteroscedastic with IE[εi] = 0
and V ar(εi) = fn(Xi)(1 − fn(Xi)). When using L2Boosting, we get an es-
timate for the conditional probability function IP[Y = 1|X = x], and the
L2Boosting plug-in classifier (for equal misclassification costs) is given by

Ĉ
(m)
n (x) = I1

[F̂
(m)
n (x)>1/2]

.

The proof of Theorem 1 essentially goes through and we get the following.

Corollary 1. Consider a binary classification problem with (X1, Y1), . . . ,
(Xn, Yn) independent and Yi ∈ {0, 1} for all i = 1, . . . , n. Denote by fn(x) =
IPn[Y = 1|X = x] and assume (A1)-(A3). Then, for the L2Boosting esti-
mate as in Theorem 1: for some sequence (mn)n∈N with mn →∞ (n→∞)
sufficiently slowly,

IEX |F̂ (mn)
n (X)− fn(X)|2 = oP (1) (n→∞),

IPX,Y [Ĉmnn (X) 6= Y ]− Ln,Bayes = oP (1) (n→∞),

where Ln,Bayes denotes the Bayes risk IEX [min{fn(X), 1−fn(X)}] and X,Y
denote new response and predictor variables, independent of and with the
same distribution as the data (Xi, Yi) (i = 1, . . . , n).

A proof is given in section 6. �

4. Numerical results.

4.1. Low-dimensional regression surface within low- or high-dimensional
predictor space. We consider the model

X ∼ Np(0, V ), Y = f(X) + ε, p ∈ {3, 10, 100},
f(X) = a(V )(1 + 5X (1) + 2X(2) +X(3)), ε ∼ N (0, 22),(4.1)

where a(V ) is a scaling factor. The covariance matrix for the predictor vari-
able X and the factor a(V ) are chosen as:

V = Ip, a(V ) = 1(4.2)

for uncorrelated predictors; or for block-correlated predictors,

V =




1 b c 0 . . . . . . . . . 0
b 1 b c 0 . . . . . . 0
c b 1 b c 0 . . . 0

0 c b 1 b c
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0 c b 1 b c
0 . . . . . . 0 c b 1 b
0 . . . . . . . . . 0 c b 1




,
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b = 0.677, c = 0.323, a(V ) = 0.779.(4.3)

The constant a(V ) is such that the signal to noise ratio IE|f(X)|2/σ2
ε is

about the same for both model specifications. The model (4.1) with either
specification (4.2) or (4.3) has only 3 effective predictors plus an intercept,
all of them contributing to the regression function with different magnitudes
(different coefficients). We choose sample size n = 20, i.e. we generate 20
i.i.d. realizations (Xi, Yi), i = 1, . . . 20 from the model. The case with p = 3
represents a low-dimensional model; for p ∈ {10, 100}, relative to the number
of observations n, the problem is high-dimensional with a low-dimensional
(effective peff + 1 = 4) true underlying structure.

We use L2Boosting, using shrinkage factor ν = 0.1 (see (2.2)) and the
corrected AIC criterion for stopping the boosting iterations (see (2.3)). We
compare it with the Lasso using 10-fold cross-validation for selecting the
penalty parameter (i.e. using the default-setting from the lars package in R

with 10-fold cross-validation (CRAN, 1997 ff.), with forward variable selec-
tion for optimizing the classical AIC criterion, with ordinary least squares
(OLS) without variable selection and with Ridge regression using the ora-
cle Ridge-penalty parameter which minimizes the squared error loss over the
simulations; the latter cannot be used in practice but serves as an optimistic
value for the performance of Ridge regression. Table 4.1 reports in detail the

method (4.2), p = 3 (4.2), p = 10 (4.2), p = 100

L2Boost 1.658 (0.192) 2.318 (0.238) 8.792 (0.640)
Lasso 1.597 (0.240) 3.385 (0.447) 8.557 (0.751)
fwd.var.sel. 1.499 (0.215) 3.648 (0.421) 13.551 (1.275)
Ridge* 1.079 (0.117) 4.436 (0.392) 25.748 (0.637)
OLS 1.103 (0.127) 5.674 (0.556) –

(4.3), p = 3 (4.3), p = 10 (4.3), p = 100

L2Boost 1.054 (0.104) 1.649 (0.181) 4.643 (0.239)
Lasso 1.727 (0.269) 3.105 (0.473) 3.770 (0.402)
fwd.var.sel. 1.206 (0.104) 2.893 (0.373) 12.685 (0.911)
Ridge* 0.777 (0.079) 2.442 (0.226) 20.799 (0.538)
OLS 1.103 (0.127) 5.674 (0.556) –

Table 4.1: Mean squared error IE[(f̂(X) − f(X))2] for L2Boosting, Lasso,
forward variable selection (fwd.var.sel.), Ridge regression with the oracle
penalty (Ridge*) and ordinary least squares (OLS) in model (4.1) with speci-
fications (4.2) and (4.3). Sample size n = 20. Estimated standard errors from
independent model simulations are given in parentheses.



BOOSTING FOR HIGH-DIMENSIONAL REGRESSION 11

mean squared error MSE = IE[(f̂(X) − f(X))2] where X is a new test ob-
servation, independent from but with the same distribution as the training
data. Figure 4.1 summarizes one of the settings. All results are based on 50
model simulations.
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Figure 4.1: Mean squared error IE[(f̂(X)−f(X))2] for L2Boosting as a func-
tion of boosting iterations (solid line), for L2Boosting with AICc-stopping
(dashed line denoted by AIC-stopped), Lasso (long-dashed line), forward
variable selection (dashed-dotted line) and ordinary least squares (dotted
line) in model (4.1) with p = 10 and specifications (4.2) (top panel) and
(4.3) (bottom panel). Sample size n = 20.

For the high-dimensional settings with p ∈ {10, 100}, L2Boosting and the
Lasso are clearly best for this model with very few effective predictors (see
Table 4.1). Figure 4.1 displays the good performance of the corrected AICc
criterion in (2.3) for stopping the boosting iterations. A detailed comparison
of the “oracle”-stopping rule of L2Boosting which stops at the boosting
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iteration minimizing the mean squared error (see Table 4.2) can be made
to the results in Table 4.1. Obviously, the “oracle”-rule can only be applied
for simulated data. We also include in Table 4.2 the performance of the
Lasso with the “oracle” penalty parameter minimizing the mean squared
error. L2Boosting and the Lasso perform similarly when using the “oracle”
tuning parameters (see Table 4.2), while the differences are somewhat more
pronounced when comparing AICc-stopped L2Boosting with Lasso using
10-fold CV tuning (see Table 4.1).

model L2Boost* Lasso*

(4.2), p = 3 1.103 (0.127) 1.103 (0.127)
(4.3), p = 3 0.891 (0.100) 1.075 (0.117)

(4.2), p = 10 2.193 (0.230) 2.208 (0.262)
(4.3), p = 10 1.404 (0.114) 1.378 (0.116)

(4.2), p = 100 7.583 (0.593) 7.116 (0.603)
(4.3), p = 100 2.995 (0.208) 2.730 (0.234)

Table 4.2: Mean squared error IE[(f̂(X) − f(X))2] (MSE) for L2Boosting
(L2Boost*) and the Lasso (Lasso*), both with their “oracle”-tuning param-
eter minimizing the MSE. The model is as in (4.1) with specifications (4.2)
and (4.3). Sample size n = 20. Estimated standard errors from independent
model simulations are given in parentheses.

Finally, we also include a small study when p increases exponentially
while n grows only linearly. We focus on the model (4.1) with (4.2) for
(n, p) = (20, 3), (40, 30), (60, 300). The results for L2Boosting and the Lasso
are given in Table 4.3. For both L2Boosting and the Lasso, the mean squared
error exhibits only a slow increase as n grows linearly and p exponentially;
compare also with the results from Table 4.1 with fixed n = 20. For this par-

(n, p) L2Boost Lasso L2Boost* Lasso*

(20, 3) 1.658 (0.192) 1.597 (0.240) 1.103 (0.127) 1.103 (0.127)
(40, 30) 2.090 (0.199) 2.800 (0.289) 1.730 (0.169) 1.438 (0.120)
(60, 300) 3.652 (0.186) 2.430 (0.169) 2.372 (0.135) 1.855 (0.122)

Table 4.3: Mean squared error IE[(f̂(X) − f(X))2] (MSE). L2Boosting with
AICc-stopping (L2Boost) and with the “oracle”-stopping (L2Boost*); Lasso
with 10-fold CV tuning (Lasso) and with “oracle” tuning (Lasso*). The
model is as in (4.1) with specification (4.2). Estimated standard errors from
independent model simulations are given in parentheses.
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ticular example, the “oracle”-tuned Lasso is slightly better for large p = 300
than the “oracle”-stopped L2Boosting (but this is not a general superiority).

4.2. High-dimensional regression surface with `1-coefficients. We con-
sider here a regression model which fits into the theory of an adaptive
estimation procedure for high-dimensional linear regression, presented by
Goldenshluger and Tsybakov (2001).

The model is

X ∼ Np(0, I), Y =

p∑

j=1

βjX
(j) + ε,

βj ∼ N (0, σ2
j ) (j = 1, . . . , p), ε ∼ N (0, 1),(4.4)

where ε,X and β1, . . . , βp are independent of each other. The values σ2
j are

decreasing as j increases. Thus, absolute values of the regression coefficients
|βj | have a tendency to become small for large j. A precise description of
the model is given in the Appendix. To summarize, the model is such that
p = pn and βj = βj,n (j = 1, . . . , pn) depend on n, satisfying with high
probability supn∈N

∑pn
j=1 |βj,n| < ∞, which is our assumption (A2) from

section 3. Sample size is chosen as n = 100 and the resulting dimension of
the predictor then equals p = 23.

We use L2Boosting, using shrinkage ν = 0.1 (see (2.2)) and with esti-
mated number of boosting iterations via the corrected AIC criterion as in
(2.3), and we compare it with the Lasso (using the default-setting from the
lars package in R with 10-fold cross-validation (CRAN, 1997 ff.)), forward
variable selection for optimizing the classical AIC criterion, with Ridge re-
gression using 10-fold cross-validation for selecting the Ridge parameter,
with ordinary least squares and with the procedure from (Goldenshluger

L2Boost Lasso G&T

0.132 (0.006) 0.159 (0.011) 0.195 (0.047)

fwd.var.sel. Ridge OLS

0.279 (0.019) 0.116 (0.008) 0.313 (0.017)

Table 4.4: Mean squared error IE[(f̂(X) − f(X))2] for L2Boosting, Lasso,
the method from Goldenshluger and Tsybakov (G&T), forward variable
selection (fwd.var.sel.), Ridge regression (Ridge) and ordinary least squares
(OLS) in model (4.4). Sample size n = 100. Estimated standard errors from
independent model simulations are given in parentheses.
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L2Boost Lasso G&T fwd.var.sel. Ridge OLS
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Figure 4.2: Boxplots of squared errors (f̂(X)−f(X))2 for L2Boosting, Lasso,
the method from Goldenshluger and Tsybakov (G&T), forward variable
selection (fwd.var.sel.), Ridge regression (Ridge) and ordinary least squares
(OLS) in model (4.4). One outlier with value=2.48 occurred using the G&T
method. Sample size n = 100.

and Tsybakov, 2001). Table 4.4 and Figure 4.2 display the results which
are based on 50 independent model simulations. The method from (Golden-
shluger and Tsybakov, 2001) produced one outlier with very large squared
error. L2Boosting and Ridge regression perform best for this model.

Moreover, the method from (Goldenshluger and Tsybakov, 2001) depends
on the indexing of the predictor variables and is tailored for regression prob-
lems where the coefficients βj have a tendency to decay as j increases (e.g.
in time series where j indicates the jth lagged variable). All other meth-
ods are not depending on indexing the predictor variables. We also ran the
method from (Goldenshluger and Tsybakov, 2001) on the same model but
with index-reversed regression coefficients

β1, . . . β23 = β̃23, . . . , β̃1, β̃j as in (4.4).(4.5)

The mean squared error was then

MSE for G&T method with (4.5): 0.224 (0.025)
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which shows very clearly the sensitivity of indexing the variables.

4.3. L2Boosting is different from Lasso. Consider a model with predic-
tors as in (4.1) and (4.2) with p = 100 but with regression function

f(X) = 0.2 + 0.2
100∑

j=1

X(j)(4.6)

and noise ε ∼ N (0, 0.52). Sample size is chosen as n = 20. This model is
high-dimensional and non-sparse, and it has a high signal to noise ratio.

Since all the predictors contribute equally, we may want to keep many
of the variables in the model and shrink their corresponding coefficient
estimates to zero. However, the Lasso will only allow to select at most
min(n, p + 1) = 20 predictor variables (including an intercept), cf. Zou
and Hastie (2003). When generating one realization of the model (4.6),
L2Boosting with the AICc-stopping rule selected 42 predictor variables (in-
cluding the intercept), whereas the corresponding number of selected vari-
ables with Lasso, tuned by 10-fold cross-validation, is 19 only. Thus, we
have here an example which demonstrates a feature of L2Boosting which is
qualitatively different to the Lasso.

A comparison in terms of performances is given in Table 4.5. The methods
are described in section 4.2. It is no surprise that Ridge regression (using 10-

L2Boost Lasso Ridge

9.468 (0.251) 11.519 (0.322) 5.548 (0.229)

Table 4.5: Mean squared error IE[(f̂(X)−f(X))2] for L2Boosting, Lasso and
Ridge regression in model (4.6). Sample size n = 20. Estimated standard
errors from independent model simulations are given in parentheses.

fold cross-validation for tuning) performs clearly best. It keeps all variables
in the model and shrinks the corresponding estimates towards zero: this is
tailored for the structure of the model (4.6) where all the variables contribute
equally. We also see from the mean squared error, that L2Boosting is quite
different (in fact better) than the Lasso.

It is not difficult to extend this example such that Ridge regression be-
comes worse than L2Boosting. Take p large such as p = 1000 and use the
same function f(X) = 0.2 + 0.2

∑100
j=1X

(j) which depends only on the first
100 components of X. Ridge is expected to perform poorly, because it uses
all p (e.g. = 1000) predictor variables, while L2Boosting remains to be a bit
better than the Lasso.
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4.4. Gene expression microarray data. We consider a dataset which mon-
itors p = 7129 gene expressions in 49 breast tumor samples using the
Affymetrix technology, see West et al. (2001). After thresholding to a floor
of 100 and a ceiling of 16,000 expression units, we applied a base 10 log-
transformation and standardized each experiment to zero mean and unit
variance. For each sample, a binary response variable is available, describ-
ing the status of lymph node involvement in breast cancer. The data are
available at http://mgm.duke.edu/genome/dna micro/work/.

We use L2Boosting although the data has the structure of a binary clas-
sification problem; section 3.1 and Corollary 1 yield a justification for it,
and e.g. Zou and Hastie (2003) also use some penalized squared error re-
gression for binary classification with microarray gene expression predictors.
The only modification is the AIC stopping criterion: instead of (2.3), we use

AIC(m) = −2 · log-likelihood + 2 · trace(Bm),

with the Bernoulli log-likelihood. Instead of L2Boosting, we could also use
the LogitBoost algorithm (Friedman et al., 2000): for stopping, the penalty-
term in the AIC criterion above then needs some modification since Logit-
Boost involves another operator than Bm.

We estimate the classification performance by a cross-validation scheme
where we randomly divide the 49 samples into balanced training- and test-
data of sizes 2n/3 and n/3, respectively, and we repeat this 50 times. We

L2Boost FPLR 1-NN DLDA SVM

misclassifications 30.50% 35.25% 43.25% 36.12% 36.88%

Table 4.6: Cross-validated misclassification rates for lymph node breast
cancer data. L2Boosting is with linear least squares and AIC-stopping
(L2Boost), forward variable selection penalized logistic regression (FPLR),
1-nearest-neighbor rule (1-NN), diagonal linear discriminant analysis
(DLDA) and a support vector machine (SVM); the latter three are based
on 200 best genes (on each training dataset) according to a Wilcoxon score.

compare L2Boosting with AIC-stopping (as described above) with four
other classification methods: 1-nearest neighbors, diagonal linear discrim-
inant analysis, support vector machine with radial basis kernel (from the
R-package e1071 and using its default values), and a forward selection pe-
nalized logistic regression model (using some reasonable penalty parameter
and number of selected genes). For 1-nearest neighbors, diagonal linear dis-
criminant analysis and support vector machine, we pre-select the 200 genes
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which have the best Wilcoxon score in a two-sample problem (estimated
from the training dataset only), which is recommended to improve the clas-
sification performance, see Dudoit et al. (2002). Our L2Boosting and the
forward variable selection penalized regression are run without pre-selection
of genes. The results are given in Table 4.6.

For this difficult classification problem, our L2Boosting with component-
wise linear least squares performs well. It is also interesting to note that the
minimal cross-validated misclassification rate as a function of boosting itera-
tions is 29.25%. It shows that the AIC-stopping rule is very accurate for this
example. The only method which we found to perform better for this dataset
is the recently proposed Pelora algorithm (Dettling and Bühlmann, 2004)
which does supervised gene grouping: its misclassification rate is 27.88%.

We also show in Figure 4.3 the estimated regression coefficients for the
42 genes which have been selected during the boosting iterations until AIC-
stopping; the AIC-curve is also shown in Figure 4.3. For comparing the
influence of different genes, we display scaled coefficients β̂j

√
V ar(X(j))

which correspond to the estimated coefficients when standardizing the genes
to unit variance. There is one gene whose positive expression strongly points
towards the class with Y = 0 (having negative scaled regression coefficient)
and there are 5 genes whose positive expressions point towards the class
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Figure 4.3: Lymph node breast cancer data. Left: scaled regression coeffi-
cients β̂j

√
V ar(X(j)) (plotted in increasing order) from L2Boosting for the

selected 42 genes. Right: AIC-statistic as a function of L2Boosting iterations
with minimum at 108.
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with Y = 1. The smallest scaled regression coefficient corresponds to a gene
which appears as the second best when ranking all the genes with the score
of a two-sample Wilcoxon test; the five largest scaled coefficients correspond
to the Wilcoxon-based ranks 7, 6, 1, 121, 3 among all the genes. But it should
be emphasized that, as usual, our estimated regression model takes partial
correlations between gene expressions (given all other remaining genes) into
account which goes well beyond describing the effects of single genes only.

5. Conclusions. We consider L2Boosting for fitting linear models. The
method does variable selection and shrinkage, a property which is very useful
in practical applications. This indicates that L2Boosting is related to the `1-
penalized Lasso, but the methods are not the same.

As a useful device, we propose a simple estimate for the number of boost-
ing iterations, which is the tuning parameter of the method, by using a
corrected AICc criterion. This makes boosting computationally attractive,
since we do not have to run it multiple times in a cross-validation set-up.

We then present some theory for very high-dimensional regression (or for
de-noising with strongly overcomplete dictionaries), saying that if the un-
derlying true regression function is sparse in terms of the `1-norm of the
regression coefficients, L2Boosting consistently estimates the true regres-
sion function, even when the number of predictor variables grows like pn =
O(exp(n1−ξ)) for some (small) ξ > 0. Notably, no assumptions are made
on the correlation structure of the predictors. Thus, we identify L2Boosting
as a method which is able, under mild assumptions, to consistently recover
very high-dimensional, sparse functions.

6. Proofs. We first consider the regression case where the step-size in
(2.2) equals ν = 1. In section 6.3, we give the argument for arbitrary, fixed
0 < ν ≤ 1. Finally, we present the case for binary classification in section
6.4.

6.1. A population version. The L2Boosting algorithm has a population
version which is known as “matching pursuit” (Mallat and Zhang, 1993) or
“weak greedy algorithm” (Temlyakov, 2000).

Consider the Hilbert space L2(P ) = {f ; ‖f‖2 =
∫
f(x)2dP (x) <∞} with

inner product 〈f, g〉 =
∫
f(x)g(x)dP (x). Here, the probability measure P

is generating the predictor X in model (3.1). To be precise, the probability
measure P = Pn depends on n since the dimensionality of X is growing with
n: we are actually looking at a sequence of Hilbert spaces L2(Pn) but we
often ignore this notationally (a uniform bound in (6.5) will be a key result
to deal with such sequences of Hilbert spaces).
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Denote the components of X by

gj(x) = x(j), j = 1, . . . , pn.

Note that by assumption, ‖gj‖ = 1 for all j. Define the following sequence
of remainder functions, called matching pursuit or weak greedy algorithm:

R0f = f,

Rmf = Rm−1f −
〈
Rm−1f, gSm

〉
gSm , m = 1, 2, . . .(6.1)

where Sm would be ideally chosen as

Sm = argmax1≤j≤pn |
〈
Rm−1f, gj

〉
|.

The choice function Sm is sometimes infeasible to realize in practice. A
weaker criterion is: for every m (under consideration), choose any Sm, which
satisfies

|
〈
Rm−1f, gSm

〉
| ≥ b · sup

1≤j≤pn
|
〈
Rm−1f, gj

〉
| for some 0 < b ≤ 1.(6.2)

Of course, the sequence Rmf = Rm,Sf depends on S1,S2, . . . ,Sm how we
actually make the choice in (6.2). Again, we will ignore this notationally.

It easily follows that

f =

m−1∑

j=0

〈
Rjf, gSj+1

〉
gSj+1 +Rmf,

and

‖Rmf‖2 = ‖Rm−1f‖2 − |
〈
Rm−1f, gSm

〉
|2(6.3)

6.1.1. Temlyakov’s result. Temlyakov (2000) gives a uniform bound for
the algorithm in (6.1) with (6.2).

If the function f is representable as

f(x) =
∑

j

βjgj(x),
∑

j

|βj | ≤ B <∞,(6.4)

which is true by our assumption (A2), then

‖Rmf‖ ≤ B(1 +mb2)−b/(2(2+b)), 0 < b ≤ 1 as in (6.2).(6.5)

By construction, Rmf depends on the selectors S1, . . . ,Sm in (6.2). The
mathematical power of the bound in (6.5) is, that it holds for any selectors
S1, . . . ,Sm which satisfy (6.2). In particular, the bound also holds for se-
quences Rmf which depend on the sample size n (since X ∼ P = Pn and
also the function of interest f = fn depend on n).
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6.2. Asymptotic analysis as sample size increases. The L2Boosting al-
gorithm can be represented analogously to (6.1). We introduce the following
notation:

〈f, g〉(n) = n−1
n∑

i=1

f(Xi)g(Xi), and ‖f‖2(n) = n−1
n∑

i=1

f(Xi)
2

for functions f, g : Rpn → R. As before, we denote by Y = (Y1, . . . , Yn)T the
vector of response variables.

Define

R̂0
nf = f, R̂1

nf = f −
〈
Y, gŜ1

〉
(n)
gŜ1

,

R̂mn f = R̂m−1
n f −

〈
R̂m−1
n f, gŜm

〉
(n)
gŜm , m = 2, 3, . . . ,

where

Ŝ1 = arg max
1≤j≤pn

| 〈Y, gj〉(n) |,

Ŝm = arg max
1≤j≤pn

|
〈
R̂m−1
n f, gj

〉
(n)
|, m = 2, 3, . . .

By definition, R̂mn f = f − F̂mn is the difference of the function f and its
L2Boosting estimate F̂mn . Note that we emphasize here the dependence of

R̂mn on n since finite-sample estimates
〈
R̂m−1
n f, gj

〉
(n)

are involved.

6.2.1. A semi-population version. For analyzing R̂mn f , we want to use
Temlyakov’s (2000) result from (6.5). We will apply it to a semi-population
version R̃mn f , as defined below (since it seems difficult to establish (6.2) for
R̂mn f directly).

Consider

R̃0
nf = f,

R̃mn f = R̃m−1
n f −

〈
R̃m−1
n f, gŜm

〉
gŜm , m = 1, 2, . . .

where Ŝm is the selector from the sample version above.
The strategy will be as follows. First, we want to establish a finite-sample

analogue of (6.2) for the estimated selectors Ŝm: this will then allow us to use
Temlyakov’s (2000) result from (6.5) for R̃mn f . Finally, we need to analyze
the difference R̂mn f − R̃mn f .
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6.2.2. Uniform laws of large numbers.

Lemma 1. Under the assumptions (A1)-(A4), with 0 < ξ < 1 as in
(A1),

(i) sup1≤j,k≤pn |n−1
∑n

i=1 gj(Xi)gk(Xi)−IE[gj(X)gk(X)]| = ζn,1 = OP (n−ξ/2),

(ii) sup1≤j≤pn |n−1
∑n

i=1 gj(Xi)εi| = ζn,2 = OP (n−ξ/2),

(iii) sup1≤j≤pn |n−1
∑n

i=1 f(Xi)gj(Xi)−IE[f(X)gj(X)]| = ζn,3 = OP (n−ξ/2),

(iv) sup1≤j≤pn |n−1
∑n

i=1 gj(Xi)Yi − IE[gj(X)Y ]| = ζn,4 = OP (n−ξ/2),

Proof: For assertion (i), denote by M = supj ‖gj(X)‖∞, see assumption
(A3). Then, Bernstein’s inequality yields for every γ > 0,

IP[nξ/2 sup
1≤j,k≤pn

|n−1
n∑

i=1

gj(Xi)gk(Xi)− IE[gj(X)gk(X)]| > γ]

≤ p2
n2 exp

(
− γ2n1−ξ

2(σ2
g +M2γn−ξ/2)

)
,

where σ2
g is an upper bound for V ar(gj(X)gk(X)) for all j, k (e.g. σ2

g = M4).

Since p2
n = O(exp(2C(n1−ξ))), the right-hand side of the inequality above

becomes arbitrarily small for n sufficiently large and γ > 0 large.
For proving assertion (ii), we have to deal with the unboundedness of the

εi’s in order to apply Bernstein’s inequality. Define the truncated variables

εtri =

{
εi, if |εi| ≤Mn

sign(εi)Mn, if |εi| > Mn.

Then, for γ > 0,

IP[nξ/2 sup
1≤j≤pn

|n−1
n∑

i=1

gj(Xi)εi| > γ]

≤ IP[nξ/2 sup
1≤j≤pn

|n−1
n∑

i=1

gj(Xi)ε
tr
i − IE[gj(X)εtr ]| > γ/3]

+ IP[nξ/2 sup
1≤j≤pn

|n−1
n∑

i=1

gj(Xi)(εi − εtri )| > γ/3]

+ IP[nξ/2 sup
1≤j≤pn

|n−1
n∑

i=1

IE[gj(Xi)(εi − εtri )]| > γ/3]

= I + II + III,
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since IE[gj(X)ε] = IE[gj(X)]IE[ε] = 0 which we use for III. We can bound I
again by using Bernstein’s inequality:

I ≤ pn2 exp

(
− (γ2/9)n1−ξ

2(σ2
g +M2

n(γ/3)n−ξ/2)

)
,(6.6)

where σ2
g is an upper bound for V ar(gj(X)εtr) (e.g. supj ‖gj(X)‖2∞IE|ε|2).

When using

Mn = nξ/4,

we can make the right hand since in (6.6) arbitrarily small since pn =
O(exp(Cn1−ξ)): thus, for every δ > 0,

I ≤ δ for n sufficiently large, γ sufficiently large.(6.7)

A bound for II can be obtained as follows:

II ≤ IP[some |εi| > Mn] ≤ nIP[|ε| > Mn] ≤ nM−sn IE|ε|s
= O(n1−sξ/4) = o(1) (n→∞)(6.8)

since s > 4/ξ by assumption (A4).
For III we use the bound

III ≤ I1[nξ/2 supj |IE[gj(X)(ε−εtr)]|>γ/3].(6.9)

Note that by the independence of ε (and εtr) from gj(X),

IE[gj(X)(ε − εtr)] = IE[gj(X)]IE[ε− εtr].

Hence, an upper bound is

|IE[gj(X)(ε − εtr)]| ≤M |IE[ε− εtr]|.

The latter can be bounded as

|IE[ε− εtr]| ≤ |
∫

|x|>Mn

(sign(x)Mn − x)dPε(x)|

≤
∫

I1[|x|>Mn](Mn + |x|)dPε(x)

= MnIP[|ε| > Mn] +

∫
|x|I1[|x|>Mn]dPε(x)

≤ M1−s
n IE|ε|s + (IE|ε|2)1/2(IP[|ε| > Mn])1/2

= O(M1−s
n ) +O(M−s/2n ) = o(M−2

n ) = o(n−ξ/2)
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since s > 4/ξ > 4 (0 < ξ < 1). Hence, by using (6.9):

III = 0 for n sufficiently large, γ > 0 sufficiently large,

and together with (6.7) and (6.8), this proves assertion (ii).
Assertion (iii) follows from (i):

sup
1≤j≤pn,n∈N

|n−1
n∑

i=1

f(Xi)gj(Xi)− IE[f(X)gj(X)]|

≤
pn∑

r=1

|βr,n| sup
1≤j,k≤pn

|n−1
n∑

i=1

gj(Xi)gk(Xi)− IE[gj(X)gk(X)]|

≤
pn∑

r=1

|βr,n| sup
1≤j,k≤pn

|n−1
n∑

i=1

gj(Xi)gk(Xi)− IE[gj(X)gk(X)]|

≤
pn∑

r=1

|βr,n|ζn,1 = OP (n−ξ/2).

Assertion (iv) follows from (ii) and (iii). �

6.2.3. Recursive analysis of L2Boosting. Denote by

ζn = max{ζn,1, ζn,2, ζn,3, ζn,4} = OP (n−ξ/2)

which is a bound for all assertions (i)-(iv) in Lemma 1. Also, we denote by
ω a realization of all n data-points.

Lemma 2. Under the assumptions of Lemma 1, there exists a constant
0 < C∗ <∞, independent from n and m, such that

sup
1≤j≤pn

|
〈
R̂mn f, gj

〉
(n)
−
〈
R̃mn f, gj

〉
| ≤ (5/2)mζnC∗

on the set An = {ω; |ζn(ω)| < 1/2}.
Note that Lemma 1 implies that IP[An] → 1 (n → ∞). The constant C∗ is
depending on supn∈N

∑pn
j=1 |βj,n|.

Proof: We proceed recursively. For m = 0, the statement follows directly

from Lemma 1(iv). Denote by An(m, j) =
〈
R̂mn f, gj

〉
(n)
−
〈
R̃mn f, gj

〉
. Then,

by definition,

An(m, j) = An(m− 1, j) −
〈
R̃m−1
n f, gŜm

〉(〈
gŜm , gj

〉
(n)
−
〈
gŜm , gj

〉)

−
〈
gŜm , gj

〉
(n)

(〈
R̂m−1
n f, gŜm

〉
(n)
−
〈
R̃m−1
n f, gŜm

〉)

= An(m− 1, j) − In,m(j)− IIn,m(j).(6.10)
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From Lemma 1(i) we get,

sup
1≤j≤pn

|In,m(j)| ≤ ‖R̃m−1
n f‖‖gŜm‖ζn ≤ ‖f‖ζn,(6.11)

where we have used the norm-reducing property in (6.3) for R̃mn f .
For the second term we proceed recursively,

sup
1≤j≤pn

|IIn,m(j)| ≤ sup
1≤j≤pn

|
〈
gŜm , gj

〉
(n)
| sup

1≤j≤pn
|An(m− 1, j)|

≤ (1 + ζn) sup
1≤j≤pn

|An(m− 1, j)|.(6.12)

For the last inequality, we have used again Lemma 1(i) and the Cauchy-

Schwarz inequality |
〈
gŜm , gj

〉
| ≤ ‖gŜm‖‖gj‖ = 1.

Using the notation Bn(m) = sup1≤j≤pn |An(m, j)|, we get the following re-
cursion from (6.10)-(6.12):

Bn(0) ≤ ζn,
Bn(m) ≤ Bn(m− 1) + ζn‖f‖+ (1 + ζn)Bn(m− 1)

≤ (5/2)Bn(m− 1) + ζn‖f‖ on the set An.

Therefore,

Bn(m) ≤ (5/2)mζn + ζn‖f‖
m−1∑

j=0

(5/2)j ≤ (5/2)mζn(1 + ‖f‖
m−1∑

j=0

(5/2)j−m)

≤ (5/2)mζn(1 + sup
n∈N

pn∑

j=1

|βj,n|
∞∑

k=1

(5/2)−k),

which completes the proof by setting C∗ = 1+supn∈N
∑pn

j=1 |βj,n|
∑∞

k=1(5/2)−k .
�

Analysing R̃mn f .
We are now ready to establish a finite-sample analogue of (6.2) for R̃mn f .
We have

〈
R̂mn f, gj

〉
(n)

=
〈
R̃mn f, gj

〉
+

(〈
R̂mn f, gj

〉
(n)
−
〈
R̃mn f, gj

〉)
.

Hence, by invoking Lemma 2 (and denoting by An the set as there) we get

|
〈
R̂mn f, gŜm

〉
(n)
| = sup

1≤j≤pn
|
〈
R̂mn f, gj

〉
(n)
|

≥ sup
1≤j≤pn

|
〈
R̃mn f, gj

〉
| − (5/2)mζnC∗ on the set An.
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Therefore, again by Lemma 2 for the first inequality to follow,

|
〈
R̃mn f, gŜm

〉
| ≥ |

〈
R̂mn f, gŜm

〉
(n)
| − (5/2)mζnC∗ on the set An

≥ sup
1≤j≤pn

|
〈
R̃mn f, gj

〉
| − 2(5/2)mζnC∗ on the set An.(6.13)

Consider the set Bn = {ω; sup1≤j≤pn |
〈
R̃mn f, gj

〉
| > 4(5/2)mζnC∗}. Then,

by (6.13),

|
〈
R̃mn f, gŜm

〉
| ≥ 0.5 sup

1≤j≤pn
|
〈
R̃mn f, gj

〉
| on the set An ∩Bn.(6.14)

Formula (6.14) says that the selectors Ŝm satisfy the condition (6.2) for R̃mn f
on the set An ∩ Bn. We can now invoke Temlyakov’s result in (6.5), since
the condition (6.2) holds on the set An ∩Bn (as established in (6.14)),

‖R̃mn f‖ ≤ B(1 +m/4)−1/10 = o(1) on the set An ∩Bn(6.15)

by choosing m = mn →∞ (n→∞) (slow enough), whereB = supn∈N
∑pn

j=1 |βj,n|
<∞, cf. (6.4) and assumption (A2).

For ω ∈ BC
n = {ω; sup1≤j≤pn |

〈
R̃mn f, gj

〉
| ≤ 4(5/2)mζnC∗}, by using

formula (5.2) from Temlyakov (2000) with bm as defined there (i.e. bm =

bm−1 + |
〈
R̃m−1
n f, gŜm

〉
|, b0 = 1),

‖R̃mn f‖2 ≤ sup
1≤j≤pn

|
〈
R̃mn f, gj

〉
|bm ≤ sup

1≤j≤pn
|
〈
R̃mn f, gj

〉
|(1 +m‖f‖)

≤ 4(5/2)mζnC∗(1 +m‖f‖) on the set BC
n .(6.16)

For bounding the number bm, we have used the norm reducing property in
(6.3) applied to R̃mn f . Therefore, using (6.15), (6.16) and ζn = OP (n−ξ/2)
from Lemma 1, we have for m = mn → ∞(n → ∞) slow enough (e.g.
mn = o(log(n))),

‖R̃mn f‖ ≤ B(1 +mn/4)−1/10 + 4(5/2)mn ζnC∗(1 +m‖f‖)
on the set (An ∩Bn) ∪BC

n

= oP (1),(6.17)

since IP[(An ∩Bn) ∪BC
n ] ≥ IP[An]→ 1 (n→∞) due to Lemma 1.

Analysing R̂mn f .
By definition and using the triangle inequality

‖F̂mn − f‖ = ‖R̂mn f‖ ≤ ‖R̃mn f‖+ ‖R̂mn f − R̃mn f‖.(6.18)
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A recursive analysis can be developed for the second term on the right hand
side

An(m) = ‖R̂mn f − R̃mn f‖.

By definition,

An(m) = ‖R̂m−1
n f − R̃m−1

n f −
(〈

R̂m−1
n f, gŜm

〉
(n)
−
〈
R̃m−1
n f, gŜm

〉)
gŜm‖

≤ An(m− 1) + |
〈
R̂m−1
n f, gŜm

〉
(n)
−
〈
R̃m−1
n f, gŜm

〉
|‖gŜm‖

≤ An(m− 1) + (5/2)m−1ζnC∗ on the set An,

where the last inequality follows from Lemma 2. Therefore, for some constant
C > 0,

‖R̂mn f − R̃mn f‖ ≤ 3mζnC = oP (1)(6.19)

by choosing m = mn →∞ sufficiently slowly such that 3mnζn = oP (1).

By (6.18), (6.17) and (6.19) we get (e.g. by using the choice mn →∞,mn =
o(log(n))),

IEX |F̂mnn (X)− f(X)|2 = ‖R̂mnn f‖2 = oP (1)

which completes the proof of Theorem 1. �

6.3. Arbitrary step-size ν. For arbitrary, fixed step-size 0 < ν ≤ 1 in
(2.2), we need to make a few modifications of the proof.

Temlyakov’s result in (6.5) becomes

‖Rmf‖ ≤ B(1 + ν(2− ν)mb2)−b/(2(2+b)), 0 < b ≤ 1 as in (6.2).

Proof: The claim follows as in Temlyakov (2000). Using his notation, we use
am = ‖Rmf‖2, ym = |

〈
Rm−1f, gSm

〉
|, bm = bm−1 + νym, b0 = 1 and tm ≡ b

from (6.2). �

We can then use exactly the same reasoning as in section 6.2. At some
obvious places, a factor ν occurs in addition which can be trivially bounded
by 1. The only slightly non-trivial reasoning occurs in (6.16): but using bm
as defined above (applied now to R̃mn f instead of Rmf) yields the bound

‖R̃mn f‖2 ≤ sup
1≤j≤pn

|
〈
R̃mn f, gj

〉
|bm,

which then allows to proceed as in section 6.2.
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6.4. Binary classification. The first assertion of Corollary 1 follows ex-
actly as in the proof of Theorem 1 by using the representation in 3.2. There
is no crucial place where we make use of homoscedastic errors εi: the uni-
form laws of large numbers from Lemma 1 look formally a bit different (e.g.
for (ii) we need to subtract a term IE[gj(Xi)εi] = IE[gj(Xi)(Yi − f(Xi))]),
but the i.i.d. structure of the pairs (Xi, Yi) suffices to get through. The
moment assumption for εi = Yi − f(Xi) trivially holds since |Yi| ≤ 1 and
supx |f(x)| ≤ 1.

For the second assertion, it is well-known that 2 times the L1-norm bounds
from above the difference between the generalization error of a plug-in classi-
fier (expected 0-1 loss error for classifying a new observation) and the Bayes
risk (Devroye et al., 1996, Theorem 2.3). Furthermore, the L1-norm is upper
bounded by the L2-norm. �

Appendix: The model (4.4). The model (4.4) is as follows. Define aj =
j0.51. Let the parameter κ be the solution of the equation σ2

εn
−1
∑∞
j=1 ajλj = κ,

where we denote by λj = (1 − κaj)+. For n = 100, the solution is κ = 0.199.
Determine the predictor dimension p = maxj{aj ≤ κ−1} = 23. The variances are

σ2
j = λj(nκaj)

−1, j = 1, . . . , 23, n = 100.

It can be shown that such regression coefficients belong with high probability to

{(βj,n)j ;
∑pn

j=1 a
2
jβ

2
j,n ≤ 1} (note that p = pn depends on n via the parameter

κ = κn).
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