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Abstract

We study L2Boosting and propose a new alternative version which employs model-
selection criteria (MS-LsBoosting). For the special case of an orthogonal linear model,
we give an algorithmical equivalence of LsBoosting to the Lasso and of one new MS-
L->Boosting to Breiman’s nonnegative garrote estimator.

The connection to model selection criteria is based on a reasonable and computable
definition of degrees of freedom for L;Boosting. Consequently, we estimate the stop-
ping iteration for L;Boosting using a model selection criterion. This could result in a
very substantial computational saving over a cross-validation tuned boosting. More-
over, we use model selection criteria for our new MS-LsBoosting which proceeds by
a stagewise reduction of a penalized (via model selection criteria) squared error. The
model selection criteria explicitly considered are AIC., BIC, FPE, and gM DL which
has a data-dependent penalty and bridges between AIC and BIC. We also show how
Ls- and MS-L,;Boosting can be used in the general nonparametric setting. This is
in contrast to the Lasso or the nonnegative garrote estimator which are restricted
to a (generalized) linear model or basis expansion using a fixed dictionary. Finally,
simulation studies are carried out to compare different model selection criteria and
illustrate the effectiveness of the model-selection stopped L;Boosting and the new
MS-L,Boosting.

1 Introduction

Since its inception in a practical form in Freund and Schapire (1996), boosting has obtained
and maintained its outstanding performance in numerous empirical studies both in the
machine learning and statistics literatures. The gradient descent view of boosting as
articulated in Breiman (1998) and Friedman et al. (2000) provides a springboard for the
understanding of boosting to leap forward and at the same time serves as the base for
new variants of boosting to be generated. In particular, the LyBoosting (Friedman, 2001)
takes the simple form of refitting a base learner to residuals of the previous iteration. It
coincides with Tukey’s (1977) twicing at its second iteration and reproduces matching
pursuit of Mallat and Zhang (1993) when applied to a dictionary or collection of fixed
basis functions. Bithlmann and Yu (2003) investigated LoBoosting for linear base learners
(base procedures) and showed that in such cases the variance or complexity of the boosted
procedure is bounded and increases at an increment which is exponentially diminishing as
iterations run — this special case calculation implies that the resistance to the over-fitting



behavior of boosting could be due to the fact that the complexity of boosting increases at
an extremely slow pace.

Consistency results for boosting-type algorithms include Mannor et al. (2002), Jiang
(2004), Lugosi and Vayatis (2004), and Zhang and Yu (2003). Jiang (2004) and Zhang
and Yu (2003) look at consistency achieved by early-stopping, and the others study con-
sistency achieved by regularization through some penalty or constraint. Only Jiang (2004)
considers the original AdaBoost algorithm for classification. All other authors consider
versions of boosting with either /;-constraints for the boosting aggregation coefficients
or a (numerically) relaxed version of boosting which is somewhere in between an /;-
constrained and an early-stopped boosting. In the case of the plain LyBoosting algorithm
without further modifications, which is in our experience the easiest to use in practice,
stronger results exist: Biithlmann and Yu (2003) showed that when using a smoothing
spline base procedure, the method is asymptotically minimax optimal for the toy problem
of one-dimensional curve estimation. Moreover, Biithlmann (2004) proved consistency of
LyBoosting for very high-dimensional linear models using a componentwise least squares
regression base procedure (see section 2.3). The model dimension is allowed to grow as
fast as O(exp(n'~¢)) (¢ > 0) as sample size n — oo, but the underlying true regression
function is assumed to be sparse (it has a bounded #¢;-norm for its coefficients).

Recently Efron et al. (2004) made an intriguing connection between LoBoosting and
Lasso (Tibshirani, 1996) which is an ¢;-penalized least squares method. They consider a
version of LyBoosting, called forward stagewise least squares (denoted in the sequel by
FSLR) and they show that for many cases, FSLR with infinitesimally small step-sizes
produces a set of solutions which coincides with the set of Lasso solutions when varying
the regularization parameter in Lasso. Furthermore, Efron et al. (2004) proposed the least
angle regression (LARS) algorithm which is a clever computational short-cut for FSLR
and Lasso. However, as Efron et al. (2004, sec. 8) write, their LARS procedure is not
directly applicable to more general base procedures or learners such as Friedman’s (2001)
MART algorithm, which is the same as the L;Boosting method when using regression
trees as base learners. Thus, the connections between Lasso, FSLR and LARS are not
understood for all cases.

The purpose of this paper is two-fold. First, we provide further analysis and under-
standing of LyBoosting and its connections to FSLR and Lasso in the regression setting.
Second we propose a new alternative version of boosting which is based on model-selection
criteria (MS-LoBoosting) where AIC,., BIC, FPE, and gM DL are explicitly considered.
The key to connect to various model selection criteria is the notion of degrees of freedom
for LoBoosting. A reasonable definition has been already proposed in Biithlmann (2004),
namely the trace of the boosting operator which is easily computable and can be used
whenever the base procedure in boosting involves a linear fitting of a response vector
to some (data-) selected subset of basis functions or some subset of predictor variables.
Consequently, we can estimate the stopping iteration for LoBoosting using a model se-
lection criterion such as AIC., BIC, FPE, and gMDL (cf. section 3.1) [the special
case of AIC, in the context of boosting for linear models has already been considered
in Bihlmann (2004)], and as a new main contribution, we propose in section 3.2 the
novel MS-LsBoosting method as a natural and interesting alternative to LoBoosting. The
computational savings using model-selection tuned boosting instead of a cross-validation



choice can become very substantial.

For the special case of an orthonormal linear model, we give an algorithmical equiv-
alence of LoBoosting to the Lasso or soft-thresholding in Section 2.3, and of the new
MS-LyBoosting based on F PE to Breiman’s (1995) nonnegative garrote estimator in Sec-
tion 3.3. The former result implies some asymptotic minimax property of LoBoosting,
for the somewhat special case of an orthonormal linear model. Although such a result
about soft-thresholding may be expected from some soft-threshold property of the LARS
algorithm in Efron et al. (2004), we give here a rigorous analysis for LsBoosting which
indicates the role of the step-size in boosting more clearly. In particular, this enables us
to see some distinct properties of LyBoosting and FSLR, at least from a theoretical and
conceptual point of view.

We also emphasize here that Ls- and MS-LsBoosting generalize to the general non-
parametric setting, as demonstrated in section 4.2. This is in contrast to the Lasso or the
nonnegative garrote estimator which are restricted to a (generalized) linear model or basis
expansion using a fixed dictionary. Finally, numerical studies are carried out in section 4
to compare different model selection criteria and illustrate the effectiveness of the model-
selection stopped LoBoosting and the new MS-LoBoosting. In our simulations, gM DL
performs the best overall, possibly because it bridges AIC and BIC (cf. Hansen and Yu,
2001). Thus we recommend to use gM DL to stop LeBoosting or run MS-L2Boosting
and then choose the best of the two since they can be compared based on the gM DL
score. These methods do not rely on cross-validation and hence could bring substantial
computational savings.

2 Boosting with the squared error loss: L:Boosting
We assume that the data are realizations from
(Xl’ Yl)a SRR (Xna Yﬂ)a

where X; € RP denotes a p-dimensional predictor variable and Y; € R a univariate re-
sponse. In the sequel, we denote by (/) the jth component of a vector z € RP. We
usually assume that the pairs (X;,Y;) are i.i.d. or from a stationary process. The goal
is to estimate the regression function F'(z) = E[Y|X = z]| which is well known to be the
(population) minimizer of the expected squared error loss E[(Y — F(X))2].

The boosting methodology in general builds on a user-determined base procedure or
learner and uses it repeatedly on modified data which could be outputs from the previous
iterations. The final boosted procedure takes the form of linear combinations of the base
procedures. For LoBoosting, one simply fits the base procedure to the original data to
start with, then uses the residuals from the previous iteration as the new response vector
and refits the base procedure, and so on. As we will see in section 2.2, LoBoosting is
a “constrained” minimization of the empirical squared error risk n=! 3" | (V; — F(X;))?
(with respect to F(-)) which yields an estimator F(-). The regularization of the em-
pirical risk minimization comes in implicitly by the choice of a base procedure and by
algorithmical constraints such as early stopping or penalty barriers.



2.1 Base procedures which do variable selection

To be more precise, a base procedure is in our setting a function estimator based on the
data {(X;,U;); i =1,...,n}, where Uy,...,U, denote some (pseudo-) response variables
which are not necessarily the original Y7,...,Y,. We denote the base procedure function
estimator by

9() = 9x,u)(), (1)

where X = (X1,...,X,), U= (Uy,...,Up,).

Many base procedures involve some variable selection. That is, only some of the
components of the p-dimensional predictor variables X; are actually contributing in (1).
In fact, almost all of the successful boosting algorithms in practice involve base pro-
cedures which do variable selection: examples include decision trees (cf. Freund and
Schapire (1996), Breiman (1998), Friedman et al. (2000), Friedman (2001)), componen-
twise smoothing splines which involve selection of the best single predictor variable (cf.
Biithlmann and Yu (2003)) or componentwise linear least squares in linear models with
selection of the best single predictor variable (cf. Mallat and Zhang (1993), Biithlmann
(2004)).

It is useful to represent the base procedure estimator (at the observed predictors X;)
as a hat-operator, mapping the (pseudo-) response to the fitted values:

H: U (g(X,U)(Xl)a - ag(X,U)(Xn))a U= (Ul, ceey Un)

If the base procedure selects from a set of predictor variables, we denote the selected
predictor variable index by Sc {1,...,p}, where S has been estimated from a specified
set I' of subsets of variables. To emphasize this, we write for the hat operator of a base
procedure

Hs: U (Gxe,0)(X1), -, 9x4,0) (X)), U= (Us,...,Un). (2)

The examples below illustrate this formalism.

Componentwise linear least squares in linear model (cf. Mallat and Zhang, 1993;
Bithlmann, 2004)

We select only single variables and I' = {1,2,...,p}. The selector S chooses the predictor
variable which reduces residual sum of squares most when using least squares fitting:

R . n . . o Zn:l UZXZ(J)

= o (j=1,...,p).
1<j<p i L (x9)2

The base procedure is then

Ix,v)(z) = 45208,

and its hat operator is given by the matrix

Hg = X(S)(X(S))T’ X0 — (X?'), e XONT,
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Boosting with this base procedure yields a linear model with model selection and parame-
ter estimates which are shrunken towards zero. More details are given in sections 2.2 and
2.3.

Componentwise smoothing spline (cf. Bithlmann and Yu, 2003)

Similarly to a componentwise linear least squares fit, we select only one single variable
at a time from I' = {1,2,...,p}. The selector $ chooses the predictor variable which
reduces residual sum of squares most when using a smoothing spline fit. That is, for a
given smoothing spline operator with fixed degrees of freedom d.f. (which is the trace of
the corresponding hat matrix)

()
= argmin —§;(X;7))?,
1<5<p zzzl I

§j(+) is the fit from the smoothing spline to U versus X with d.f.

Note that we use the same degrees of freedom d.£. for all j’s. The hat-matrix corresponding
to g;(-) is denoted by #H; which is symmetric; the exact from is not of particular interest
here but is well known, cf. Green and Silverman (1994). The base procedure is

x,u)(z) = 45(=')

bl

and its hat operator is then given by a matrix Hg. Boosting with this base procedure
yields an additive model fit based on selected variables (cf. Bithlmann and Yu, 2003).

Pairwise thin plate splines
Generalizing the componentwise smoothing spline, we select pairs of variables and I' =
{(4,k); 1 <j <k <p}. The selector S chooses the two predictor variables which reduce
residual sum of squares most when using thin plate splines with two arguments:
A n >

S =argmin » (U; — gj,k(Xi(])a Xz-(k)))Q,

1<j<k<p =1
Gjk(--) is an estimated thin plate spline based on U and X, X*) with d.f.,

where the degrees of freedom d.f. is the same for all 7 < k. The hat-matrix corresponding
to gj is denoted by H; which is symmetric; again the exact from is not of particular
interest but can be found in Green and Silverman (1994). The base procedure is

dxvy (@) = (),

where () denotes the 2-dimensional vector corresponding to the selected pair in S , and
the hat operator is then given by a matrix H¢. Boosting with this base procedure yields
a nonparametric fit with second order interactions based on selected pairs of variables;
more details are given in section 4.2.

In all the examples above, the selector is given by

= arg min Z — (HsU);)? (3)



Also (small) regression trees can be cast into this framework. For example for stumps,
F'={(,cjr); 7=1,...,p, k=1,...,n—1}, where ¢j1 < ... < ¢jpn—1 are the mid-points
between (non-tied) observed values Xi(] ) (t =1,...,n). That is, I' denotes the set of
selected single predictor variables and corresponding split-points. The parameter values
for the two terminal nodes in the stump are then given by ordinary least squares which
implies a linear hat matrix Hje;1)- Note however, that for mid-size or large regression

trees, the optimization over the set I' is usually not done exhaustively.

2.2 L,Boosting and Forward Stagewise Linear Regression (FSLR)

LyBoosting is nothing else than repeated fitting of residuals with the base procedure

g(X,U)(-). Its derivation from a more general functional gradient descent algorithm using
the squared error loss has been described by many authors, cf. Friedman (2001).

LsBoosting

Step 1 (initialization). Given data {(X;,Y;);¢ =1,...,n}, fit the base procedure

A~

Fi(-) = gx,v)()-
Set m = 1.

Step 2. Increase m by 1.
Compute residuals U; = Y; — F,_1(X)) A(’L =1,...,n) and fit the base procedure to the

current residuals. The fit is denoted by f(-) = §(x,u)()-
Update

A A~

Fp() = Fpa () + me(')a
where 0 < v <1 is a pre-specified step-size parameter.

Step 3 (iteration). Repeat Steps 2 and 3 until some stopping value for the number of
iterations is reached.

With m = 2 (one boosting step), LoBoosting has already been proposed by Tukey
(1977) under the name “twicing”. The number of iterations is the main tuning parameter
for LyBoosting, whereas the choice for the step-size v is much less crucial as long as v is
small, which is justified by our theory in section 2.3. We usually use v = 0.1. The number
of boosting iterations may be estimated by cross-validation. As a computationally much
more efficient alternative, we will develop in section 3.1 an approach which allows to use
some model selection criteria to bypass cross-validation.

Example: Ly;Boosting with componentwise linear least squares
Using the componentwise linear least squares base procedure from section 2.1, LoBoosting
estimates in every iteration m a selector S, and a corresponding regression coefficient f?gm

~

so that the updating function equals fm (z) = 'ygmx(ém) (the notation does not reflect that



’?SAm also depends on the current residual in iteration m, besides the selector Sm) After
m boosting iterations, we have a linear model fit

J=1
m
am) -
ﬁboost,j - Z vy Sy (4)
r:l;SA,«:j

Some of the coefficients 4;,,,; may be zero, saying that variable selection has been in action;
others are non-zero and can be viewed as shrunken ordinary least squares estimates. For
v = 1, this LyBoosting is also known in signal processing as matching pursuit (Mallat and
Zhang, 1993).

LoBoosting with componentwise linear least squares is related to forward stagewise
linear regression (FSLR), as pointed out by Efron et al. (2004). FSLR differs from
LsBoosting with componentwise linear least squares in the update of the new estimate
F,,: instead of using

A~

Fm(J)) = Fm_l(.’I}) + U’?S.mx(sm)’

where ﬁ/gm is the least squares estimate when fitting the current residuals against the best

predictor variable a:(STn), FSLR updates

ﬁ’m;FSLR(x) = Fm_l;FSLR(LC) + l/sign('?gm)x(s"”).

Note that this description of FSLR is equivalent to the one in Efron et al. (2004). In
our limited experience, FSLR has about the same prediction accuracy as LoBoosting
with componentwise linear least squares. However, we give here three reasons to favor
boosting over FSLR. First, the update in FSLR is not scale-invariant: the parameter v is
more crucial for FSLR than in boosting since the boosting update is on the scale of the
current residuals via the magnitude of the least squares estimate Y3, - Second, FSLR can
get stuck: it can happen that after some iterations, the algorithm alternates by selecting
the same predictor variables with alternating signs in the update. Third, the number of
boosting iterations can be estimated via degrees of freedom of the boosting operator as to
be described in section 3.1. Defining reasonable degrees of freedom which are simple to
compute seems not straightforward for FSLR. This has also been pointed out by Efron et
al. (2004; comment after formula (4.10)), and they suggest the computationally intensive
bootstrap to cope with this problem.

These issues also reflect the fact that FSLR and LoBoosting with componentwise linear
least squares are not the same algorithm even though their prediction performances are
often comparable. In the case of orthogonal predictor variables and using small step-sizes
v, FSLR and LsBoosting are both equivalent to the soft-threshold estimator, but the
role of the step-size is somewhat different; the details are given in section 2.3. We also
would like to point out that Efron et al. (2004) do not explicitly advocate to use FSLR
in practice: they rather focus on the more interesting LARS algorithm which recently
has been extended to the generalized linear model framework (Madigan and Ridgeway,



2004). On the other hand, the fixed amount up-date in FSLR does have its advantages
over LoBoosting when applying the gradient descent idea to a general objective function
which is the sum of a convex loss and a convex penalty function (Zhao and Yu, 2004).
And in this case the fixed amount up-date does not get stuck because of a new reserve
boosting step.

2.3 L,;Boosting and soft-thresholding in the orthogonal case

In this section, we establish rigorously the equivalence of LoBoosting with componentwise
linear least squares and soft-thresholding in the orthogonal case. A similar result is also
shown for FSLR. While the latter result is implicitly present in Efron et al. (2004), our
proofs bring out explicitly the different roles that the step-sizes play in LyBoosting and
FSLR.

Consider a linear model with n orthonormal predictor variables. Let x(/) = (xgj ), ey xq({ ))T

be the n x 1 vector of the jth predictor variable and

Y’-L:Z/Bjxg])—l_‘g’h IL:]-a » 1,

Jj=1
() ()

Z %’J L; " = Ojk, (5)

i=1
where 0,5 denotes the Kronecker symbol, and €1, ...,&, are i.i.d. random variables with

E[e;] = 0 and Var(g;) = 02 < co. We assume here the predictor variables as fixed and
non-random. Using the standard regression notation, we can re-write model (5) as

Y=X8+e, XIX=XxXT=1, (6)
with the n X n design matrix X = (xz(j))i,jzl,___,n, the parameter vector 3 = (B1,...,0.)7,
the response vector Y = (Y1,...,Y,)T and the error vector ¢ = (e1,...,6,)7. The

predictors could also be basis functions g;(;) at observed values t; with the property
that they build an orthonormal system.
The soft-threshold estimator for the unknown parameter vector 3, is

Z;— N, i Z; >\
Bsoftj =140, if12;] <X, where Z; = (XTY);. (7)
Zi+ X, if Z; < -

If the threshold is chosen as
A= Ap =4/2log(n)o.,

the soft-threshold estimator is asymptotically (near) minimax in a variety of settings, cf.
Donoho and Johnstone (1994).

We now present a result saying that for orthogonal predictors, LyBoosting with com-
ponentwise linear least squares, yielding coefficient estimates B,E;th’ ;jasin (4), is equivalent
to the soft-threshold estimator. We will briefly discuss this property also for FSLR.



Theorem 1. Consider the model in (5) and a threshold Ay, = anoe in (7) for any sequence
(an)nen. For LaBoosting with componentwise linear least squares and using a step-size v,
as described in section 2.2, there exists a boosting iteration m, typically depending on A,
v and the data, such that

Bég)st,j = /Bsoft,j in (7) with threshold of the form A\,(1+ e;(v)), where
121?5}(71 le;(v)| <v/(1—v) =0 (v—=0).

A proof is given in section 6. We emphasize that the sequence (a, )nen can be arbitrary:
in particular, A, does not need to depend on sample size n and can be arbitrary. For
the special orthogonal case, Theorem 1 explains the role of the small step size v. It
governs the (relative) errors for approximating any reasonable value of the threshold in
soft-thresholding. These approximation errors e;(v) are due to the discreteness of boosting
when doing an entire additional iteration. But they can be made as small as desired, by
choosing a small v; the cost for this is only computational, but there is no cost in terms of
an increased variance of the estimator. Theorem 1 also establishes minimax optimality of
LsBoosting, via the equivalence to soft-thresholding, for the special case of an orthogonal
linear model.

A result similar to Theorem 1 also holds for the FSLR algorithm: for step-size v, there
exists an m, depending on \,, v and the data, such that

Bg?LR,j = Bsoft,j in (7) with threshold of the form A\, (1 + ej)\(_u))’

lIéljaSXn lej(v)| <3v/2 =0 (v —0). (8)
A proof is given in section 6. The result is also implicitly present in Efron et al. (2004),
but our analysis allows to discuss in more details the role of the step-size. We see from
(8) that in order to get the soft-threshold estimator with a good approximation for the
parameter \,, we have to choose a step-size v = v,,, depending on A,, such that v, =
o(An) (n — o0). With this choice, the threshold in (8) exhibits an approximation error
ej(Vn)/An = 0(1) (n — 00). Thus, if we want to accurately approximate the soft-threshold
estimator with a small threshold ),,, we have to take an even smaller step-size v = v, =
o(An) for FSLR. This is in contrast to LsBoosting where the approximation errors are
bounded by v/(1 — v), regardless of the magnitude of the threshold A,. In other words,
the step-size v in LoBoosting controls the approximation error uniformly over all threshold
values A, in contrast to FSLR where the approximation error depends not only on v but
on A as well. It implies, that LoBoosting is rather insensitive to the choice of the step-size
(if chosen reasonably small such as v = 0.1), whereas in FSLR, the step-size is a much
more critical tuning parameter. We exploit here from another angle that the step-size v in
FSLR is not scale invariant and remains fixed even if the (current) residuals have already
a small norm.



3 Ly;Boosting and model selection

3.1 Stopping in L;Boosting using model selection criteria

Using the notation as in (2), the LyBoosting operator in iteration m is easily shown to be
(cf. Bithlmann and Yu, 2003)

Bp=T—-(—-vHg )---(I—-vHg), (9)

where S,,, denotes the selector in iteration m. Moreover, if all the s are linear (i.e. the
hat matrix), as in all the examples given in section 2.1, LyBoosting has an approximately
linear representation, where only the data-driven selector S brings in some additional
nonlinearity. In particular, the boosting operator has a corresponding matrix-form when
using in (9) the hat-matrices for #s. This suggests that we may use some model selection
criteria for estimating the optimal number of boosting iterations if we ignore the nonlin-
earity. Moreover, this will also allow us to construct an interesting new version of boosting
as described in detail in section 3.2.

For a linear regression model with a known noise variance o2, the AIC model selection
criterion (Akaike 1973; 1974) estimates the prediction or generalization error of a sub-
model M, of dimension & as follows:

AIC(My) = RSS(My) + 2ko?,

where RSS(Mj) denotes the residual sum of squares in the sub-model M} using least
squares estimation. In general, a final prediction error (or model selection) F' PE,, criterion
(Akaike, 1970; Shibata, 1981) takes the form

FPE, (M) = RSS(My) + aka?.

Apparently, o = 2 gives AIC and a = log(n) gives BIC (Schwartz, 1978).
In the case of LyBoosting, the sub-models correspond to the boosting operators B,
and for the dimensionality of a model, we propose to use

trace(Bp,) = trace(I — (I —vHg )--- (I —vHg)).

This is as in Bithlmann (2004) and a standard way of defining degrees of freedom, cf.
Green and Silverman (1994). An estimate for the boosting iteration number is then

n
m= argﬂrlnin FPE,(Bp) = argnrlnin{Z(Y; — (B Y))? + atrace(Bp,)o?}.
i=1

In practice, the noise variance o2 is rarely known. But we can use versions of FPE,

for the case of unknown noise variance. AIC and BIC take on different forms for a linear
model M}, with dimension k£ and using least squares estimation:

AIC(My) = log(RSS(My)/n) + 2k/n,
BIC(My) = log(RSS(My)/n) + log(n)k/n.

10



Empirical studies have shown that a corrected AIC, denoted by AIC, (Sugiura, 1978;
Hurvich and Tsai, 1989; Hurvich et al., 1998), has often a better finite-sample performance
than AIC and is more widely used in practice today. We adopt it here in place of AIC":

1+k/n

A minimum description length criterion, gM DL, (cf. Hansen and Yu, 2001) bridges the
AIC and BIC worlds in the sense that it mimics the performance of the best of the two
when the true model is finite-dimensional or infinite-dimensional (Speed and Yu, 1993).
It takes the form

gMDL(My) = log(S(My) + = log(P(My)),

_ RSS(My) m Y2 — RSS(My)

This criterion measures the code length needed based on a mixture code to transmit the
response vector based on model M}, which balances the fit and a data-driven complexity
of the model.

All the above model selection criteria depend only on RSS and the dimension k
(and the sample size n). We denote the criteria when the noise variance is unknown
by C4(RSS, k) for AIC, C4,(RSS, k) for AIC,, Cg(RSS, k) for BIC and Cypn(RSS, k)
for gM DL. We then propose to estimate the stopping iteration as

m = arg min C(RSSy,, trace(B,)), (10)

where RSS,, is the residual sum of squares after m boosting iterations and C(-,-) repre-
sents any of the four model selection criteria above. If the minimizer is not unique, we use
the minimal m which minimizes the criterion. When using (10) with any of the four model
selection criteria, boosting can now be run without tuning any parameter (we typically
do not tune over the step-size v but rather take a value like v = 0.1). The amount of
computational savings over some cross-validation scheme can be very substantial.

3.2 Boosting of model selection criteria: MS-L,Boosting

Since the model selection criteria are sensible ways to evaluate a fitted model, a natural
idea is to use them as the objective function to boost, instead of the squared error loss.
MS-LyBoosting, where MS stands for model selection, is a boosting-type algorithm, where
in every iteration step, a model selection criterion is minimized (instead of the residual
sum of squares as in LoBoosting). The motivation is to minimize a generalization (or
out-of-sample) performance measure in every step. In our framework, MS-L;Boosting
minimizes in the mth step a model selection criterion C'(RSS,,, trace(B,,)), as described
above, including the F'PE-type criteria

C, (RS Sy, trace(By,)) = RS Sy, + ytrace(By,). (11)

11



By formula (9), the trace of the boosting operator is
trace(Bp,) = trace(I — (I —vHg )--- (I —vHg)).

We emphasize here that the estimated selectors S’j are different from (3), as described
more clearly below. For B, a (boosting) operator mapping the response vector Y to the
fitted variables, and a model selection criterion C(RSS, k), we use the following objective
function to boost:

T(Y,B)=C (i(y — (BY),-)2,trace(B)> : (12)

=1

The algorithm is then as follows.

MS-L,Boosting

Step 1 (initialization). Given data {(X;,Y;);¢ =1,...,n}, fit an initial weak learner
() = gxv)()s
where §x,v)(-) is defined in (1). Set m = 1.

Step 2. Increase m by 1.
Search for the best selector

Sy = argmingeT(Y, trace(B,(S))),
Bn(S) =T—-(I—-Hs)(I—vHg )---(I-vHg)

Fit the residuals U; = Y; — I:’m,l(Xi) with the base procedure using the selected Sy, which
yields a function estimate

Fm() = 35,0 ():
where §s,x,u)(-) corresponds to the hat operator Hs from the base procedure.

Step 3 (update). Update,

A A~

Fin (1) = Fnea () + vfm ()
Step 4 (iteration). Repeat Steps 2 and 3 for a large number of iterations M.
Step 5 (stopping). Estimate the stopping iteration by

m = argminT (Y, trace(Bp)), Bn=1-T—-vHg )---(I-vHg).
1<m<M m

The final estimate is F, ().
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The only difference with boosting is that the selection in Step 2 yields a different
Sy than in (3). While Sy, in (3) minimizes residual sum of squares, the selected Sy,
in MS-L,Boosting minimizes a model selection criterion over all possible selectors (but
keeping the step-size v fixed). In particular, this means that MS-LyBoosting can not be
represented anymore as a linear combination of base procedures since the selector S,
depends not only on the current residuals U but also explicitly on all previous boosting
iterations through 5’1,52, ... ,Sm,l via the trace of B,,(S). With a slight abuse of ter-
minology, we still use wordings such as “MS-LsBoosting with componentwise linear least
squares” , meaning that the selector S in the componentwise linear lest squares procedure
as described in section 2.1 has to be replaced by S.

3.3 MS-L,Boosting and nonnegative garrote in the orthogonal case

MS-LyBoosting based on C,, as in (11) enjoys a surprising equivalence to the nonnegative
garrote estimator in an orthogonal linear model.

The nonnegative garrote estimator has been proposed by Breiman (1995) for a linear
regression model to improve over subset selection. It shrinks each ordinary least squares
(OLS) estimated coefficient by a nonnegative amount whose sum is subject to an upper
bound constraint (the garrote). For a given response vector Y and a design matrix X (cf.
(6)), the nonnegative garrote estimator takes the form

Byar,j = ¢jBoLs,;

so that

n p
Z(Y; - (Xﬁga,n)i)2 is minimized, subject to ¢; > 0, Z cj <s, (13)
i=1 j=1

for some s > 0. In the orthonormal case from (5), since the OLS estimator is simply
Bors,; = (XTY); = Z;, the nonnegative garrote minimization problem becomes finding
c;’s such that

n
Z(Zj —¢jZ;)? is minimized, subject to ¢; > 0, ch <s.
j=1 j=1
Introducing a Lagrange multiplier 7 > 0 for the sum constraint gives the dual optimization
problem: minimizing

n

n
Z(Zj — Cij)2 + TZC]', cj>0forj=1,..,n. (14)

This minimization problem has an explicit solution (Breiman, 1995):
;=1 =MZ")*F, x=7/2,

where ut = max(0,u). Hence fByqr; = (1 — N/|Zj|*)* Z; or equivalently,

Zj = M1Z;1, i sign(Z;)Z2 > A,
Byarj =13 0, it 22 < ),  where 7= (XTY);.  (15)
Zj+)|Z;], if sign(Z;)Z? < ).
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We show in Figure 1 the nonnegative garrote threshold function in comparison to hard- and
soft-thresholding. Hard-thresholding, corresponding to subset selection, is using ordinary
least squares if |Z;| is larger than the threshold while the nonnegative garrote shrinks
the OLS estimator a bit and soft-thresholding, corresponding to the Lasso, even more.
Therefore, for the same amount of “complexity” or “degrees of freedom” (which is in
case of hard-thresholding the number of ordinary least squares estimated variables), hard-
thresholding or subset selection will typically select the fewest number of variables (non-
zero coefficient estimates) while the nonnegative garrote will include some more variables
and the soft-thresholding will be the least sparse in terms of the number of selected
variables; the reason is that for the non-zero coefficient estimates, the shrinkage effect,
which is slight in the nonnegative garotte and stronger for soft-thresholding, causes fewer
degrees of freedom for every selected variable. This observation can also be compared
with some numerical results in Figures 3 and 5 and Table 2.

threshold functions

-~ hard-thresholding
— nn-garrote
-~ soft-thresholding

Figure 1: Threshold functions for subset selection or hard-thresholding (dashed-dotted
line), nonnegative garrote (solid line) and lasso or soft-thresholding (dashed line).

The following result shows the equivalence of the nonnegative garrote and MS-LoBoosting
with componentwise linear least squares, yielding coefficient estimates ﬂ(m)

ms—boost,j? analo-
gous to (4).

Theorem 2. Consider the model in (5) and any sequence (yp)nen. For MS-LoBoosting
with componentwise linear least squares, based on C., as in (11) and using a step-size v,
as described in section 3.2, we have

Al A 1
(1) = Bgar,j i (15) with parameter \, = E’yn(l +¢(v)),

ms—boost,j
- < 1-v)— — 0).
max lej(v)] <v/(1—v) =0 (v = 0)
A proof is given in section 6. Note that the sequence (v, )ren can be arbitrary and does
not need to depend on n (and likewise for the corresponding \,,). Theorems 1 and 2 yield
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interesting interpretations of LoBoosting and MS-LoBoosting with C,, as soft-threshold
and nonnegative garrote estimators for the orthogonal case.

We briefly discuss now the choice of y = +,, in (11) using some model selection criteria.
We restrict ourselves to the case of known noise variance and consider the BIC criterion

Tn = log(n)o?,

which yields, by Theorem 2, the equivalence to the nonnegative garrote parameter A, ~
Yn/2 = log(n)o?/2. Some consistency results are known for the nonnegative garrote if
A = C'log(n)o? for some constant C' > 0, cf. Mohammadi and van de Geer (2002). This
indicates consistency of the BIC-driven MS-LsBoosting.

3.4 Selecting between L,;Boosting and MS-L,Boosting

There will be no overall superiority of either MS-Ls- or LoBoosting; the same is true
when comparing the Lasso with the nonnegative garrote estimator in a linear model with
p < n. But it is straightforward to do a data-driven selection between LoBoosting and
MS-LyBoosting, once we have decided upon the model selection criteria (i.e. AIC,, BIC,
gMDL or FPE). That is, we can simply choose the boosting method which has the
smaller final model selection score at the stopped MS-Lo- or LoBoosting iteration.

However, we recommend to use the gM DL model selection score (called gM DL-
LsBoosting) because it makes a good compromise between AIC and BIC as demonstrated
in Hansen and Yu (2001). gM D L-LoBoosting also shows very good overall performances
in our numerical comparisons of section 4.

4 Numerical results

We investigate and compare LyBoosting with model-selection based stopping rules, MS-
LsBoosting methods and other methods against each other. The step-sizes in both boost-
ing methods were always chosen as v = 0.1. The simulation setups are based on some
high-dimensional linear models and one nonparametric model. Except for one real data
set, all our comparisons and results are based on 50 independent model simulations.

4.1 High-dimensional linear models

Consider the model

Y:1+5X1+2X2+X9+6,
X = (Xla- .. ,Xp—l) NNp—1(07 E)a €~ N(Oa 1)5 (16)

where ¢ is independent from X. The sample size is chosen as n = 50 and the predictor-
dimension is p € {50,100}. For the covariance structure of the predictor X, we consider
Y=1I, 1 and %;; = 0.8/"~J1. respectively.

Case with ¥ =1, ;.
Results about the squared error and the number of selected variables are reported in Fig-
ures 2 and 3. MS-LyBoosting with the gM DL criterion for (12) is clearly the overall best.
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Figure 2: Squared error losses for model (16) with ¥ = I,,_;. MS-LyBoosting with gM DL
(Mg), with AIC, (MA) and with BIC (MB); LeBoosting stopped with gM DL (g), with
AIC, (A) and with BIC (B). Sample size is n = 50.

We notice that LoBoosting with BIC' stopping selects very many variables, in particular
more than stopping with AIC,; in particular, the BIC stopping for (10) deteriorated in
the case where p = 100. Stopping the (MS-) LsBoosting iterations with gM DL works
very satisfactorily: the mean squared error for the gM D L-stopped algorithms is essen-
tially equal to the minimal mean squared error over the (MS-) LyBoosting iterations, see
Table 1. Only for p = 100 and in case of LoBoosting, we pay a slight price for estimating
the stopping parameter. Stopping (MS-) LoBoosting with the AIC. or BIC criterion
was found to be less accurate when calibrated against the minimal (MS-) LoBoosting
performance.

dimension | MS-LyBoost with gM DL | minimal MS-LyBoost with gM DL
p=>50 0.16 (0.018) 0.16 (0.018)
p =100 0.14 (0.015) 0.14 (0.015)
LsBoost, gM D L-stopped minimal LoBoost
p =50 0.46 (0.041) 0.46 (0.036)
p =100 0.52 (0.043) 0.48 (0.045)

Table 1: Mean squared error for (MS-) LyBoosting using the estimated stopping iteration
m and using the oracle m which minimizes the mean squared error. Model (16) with
Y = I,_1. Estimated standard errors are given in parentheses. Sample size is n = 50.
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Figure 3: Number of selected variables for model (16) with ¥ = I,_;. MS-LoBoosting with
gMDL (Mg), with AIC, (MA) and with BIC (MB); LyBoosting stopped with gM DL
(g), with AIC, (A) and with BIC (B). The horizontal dashed line indicates the number
of true effective variables which is 4. Sample size is n = 50.

We also evaluate the behavior about under- and overestimation of the true model.
Table 2 summarizes the result. Again, MS-LyBoosting with the gMDL criterion works
best and yields for this simulation model a remarkably good variable (or feature) selection
method.

method ‘MgMDL MAIC, MBIC gMDL AIC., BIC

p =230
non-selected T 0 0 0 0 0 0
selected F 1 6.58 3.96 9.68 19.44 19.58
p =100
non-selected T 0 0 0 0 0 0
selected F 1.78 14.62 9.46 17.2  39.92 52.86

Table 2: Model (16) with ¥ = I,_;. Expected number of non-selected true effective vari-
ables (non-selected T) which is in the range of [0,4], and expected number of selected
non-effective (false) variables (selected F) which is in the range of [0,p — 4]. Methods:
MS-LyBoosting with gM DL (MgMDL), with AIC, (MAIC,) and with BIC (MBIC);
LyBoosting stopped with gM DL (gMDL), with AIC, (AIC.) and with BIC (BIC). Sam-
ple size is n = 50.

17



Case with X = [O.8|i_j|]i,j:1,...,p_1.
Results about the squared error and the number of selected variables are reported in
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Figure 4: Squared error losses for model (16) with ¥ = [0.8|i_j|]i,j:1,___p. MS-L,Boosting
with gM DL (Mg), with AIC, (MA) and with BIC (MB); LoBoosting stopped with
gMDL (g), with AIC, (A) and with BIC (B). Sample size is n = 50.

Figures 4 and 5.

The conclusions are similar to the results for the case with ¥ = I;,_;. Also, the under-
and overfitting behavior of the different methods in terms of false positives and negatives
is similar to the case with ¥ = I,_; and we do not report these additional results here.
Next we give a case where LoBoosting is better than MS-Ly;Boosting.

A favourable example for boosting.
Consider the model

14
1
X1,..., Xp ~ Np(0, 1), € ~N(0,1), (17)

where 31, ..., B, are fixed values from i.i.d. realizations of the double-exponential density
p(z) = exp(—|z|)/2. The magnitude of the coefficients |3;|/5 is chosen to vary the signal
to noise ratio from model (16), making it about 5 times smaller than for (17). Since Lasso
(coinciding with LoBoosting in the orthogonal case) is the maximum a-posteriori method
when the coeflicients are from a double-exponential distribution and the observations from
a Gaussian distribution, as in (17), we expect LyBoosting to be better than MS-LyBoosting
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Figure 5: Number of selected variables for model 16 with ¥ = [O.8|i*j|]i,j:1,___p. MS-
LyBoosting with gM DL (Mg), with AIC. (MA) and with BIC (MB); LyBoosting stopped
with gM DL (g), with AIC, (A) and with BIC (B). The horizontal dashed line indicates
the number of true effective variables which is 4. Sample size is n = 50.

for this example. The squared error performance is given in Figure 6, supporting our
expectations.

4.1.1 Data-driven choice between Ly- and MS-LsBoosting: gMDL-L;Boosting

We illustrate here the gMDL-LyBoosting proposal from section 3.4 with the gMDL model
selection score to choose in a data-driven way between MS-Ls- and LyBoosting. As an
illustration, we consider again the models in (16) and (17) with p = 50 and n = 50. Figure
7 displays the results. The data-driven selected boosting, choosing between Ls- and MS-
LsBoosting, performs somewhere in the middle between the better and the worse of the
two boosting algorithms, but closer to the best performer in each situation: for model
(17), there is essentially no degraded performance when estimating the better of the two
boosting algorithms (when comparing to the better of the two boosting algorithms which
is only known for simulated datasets).

4.1.2 Comparison to the nonnegative garrote

We compare here MS-LoBoosting with the nonnegative garrote estimator from Breiman
(1995), defined in (13), which can be used for the case where p < n.

We consider the model as in (16) with p — 1 = 10 and correlated design ¥ =
[O.S'i_ﬂ]i,j:l,___p_l but with € ~ A(0,4%) and n = 50. The high noise variance is cho-

19



squared error loss

squared error
4
I

Figure 6: Squared error losses for the model in (17) with p = 50. MS-LoBoosting with
gMDL (Mg), with AIC, (MA) and with BIC (MB); LsBoosting stopped with gM DL
(g), with AIC, (A) and with BIC (B). Sample size is n = 50.
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Figure 7: Squared error losses for the model in (16) and (17) with p = 50. Data-driven
choice between Lo- and MS-LyBoosting with gMDL (gMDL-L2), LyBoosting with gM DL
(L2) and MS-LsBoosting with gM DL (MS-L2). Sample size is n = 50.
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sen to make the full least squares estimator unreliable enough (although p — 1 = 10 is not
very large), calling for some regularization.

squared error loss

T T
MS-L2Boosting (gMDL) NN-garotte

Figure 8: Squared error losses MS-LyBoosting with the gM DL criterion (left) and for
nonnegative garrote (right) for the model as in (16) with p — 1 = 10 and correlated design
¥ = [0.8/71); j=1,.p—1 but with e ~ N(0,4?); sample size n = 50.

The predictive performance when simulating 50 times over the model is described in
Figure 8. MS-LyBoosting with the gM DL criterion works better than the nonnegative
garrote whose penalty parameter has been tuned by 10-fold cross-validation (which makes
the procedure computationally quite expensive). It is unclear why, for this simulation
example, the nonnegative garotte is worse: it could be that another cross-validation tuning
procedure than 10-fold would yield better results.

Ozone example with interactions terms.

We also consider a real data set about ozone concentration in the Los Angeles basin. There
are p = 8 meteorological predictors and a real-valued response about daily ozone concen-
tration. As in Breiman (1995), we constructed second-order interaction and quadratic
terms after having centered the original predictors. We then obtain a model with p = 45
predictors (including an intercept) and a response. We used 10-fold cross-validation to
estimate out-of-sample squared error, and we also used an internal 10-fold cross-validation
to estimate the penalty parameter in the nonnegative garrote method.

The cross-validated squared error is 16.26 for the nonnegative garrote, and 16.52 for
MS-LoBoosting using the gM DL penalty. When scaling the predictor variables (and their
interactions) to zero mean and variance one, the performances were very similar: again
16.26 for the nonnegative garrote and 16.81 for MS-LyBoosting using the gM DL penalty.
Thus, the performance of both methods is essentially the same. Note that MS-LoBoosting
does not need a (internal) cross-validation for tuning. We also tried the MS-LsBoosting
with the AIC, penalty using the non-scaled predictors: the cross-validated squared error
was 16.14. Our results are comparable to the analysis of bagging in Breiman (1996) which
yielded a cross-validated squared error of 18.8 for bagging trees based on the original
eight predictors (We were unable to reproduce some results which were nearly as good as
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reported in Breiman (1995): maybe this is due to some standardization of the response
variables in Breiman (1995)).

When running MS-L;Boosting with the gM DL criterion on the whole dataset, 10
terms (out of 45) have been selected, including an intercept. Then, an estimate for
the error variance is n~* Y7, (¥; — ¥;)2 = 15.56 and the goodness of fit equals R? =

W (V= V)2 S (Y — Vo) = 0.71.

4.2 Nonparametric function estimation with second-order interactions

Consider the Friedman #1 model (Friedman, 1991),

Y = 10sin(7X; X5) + 20(X3 — 0.5)? 4+ 10X, + 5X5 + ¢,
X ~ Unif.([0, 1]P), € ~ N(0, 1), (18)

where ¢ is independent from X. The sample size is chosen as n = 50 and the predictor
dimension p € {10,20} which is still large relative to n for a nonparametric problem.

(MS-) LsBoosting with a pairwise thin plate spline, which selects the best pair of
predictor variables yielding lowest residual sum of squares (when having the same de-
grees of freedom for every thin plate spline), yields a second-order interaction model; see
also section 2.1. We demonstrate in Figure 9 the effectiveness of this procedure, also in
comparison with the MARS (Friedman, 1991) fit constrained to second-order interaction
terms. MS-LyBoosting is better than LsBoosting, and the AIC, is better than the gM DL
criterion. Note that with the parameter choices as in Friedman (1991), the signal to noise
ratio is very high which is the reason why we see hardly any overfitting of boosting until
iteration 500. If we use a lower signal to noise ratio by choosing & ~ N(0,42) in (18), we
see more clear overfitting and the stopping rules via model selection are close to the min-
imum over all considered boosting iterations: see Figure 10. The mean squared error for
MARS (restricted to 2nd-order interactions) for the higher noise case with ¢ ~ N(0,4?)
is 24.11 and thus much worse than any of the boosting methods.

We also examined for some of the settings the performance when using 10-fold cross-
validation for stopping the MS-LyBoosting with gM DL. The mean squared errors in
comparison to the stopping rule from the g M D L-score directly (as in Step 5 of the algo-
rithm in section 3.2) are as follows:

Var(e) | MS-LoBoost (M DL) | MS-LyBoost (9M DL) with 10-fold CV-stopping
1 3.71 12.59
42 11.70 15.15

For this specific example, 10-fold cross-validation is clearly worse than using the gM D L-
score for stopping, in particular in the low noise case. One should be cautious though in
generalizing this finding to other problems.

The result that the ATC, is better than the gM DL criterion for (MS-) LyBoosting (in
the low and higher noise case) is somewhat different than for the parametric model in (16)
which involves only very few effective predictors and where the MSE ratio of AIC, over
gM DL can be as large as 5; in the case of model (17) where all predictors are effective, we
also found that MS-LoBoosting with the AIC, is better than using the gM DL criterion.
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Figure 9: Mean squared errors for the nonparametric Friedman #1 model in (18) with
p € {10,20}. (MS-) LoBoosting are used with componentwise two-dimensional thin plate
splines having d.f. = 5. Left panel: MS- and LsBoosting with gM DL. Right panel:
MS- and LyBoosting with AIC.. Upper panel: p = 10. Lower panel: p = 20. Solid
lines correspond to LoBoosting, dashed lines to MS-LoBoosting. The circle indicates the
performance for stopped LoBoosting iterations, the triangle for stopped MS-LsBoosting
iterations. The horizontal line indicates the performance of MARS restricted to 2nd-order
interactions.

However, the improvements here of AIC, over gM DL are not very substantial (MSE ratio
of gM DL to AIC, close to 1 and well below 2), so we nevertheless think that the gM DL
criterion is a good overall choice. Also, in such high-dimensional nonparametric settings,
the (MS-) LsBoosting is clearly better than the more classical MARS fit, while all of the
methods share the same simplicity of interpretation as second-order interaction models.
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Figure 10: Mean squared errors for the higher noise, nonparametric Friedman #1 model
in (18) with p = 10 and € ~ N (0,42). (MS-) LyBoosting are used with componentwise
two-dimensional thin plate splines having d.f. = 5. Left panel: MS- and LsBoosting
with gM DL. Right panel: MS- and LyBoosting with AIC.. Solid lines correspond to
LsBoosting, dashed lines to MS-LyBoosting. The circle indicates the performance for
stopped LoBoosting iterations, the triangle for stopped MS-LyBoosting iterations.

5 Conclusions

We study LoBoosting and propose a new alternative version which is based on model-
selection criteria (MS-LoBoosting) where AIC,., BIC, FPE, and gM DL are explicitly
considered. For the special case of an orthonormal linear model, we give an algorith-
mical equivalence of LyBoosting to the Lasso or soft-thresholding, and of the new MS-
LyBoosting based on FPE to Breiman’s (1995) nonnegative garrote estimator. This
establishes some asymptotic minimax optimality for LoBoosting in the special orthogonal
case, and it is useful to get some insight into what LsBoosting and MS-LsBoosting do.
There is no general superiority of one method over the other, very much as the com-
parison of the Lasso with the nonnegative garrote does not lead to an overall, general
preference. While the Lasso and in particular the nonnegative garrote estimator are re-
stricted to (generalized) linear models or basis expansions with a fixed dictionary, the
(MS-) LsoBoosting easily generalizes to more general nonparametric settings: we show
some examples for fitting a nonparametric function by (MS-) LyBoosting allowing for
second-order interactions.

The boosting approach automatically comes with a reasonable notion for degrees of
freedom, namely the trace of the boosting operator trace(B,,) which is well defined for the
cases where the base procedure in boosting involves linear fitting of the response vector to
some (data-) selected subset of basis functions or of some predictor variables. This implies
a direct, fast computable estimate of the out-of-sample error via some model selection cri-
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teria, and in turn, this out-of-sample error estimate allows for computationally attractive
methods to stop the LeBoosting iterations and to design our new MS-LoBoosting. When
using a model selection criterion as described in section 3.1, (MS-) LeBoosting can be run
without tuning any parameter (we typically do not tune over the step-size v but rather use
a value such as v = 0.1). The amount of computational savings over some cross-validation
scheme may become very substantial. The numerical studies compare three model selec-
tion criteria AIC,, BIC and gM DL when used with LsBoosting and MS-L,Boosting,
and we recommend gMDL-L,Boosting to be used in practice as an automated boosting
method.

Finally, (MS-) LoBoosting is a much more efficient way to do variable selection in
a linear model than some exhaustive classical BIC optimization. Instead of searching
over 2P sub-models, we can do (MS-) LoBoosting which is computationally feasible for
thousands of predictor variables. The idea of replacing a combinatorial optimization by
a convex minimization problem is also present in the Lasso and the nonnegative garrote
estimators, although the latter is restricted to the case p < n. Unlike (MS-) LoBoosting
with its computationally efficient model selection criteria, it seems that for the nonnegative
garrote (but to a lesser extent for the Lasso, cf. Efron et al. (2004)), we have to rely
on some cross-validation scheme for estimating the out-of-sample error and tuning the
methods.

6 Proofs

Proof of Theorem 1. We represent the componentwise linear least squares base proce-
dure as a hat operator Hg with H; = x)(xUNT | where x() = (ng), .. ,x(nj))T; see also
section 2.1. The LyBoosting operator in iteration m is then given by the matrix

By, =1—(I—vH)™{I—vHo)™---(I—vHp)™",

where m; equals the number of times that the i¢th predictor variable has been selected
during the m boosting iterations; and hence m = Y j" ; m;. The derivation of the formula
above is straightforward because of the orthogonality of the predictors x(?) and x*) which
implies the commutation H;Hy = HyH,;. Moreover, B, can be diagonalized

By, = XD X" with XTX = XXT = I, Dy, = diag(dmn1,-- -, dmpn)s dmi =1 — (1 —v)™.
Therefore, the residual sum of squares in the mth boosting iteration is:
RSSm =Y = BuY|? = |X"Y = X"ByY|* = | Z — DnZ|* = |(I - D) Z|I%,

where Z = X1'Y.

The RSS,,, decreases monotonously in m. Moreover, the amount of decrease RSS,,, —
RSS, 41 is decaying monotonously in m, because LaBoosting proceeds to decrease the
RS'S as much as possible in every step (by selecting the most reducing predictor x( )) and
due to the structure of (1 —dy, ;) = (1 —v)™i. Thus, every stopping of boosting with an
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iteration number m corresponds to a tolerance §2 such that

RSS, — RSSj41 > 6%, k=1,2,...,m — 1,
RSS,, — RSSy.1 < 6%, (19)

that is, the iteration number m corresponds to a numerical tolerance where the difference
RSS,, — RSSy,,1 is smaller than §2.

Since LoBoosting changes only one of the summands in RS S, in the boosting iteration
m + 1, the criterion in (19) implies that for all 7 € {1,...,n}

(1= )2 — (1= w)*™) 77 > 62,

(1 = )™ — (1 —p)2mD) 22 < g2, (20)
If m; = 0, only the second line in the above expression is relevant. The LsBoosting
solution with tolerance 62 is thus characterized by (20).

Let us first, for the sake of insight, replace the “<” in (20) by “~”: we will deal later
in which sense such an approximate equality holds. If m; > 1, we get

(1= 0)?™ = (1= ™) 22 = (1= 0™~ (1 - 0)") 2P = &,

and hence

(1—v)™ ~ i (21)

T VI- vz

In case where m; = 0, we obviously have that 1 — (1 — )™ = 0. Therefore,

A N , 5 )

IBIEZ:J)st,i =Zi=dm;=1~-1-v)")Z; = Z; — == z/)2|Z-|Zi ifmg > 1,
1

B =0 if m; = 0.

Since m; = 0 happens only if | Z;| < ——9% ___ we can write the estimator as
— V/1-(1-v)2’

Zi— X\, if Z; >\
Bioi =40, if | Zi] < A, (22)

)
1—(1-v)2
in (19)). This is the soft-threshold estimator with threshold A, as in (7). By choosing
0 = apoey/1 — (1 —v)?, we get the desired threshold A = X\, = a,0..
We will now deal with the approximation in (21). By the choice of § two lines above,
we would like that

where \ = (note that m is connected to d, and hence to A via the criterion

(1—v)™ = ano:/|Zi|.
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As we will see, this approximation is accurate when choosing v small. We only have to
deal with the case where |Z;| > apo.; if |Z;| < anoe, we know that m; = 0 and 5; = 0
exactly, as claimed in the right hand side of (22). Denote by

an0c

Vi=V(Z) = T E0).

(The range (0, 1) holds for the case we are considering here). According to the stopping
criterion in (20), the derivation as for (21) and the choice of J, this says that

1 =)™ >V,
(1-v)™t <V, (23)
and hence
A(l/, ‘/Z) d:ef ((1 _ I/)mi _ ‘/Z) S ((1 _ I/)mi _ (1 _ I/)mﬁ_l)

v ; v
(1 -nmt < 2,

1—v
by using (23). Thus,

(=)™ =Vi+ (1 —v)™ = Vi) = Vil + A, Vi) /Vi) = Vi(1 + ei(v)),
lei(V)| = |A®, Vi)/Vil <v/(1 —v). (24)

Thus, when multiplying with (—1)Z; and adding Z;,

B = (= (Q=)™)Z = Z,— ZVi(1 + &(v)
= soft-threshold estimator with threshold A\, = ano.(1 + €;(v)),

where max;<;<p |e;(v)| < v/(1 —v) as in (24). O

Proof of formula (8). The residual sum of squares, denoted by RSSy, for FSLR iteration
m, decays monotonously as a function of m (unless m;v > |Z;| for some i which we
ignore since the algorithm would be stopped before this happens), and also the difference
RSS,,— RS Sy, +1 is decaying monotonously in m. Thus, as for LyBoosting, every stopping
of FSLR with an iteration number m corresponds to a tolerance 62 such that (19) from
the proof of Theorem 1 holds.

The residual sum of squares is

RSSn = 1Y — XB{5al = 12— Bisyll’, 2=X"Y.
The correlations (or coefficient estimates 4) at FSLR iteration m are
o =XI(Y = Xf§L0) = 7~ HiSin

Thus, sign(é;) = sign(Z;) (since we would stop FSLR before BAFSLR,Z- would take the
opposite sign of Z;) and

/31(“77.;’)LRZ = m,v sign(Z;),
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where m; denotes the number of times the ith predictor has been selected during the first
m FSLR iterations, i.e. ¥ | m; = m. Therefore,

RSSm = Z(ZZ — My sign(Zi))Q.

=1
Proceeding analogously as in the proof of Theorem 1, by noting that

(Zi — mivsign(Z:))* — (Zi — (mi + Vv sign(Z;))* = 2v|Zi| — 2m® —v°
= 2usign(Z;)(Z; — mvsign(Z;) — vsign(Z;)/2).

we get instead of formula (20),

2usign(Z;)(Z; — (m; — 1)vsign(Z;) — vsign(Z;)/2) > 62,
2usign(Z;)(Z; — mgv sign(Z;) — vsign(Z;)/2) < 62.

Rewriting this leads to

if sign(Z;) =1:  (m; — )vsign(Z;) < Z; — sign(Z;)(6%/(2v) +v/2),
miv sign(Z;) > Z; — sign(Z;)(6%/(2v) + v/2),
if sign(Z;) = —1:  (m; — V)vsign(Z;) > Z; — sign(Z;)(6?/(2v) + v/2),
miv sign(Z;) < Z; — sign(Z;)(6%/(2v) 4+ v/2). (25)

Replacing first the “>” and “<” in (25, 2nd and 4th line) by “~”, we get approximately
the claimed soft-threshold estimator:

Bg?LR,i = mvsign(Z;) = Z; — sign(Z;)(6%/(2v) + v/2)
= soft-threshold estimator in (7) with threshold 62/(2v) + v/2.

Choosing 62 = \,2v, this yields the approximate threshold A, (1 + v/(2\,)).

Dealing with the approximation “~”, observe that in (25, with sign(Z;) = 1), (m; —
1)vsign(Z;) has a strict “<”, and m,;vsign(Z;) has a “>” relation (and vice versa for
sign(Z;) = —1). Therefore, the approximation error is bounded by v. This yields an exact
relation to the soft-threshold estimator with the threshold of the form

v éi(v) ~
_ . < :
An(1+ . + " )s 112%|6Z(1/)| <v

But this can be rewritten as A, (1+e;(v)/A,) with e;(v) uniformly bounded by 3v/2 which
completes the proof. O

Proof of Theorem 2. The proof is based on similar ideas as for Theorem 1. The
MS-LyBoosting in iteration m aims to minimize

MSB,, = RSS,, + yntrace(B,,) = ||Y — Xﬁﬁnflboost||2 + ynptrace(By,).
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When using the orthogonal transformation by multiplying with X", the criterion above
becomes

MSBy =12 — B 4o0utll? + Fmtrace(By),

ms—boost

where trace(B,,) = >ii(1 — (1 — v)™). Moreover, we run MS-LyBoosting until the
stopping iteration m satisfies the following:

MSBy —MSByy1 >0, k=1,2,...,m—1,
MSB,, — MSBus1 < 0. (26)

It is straightforward to see for the orthonormal case, that such an m coincides with the
definition for 7 in section 3.2. Since MS-LoBoosting changes only one of the summands
in RSS and the trace of B,,, the criterion above implies that for all 1 = 1,...,n, using
the definition of M SB,

(1=v)?m D Z2(1 - (1= v)?) — (1 =)™ 7' >0,
(1—v)?™Z2(1 - (1 —v)?) — yr(l —v)™ <0. (27)

Note that if | Z;|? < y,v/(1 — (1 — v)?), then m; = 0. This also implies uniqueness of the
iteration 7 such that (26) holds or of the m; such that (27) holds.

Similarly to the proof of Theorem 1, we look at this expression first in terms of an
approximate equality to zero, i.e. &~ 0. We then immediately find that

. YoV
1—v)™ ]
L=~ T onze
Hence,
Bﬁ;’?_boost,i = (XTB,Y); = (XTXDnXTY); = (DnZ); = (1 — (1 — v)™)Z;
YV Z; . Yn 1

Z; — — 7 — AL
N ) A B L

The right-hand side is the nonnegative garrote estimator as in (15) with threshold v, /(2 —

v).
Dealing with the approximation “~” can be done similarly as in the proof of Theorem
1. We define here

TnV
N R I
We then define A(v, V;) and e;(v) as in the proof of Theorem 1, and we complete the proof
as for Theorem 1. O
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