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Considered Biclustering Algorithms
Five prominent biclustering methods have been chosen for this
comparative study according to three criteria: (i) to what extent
the methods have been used or referenced in the community, (ii)
whether their algorithmic strategies are similar and therefore better
comparable, and (iii) whether an implementation was available or
could be easily reconstructed based on the original publications. The
selected algorithms are briefly described in the following; they are
all based on greedy search strategies.

Cheng and Church’s Algorithm (CC)Cheng and Church, 2000
define a bicluster to be a submatrix for which the mean squared
residue scoreis below a user-defined threshold δ, where 0 represents
the minimum possible value. In order to identify the largest δ-
bicluster in the data, they propose a two-phase strategy: first, rows
and columns are removed from the orginal expression matrix until
the above constraint is fulfilled; later, previously deleted rows
and columns are added to the resulting submatrix as along as the
bicluster score does not exceed δ. This procedure is iterated several
times where previously found biclusters are masked with random
values. Recently, Yang et al., 2003 proposed an improved version
of this algorithm which avoids the problem of random interference
caused by masked biclusters.

Samba Tanay et al., 2002 presented a graph-theoretic approach
to biclustering in combination with a statistical data model. In
this framework, the expression matrix is modelled as a bipartite
graph, a bicluster is defined as a subgraph, and a likelihood score
is used in order to assess the significance of observed subgraphs.
A corresponding heuristic algorithm called Samba aims at finding
highly significant and distinct biclusters. In a recent study (Tanay
et al., 2004), this approach has been extended to integrate multiple
types of experimental data.

Order Preserving Submatrix Algorithm (OPSM)In (Ben-Dor
et al., 2002), a bicluster is defined as a submatrix that preserves the
order of the selected columns for all of the selected rows. In other
words, the expression values of the genes within a bicluster induce
an identical linear ordering across the selected samples. Based on a
stochastical model, the authors developed a deterministic algorithm
to find large and statistically significant biclusters. This concept has
been taken up in a recent study by Liu and Wang, 2003.

Iterative Signature Algorithm (ISA)The authors of (Ihmels et al.,
2002, 2004) consider a bicluster to be a transcription module,
i.e., a set of co-regulated genes together with the associated set
of regulating conditions. Starting with an initial set of genes, all
samples are scored with respect to this gene set and those samples
are chosen for which the score exceeds a predefined threshold. In the
same way, all genes are scored regarding the selected samples and a
new set of genes is selected based on another user-defined threshold.
The entire procedure is repeated until the set of genes and the set of
samples converge, i.e., do not change anymore. Multiple biclusters
can be identified by running the iterative signature algorithm on
several initial gene sets.

xMotif In the framework proposed by Murali and Kasif, 2003,
biclusters are sought for which the included genes are nearly
constantly expressed—across the selection of samples. In a first

step, the input matrix is preprocessed by assigning each gene a set
of statistically significant states. These states define the set of valid
biclusters: a bicluster is a submatrix where each gene is exactly
in the same state for all selected samples. To identify the largest
valid biclusters, an iterative search method is proposed that is run
on different random seeds, similarly to ISA.

Incremental Algorithm
The incremental procedure, see below, is based on work by Alexe
et al., 2002, who propose a method to find all inclusion-maximal
cliques in general graphs. Shortly summarized, each node in the
input graph is visited, and all maximal cliques are found that
contain that node. A visit-to-a-node operation comprises an iteration
through all other nodes of the graph as well, and each newly found
bicluster is globally extended to its maximality. For the special class
of bipartite graphs we are dealing with, it is important to notice
that several steps of the above method are redundant: it suffices
to iterate through only one partition of the graph nodes—in matrix
terminology this means we will have to iterate either through the
set of rows or columns, but not both. Moreover, extending new
biclusters can be avoided with a guarantee that no bicluster will be
missed this way.

1: procedure IncrementalAlgorithm (E)
2: M ← ∅
3: for i ← 1 to n do
4: C� ← {j | eij = 1 ∧ 1 ≤ j ≤ m}
5: for each (G, C) ∈ M do
6: C′ ← C ∩ C�

7: if ∃ (G′′, C′′) ∈ M with C′′ = C′ then
8: M ← M \ {(G′′, C′′)} ∪ {(G′′ ∪ {i}, C′′)}
9: else

10: M ← M ∪ {(G′′ ∪ {i}, C′)}
11: end if
12: end for
13: if  ∃ (G′′, C′′) ∈ M with C′′ = C� then
14: M ← M ∪ {({i}, C�)}
15: end if
16: end for
17: return M
18: end procedure

Incremental Algorithm Running-Time Analysis
THEOREM 2. The running-time complexity of the Incremental

Algorithm isΘ(n m2β), whereβ is the number of all inclusion-
maximal biclusters inEn×m, m ≤ n.

LEMMA 1. Given the binary matrixEn×m, a duplicate row or
column inE does not contribute to the total number of all inclusion-
maximal biclusters inE.

LEMMA 2. Given the binary matrixEn×m, the upper bound on
the number of all inclusion-maximal biclusters inE is (2min(n,m)−
1).

Proof of Theorem 2. The incremental algorithm proceeds in
stages: at stage i, a row/gene i of the matrix is considered and
the steps within the outer for instruction are performed. The set
of instructions within steps 5 to 12 amounts to: i) computing an
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intersection of the sets of samples (having value 1) corresponding
to gene i and a currently considered bicluster, which takes Θ(m),
and ii) the search through the list M , followed by a set equality
comparison operations, which costs further Θ(m log2 β), assuming
that binary search through the list M is made. This inner cycle
(steps 5 - 12) is performed β times, and the outer one n times,
where n is the number of rows of the matrix E. We then obtain
Θ(n β (m + m log2β)) = Θ(n m β log2 β) = Θ(n m2β);
assuming m ≤ n, the upper bound on β is exponential in m, hence,
log2 β = m.

In the algorithm proposed by Alexe et al., 2002, the main
differences to our incremental approach is an additional step that
is performed within the steps 7 to 11 of globally extending newly
created biclusters to their maximality, and an additional ”absorption
check” operation is made which costs Θ(n m log2 β). Hence, the
difference in the running-time complexities.

Additional Tables and Figures

Table 2. Average response times for Bimax in comparison with the
incremental approach on random matrices with 6000 genes and varying
number of columns and densities, i.e., proportion of 1 cells to 0-cells.
Each number gives the average running time measured in seconds over 100
matrices.

density number of samples m

E6000×... 50 150 250 350 450

B
im

ax

1 % 0.65 2.31 5.04 8.76 13.64
2 % 0.96 7.53 22.04 43.78 73.04
3 % 1.36 15.63 61.52 142.76 261.27
4 % 2.00 29.45 117.88 363.02 754.05
5 % 3.10 57.52 231.94 786.01 2128.9

In
cr

em
en

ta
l 1 % 2 12.8 28.3 48.3 73

2 % 5.6 52.4 140.3 319.8 777.2
3 % 11.3 120.2 483.2 1619.7 3780.7
4 % 19.4 299.3 2134.6 9938.2 21054.6
5 % 34 985.8 11395 43213.3 134282.1

Table 3. Average number of inclusion-maximal biclusters for random
matrices with 6000 genes and varying number of columns and densities, i.e.,
proportion of 1 cells to 0-cells. Each number gives the average over 100
matrices. The last row comprises the theoretical upper bounds for the number
of inclusion-maximal biclusters.

density number of samples m

D6000×... 50 150 250 350 450

1 % 530.0 3475.5 7594.2 12405.5 17919.9
2 % 1468.7 11829.2 28938.8 53438.2 86657.3
3 % 2490.1 21693.7 62005.3 132435.8 238598.5
4 % 3933.7 44463.7 155929.8 367228.8 694202
5 % 6554.9 100213.8 390835 956255 1838979.7

1.13e+15 1.43e+45 1.81e+75 2.29e+105 2.91e+135

0 0.05 0.10 0.15 0.20 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coverage of planted modules 

noise width σ

P
ro

po
rt

io
n 

of
 e

xp
re

ss
ed

 c
el

ls
 w

ith
in

 b
ic

lu
st

er
s

Bimax

ISA

Samba

CC

OPSM

xMotif

Fig. 4: This figure shows for the first artificial scenario what
proportion of computed biclusters contain over-expressed cells. As
argued in the article, the two methods CC and xMotif tend to
produce large biclusters covering the background area of the input
matrix, i.e., the cells containing 0).
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Fig. 5: Variability of the average bicluster relevance score depending on the parameter settings. The plotted values represent averages over the
biclusters obtained by ISA, xMotif and CC. (a), (b): For ISA, we varied the (tg, tc) parameters, in all cases, tg = tc, with 1.0 ≤ tg ≤ 2.4;
the value recommended by authors is (2.0, 2.0). (c), (d): As to xMotif, the size of the random seeds was changed in the range 1− 50; values
recommended by the authors are in the range 7 − 10. (e), (f): For CC, the homogeneity threshold, δ, has been systematically varied; the red
bold line in (e) shows the results obtained for δ = 0, i.e., when only perfect biclusters are sought.
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Table 4. Parameter settings used for different biclustering methods. Default settings (i.e. the parameter values recommended/used by the authors of original
papers) were occasionally changed in order to force the methods to output at least a single bicluster. The changed values are reported in the third column
(an empty third column cell indicates the default values have always been used). For the meaning of different parameters, please refer to the original papers.

Algorithm Default Parameter Settings Changed values

Samba D = 40, N1 = 4, N2 = 6, k = 20, L = 30
ISA tg = 1.8 − 4.0 (step 0.1), tc = 2.0, nr. seeds = 20000 tg = 2.0, nr. seeds = 500
CC α = 1.2, δ lower end of the range of expression values δ ≤ 0.5

OPSM l = 100
xMotifs ns = 10, nd = 1000, sd = 7 − 10, α not given, P value 10−10, max length not given sd = 7, α = 0.1,max length = 0.7m
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