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ABSTRACT
Motivation: In recent years, there have been various efforts to
overcome the limitations of standard clustering approaches for the
analysis of gene expression data by grouping genes and samples
simultaneously. The underlying concept, which is often referred to
as biclustering, allows to identify sets of genes sharing compatible
expression patterns across subsets of samples, and its usefulness
has been demonstrated for different organisms and data sets. Several
biclustering methods have been proposed in the literature; however,
it is not clear how the different techniques compare to each other with
respect to the biological relevance of the clusters as well as to other
characteristics such as robustness and sensitivity to noise. Accordin-
gly, no guidelines concerning the choice of the biclustering method
are currently available.
Results: First, this paper provides a methodology for comparing and
validating biclustering methods that includes a simple binary refe-
rence model. Although this model captures the essential features of
most biclustering approaches, it is still simple enough to exactly deter-
mine all optimal groupings; to this end, we propose a fast divide-and-
conquer algorithm (Bimax). Second, we evaluate the performance of
five salient biclustering algorithms together with the reference model
and a hierarchical clustering method on various synthetic and real
data sets for Saccharomyces cerevisiae and Arabidopsis thaliana.
The comparison reveals that (i) biclustering in general has advan-
tages over a conventional hierarchical clustering approach, that (ii)
there are considerable performance differences between the tested
methods, and that (iii) already the simple reference model delivers
relevant patterns within all considered settings.
Availability: The data sets used, the outcomes of the biclustering
algorithms, and the Bimax implementation for the reference model
are available at http://www.tik.ee.ethz.ch/sop/bimax
Contact: bleuler@tik.ee.ethz.ch, zitzler@tik.ee.ethz.ch

INTRODUCTION
In recent years, several biclustering methods have been sugge-
sted to identify local patterns in gene expression data. In contrast
to classical clustering techniques such as hierarchical clustering
(Sokal and Michener, 1958), andk-means clustering (Hartigan and
Wong, 1979), biclustering does not require genes in the same clu-
ster to behave similarly overall experimental conditions. Instead,
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a bicluster is defined as a subset of genes that exhibit compatible
expression patterns over a subset of conditions. This modified clu-
stering concept can be useful to uncover processes that are active
only over some but not all samples as has been demonstrated in
several studies (Cheng and Church, 2000; Ihmelset al., 2002; Ben-
Dor et al., 2002; Tanayet al., 2002; Murali and Kasif, 2003), see
(Madeira and Oliveira, 2004) for a survey.

Comparing clustering methods in general is difficult as the for-
malization in terms of an optimization problem strongly depends on
the scenario under consideration and accordingly varies for diffe-
rent approaches. In the end, biological merit is the main criterion
for validation, though it can be intricate to quantify this objective.
In the literature, there are several comparative studies on traditional
clustering techniques (Yeunget al., 2001; Azuaje, 2002; Datta and
Datta, 2003); however, for biclustering no such extensive empiri-
cal comparisons exist as pointed out by Madeira and Oliveira, 2004.
Although first steps in this directions have been made (Tanayet al.,
2002; Yanget al., 2003; Ihmelset al., 2004), the corresponding
studies focus on validating a new algorithm with regard to one or
two existing biclustering methods and usually consider a specific
objective function.

The main goal of this paper is to provide a systematic compari-
son and evaluation of prominent biclustering methods in the light of
gene classification. In particular, we focus on the following questi-
ons: (i) What comparison / validation methodology is adequate for
the biclustering context, (ii) how meaningful are the biclusters selec-
ted by existing methods, and (iii) how do different methods compare
to each other, i.e., do some techniques have advantages over others
or are there common properties that all approaches share?

In order to answer these questions, we have selected a number of
salient biclustering methods, implemented them, and tested them on
both synthetic and real gene expression data sets. Anin silico scena-
rio has been chosen to (i) investigate the capability of the algorithms
to recover implantedtranscription modules(Ihmels et al., 2002),
i.e., sets of co-regulated genes together with their regulating condi-
tions, and to (ii) study the influence of regulatory complexity and
noise on the performance of the algorithms. To assess the biological
relevance of biclusters on gene expression data forSaccharomyces
cerevisiaeandArabidopsis thaliana, multiple quantitative measures
are introduced that relate the biclustering outcomes to annotations
by The Gene Ontology Consortium, 2000, metabolic pathway maps,
and protein-interaction data.
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Moreover, we propose a simple biclustering model, which retains
common features of most biclustering methods, in combination with
a fast and exact algorithm (Bimax)—in contrast, existing biclu-
stering algorithms usually do not guarantee to find global optima.
Although restricted from a biological point of view, this model
allows to study the validity of the biclustering idea independent
of the interfering effects due to approximate algorithms. As such,
Bimax has been considered as a reference method in our study. As
will be shown in the remainder of this paper, even such a simple
approach delivers biologically relevant results and compares well
with more sophisticated biclustering methods.

RELATED WORK
There exist several studies that address the issue of comparing and valida-
ting one-dimensional clustering methods (Kerr and Churchill, 2001; Yeung
et al., 2001; Azuaje, 2002; Datta and Datta, 2003; Gat-Vikset al., 2003;
Handlet al., 2005). All of them make use of different quantitative measures
or validity indices, which can be divided into three categories (Halkidiet al.,
2001): internal, external, and relative indices. Internalindices solely rely
on the input data as, e.g., the measures ofhomogeneityandseparation(Gat-
Viks et al., 2003). In contrast, external criteria are based on additional data in
order to validate the obtained results. In the context of gene expression data,
these would correspond to prior biological knowledge of thesystems being
studied; alternatively, a validation can be done by referring to other types
of genomic data representing similar aspects of the regulation mechanisms
being investigated. The third category of relative indicesmeasures the influ-
ence of the input parameter settings on the clustering outcome. As discussed
in (Handlet al., 2005), external indices are preferable in order to assessthe
performance of an algorithm on a given data set, while internal indices can
be used to investigate why a particular method does not perform well.

In the context of biclustering, mainly external validation has been used.
Biological analyses and interpretations by human experts are most common
for the evaluation of a single, newly proposed biclusteringalgorithm (Cheng
and Church, 2000; Getzet al., 2000; Ben-Doret al., 2002; Murali and Kasif,
2003; Bergmannet al., 2003; Getzet al., 2003; Ihmelset al., 2004); they are
usually descriptive and qualitative only, and therefore not suited for compa-
ring multiple methods. In terms of quantitative measures, many papers rely
on known classifications and categorizations given by tumor types (Tanay
et al., 2002; Klugeret al., 2003; Murali and Kasif, 2003), GO annotations
(Tanayet al., 2002; Tanayet al., 2004), metabolic pathways (Ihmelset al.,
2002), or promoter motifs (Ihmelset al., 2004), which are closely related
to the specific data sets under consideration. Some authors also investigate
in silico data sets with implanted biclusters where the optimal outcome is
known beforehand (Ihmelset al., 2002; Ben-Doret al., 2002; Bergmann
et al., 2003; Yanget al., 2002).

Most biclustering papers are concerned with the introduction and valida-
tion of a new approach, while only a few contain quantitativecomparisons to
existing methods. Cheng and Church, 2000, and Klugeret al., 2003, validate
the biclustering results in comparison to hierarchical clustering and singular
value decomposition respectively. Tanayet al., 2002, and Yanget al., 2002,
2003, provide a comparison to the algorithm by Cheng and Church, 2000,
regarding synthetic data respectively the problem formulation introduced in
(Cheng and Church, 2000). In (Ihmelset al., 2004), two biclustering tech-
niques (Cheng and Church, 2000; Getzet al., 2000) as well as five classical
clustering methods are tested with respect to the problem formulation used
by the iterative signature algorithm proposed in (Ihmelset al., 2002). In most
of the studies, the comparison has been carried out with regard to the gene
dimension.

BICLUSTERING METHODS

Selected Algorithms
Five prominent biclustering methods have been chosen for thiscomparative
study according to three criteria: (i) to what extent the methods have been

used or referenced in the community, (ii) whether their algorithmic strategies
are similar and therefore better comparable, and (iii) whether an implemen-
tation was available or could be easily reconstructed basedon the original
publications. The selected algorithms, which all are based on greedy search
strategies, are: Cheng and Church’s algorithm,CC, (Cheng and Church,
2000);Samba, (Tanayet al., 2002); Order Preserving Submatrix Algorithm,
OPSM, (Ben-Doret al., 2002); Iterative Signature Algorithm,ISA, (Ihmels
et al., 2002, 2004);xMotif, (Murali and Kasif, 2003). A brief description of
the corresponding approaches can be found in the supplementary material.

Reference Method (Bimax)
The above methods use different models which are all too complexto be sol-
ved exactly; most of the corresponding optimization problems have shown
to be NP-hard. Therefore, advantages of one method over another can be due
to a more appropriate optimization criterion or a better algorithm.

To decouple these two aspects, we propose a reference method,namely
Bimax, that uses a simple data model reflecting the fundamental idea of bic-
lustering, while allowing to determine all optimal biclusters in reasonable
time. This method has the benefit of providing a basis to investigate (i) the
usefulness of the biclustering concept in general, independently of interfe-
ring effects caused by approximate algorithms, and (ii) the effectiveness of
more complex scoring schemes and biclustering methods in comparison to
a plain approach. Note that the underlying binary data model,which is des-
cribed below, is only used by Bimax and does not represent the platform on
the basis of which the different algorithms are compared. All methods under
consideration are employed using their specific data models.

Model The model assumes two possible expression levels per gene: no
change and change with respect to a control experiment.1 Accordingly, a set
of m microarray experiments forn genes can be represented by a binary
matrix En×m, where a celleij is 1 whenever genei responds in the con-
dition j and otherwise it is0. A bicluster(G, C) corresponds to a subset
of genesG ⊆ {1, .., n} that jointly respond across a subset of samples
C ⊆ {1, .., m}. In other words, the pair(G, C) defines a submatrix of
E for which all elements equal1. Note that, by definition, every celleij

having value1 represents a bicluster by itself. However, such a pattern is
not interesting per se; instead, we would like to find all biclusters that are
inclusion-maximal, i.e., that are not entirely contained in any other bicluster.

DEFINITION 1. The pair(G, C) ∈ 2{1,..,n} × 2{1,..,m} is called an
inclusion-maximal biclusterif and only if (1)∀ i ∈ G, j ∈ C : eij = 1
and (2) 6 ∃(G′, C′) ∈ 2{1,..,n} × 2{1,..,m} with (i) ∀ i′ ∈ G′, j′ ∈ C′ :
ei′j′ = 1 and (ii) G ⊆ G′ ∧ C ⊆ C′ ∧ (G′, C′) 6= (G, C).

This model is similar to the one presented in (Tanayet al., 2002) where a
bicluster can also contain0-cells.

Algorithm Since the size of the search space is exponential inn and
m, an enumerative approach is infeasible in order to determine the set of
inclusion-maximal biclusters. Alexeet al., 2002 proposed an algorithm in a
graph-theoretic framework that can be employed in this context, if the matrix
E is regarded as an adjacency matrix of a graph. By exploiting the fact that
the graph induced byE is bipartite, their incremental algorithm can be tai-
lored to this application which reduces the running-time complexity from
Θ(n2 m2β) to Θ(nmβ log β), whereβ is the number of all inclusion-
maximal biclusters inEn×m (see supplementary material). However, the
memory requirements of this algorithm are of orderΩ(nmβ) which causes
practical problems, especially for larger matrices.

In this paper, though, we propose and use a fast divide-and-conquer
approach, the binary inclusion-maximal biclustering algorithm (Bimax) that
requires much less memory resources (O(nm min{n, m})), while pro-
viding a worst-case running-time complexity that for matricescontaining

1 To this end, a preprocessing step normalizes log expression values and
then transforms matrix cells into discrete values, e.g., by using a twofold
change cutoff.
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Fig. 1: Illustration of the Bimax algorithm. To divide the input matrixinto
two smaller, possibly overlapping submatricesU and V , first the set of
columns is divided into two subsetsCU andCV , here by taking the first
row as a template. Afterwards, the rows ofE are resorted: first come all
genes that respond only in conditions given byCU , then those genes that
respond to conditions inCU and inCV , and finally the genes that respond
to conditions inCV only. The corresponding sets of genesGU , GW , and
GV then define in combination withCU andCV the resulting submatrices
U andV which are decomposed recursively.

disjoint biclusters only is of orderO(nmβ) and for arbitrary matrices is of
orderO(nmβ min{n, m}). The complete algorithm and the proof of the
general upper bound for the running-time complexity are givenin the sup-
plementary material. Bimax tries to identify areas ofE that contain only0s
and therefore can be excluded from further inspection. Thisstrategy is espe-
cially beneficial for our purposes asE is, depending on the cutoff threshold,
sparse; in all data sets used in this study, the proportion of1-cells over0-cells
never exceeded6% when considering a twofold change cutoff.

More specifically, the idea behind the Bimax algorithm, which is illustra-
ted in Fig. 1, is to partitionE into three submatrices, one of which contains
only0-cells and therefore can be disregarded in the following. The algorithm
is then recursively applied to the remaining two submatricesU andV ; the
recursion ends if the current matrix represents a bicluster,i.e., contains only
1s. If U andV do not share any rows and columns ofE, i.e.,GW is empty,
the two matrices can be processed independently from each other. However,
if U andV have a setGW of rows in common as shown in Fig. 1, special
care is necessary to only generate those biclusters inV that share at least one
common column withCV .

COMPARISON METHODOLOGY
In general, a fair comparison of clustering and biclusteringapproaches is
inherently a difficult task because every method uses a different problem
formulation and algorithm which may work well in certain scenarios and
fail in others. Here, the main goal is to define a common setting that reflects
the general basis of the majority of the biclustering studiesavailable and in
particular of those techniques considered in this paper.

First, the comparison focuses on the identification of (locally) co-
expressed genes as in (Cheng and Church, 2000; Tanayet al., 2002; Ben-Dor
et al., 2002; Ihmelset al., 2002, 2004; Tanayet al., 2004). Classification of
samples or inference of regulatory mechanisms may be other tasksfor which
biclustering can be used; however, considering mainly the gene dimension
has the advantage of various available annotations—in contrast to the condi-
tion dimension—and of the possibility to compare the results with classical
clustering techniques.

Second, external indices are used to assess the methods underconside-
ration as in most biclustering papers. The reasons are: (i) itis not clear
how to extend notions such as homogeneity and separation (Gat-Viks et al.,
2003) to the biclustering context (to our best knowledge, nogeneral internal
indices have been suggested so far for biclustering), and (ii) there are some
issues with internal measures, due to which Gat-Vikset al., 2003, and Handl
et al., 2005, recommend external indices for evaluating the performance of
(bi)clustering methods. We consider both synthetic and realdata sets for
the performance assessment. Only the latter allow reliable statements about
the biological usefulness of a specific approach, and further biological data,

namely GO annotations, as in (Tanayet al., 2002; Tanayet al., 2004), meta-
bolic pathways maps, similarly to (Ihmelset al., 2002), and protein-protein
interactions, are used here. In contrast, the former data sets inherently reflect
only certain aspects of biological reality, but they have the advantage that
the optimal solutions are known beforehand and that the complexity can be
controlled and arbitrarily scaled to different levels.

Finally, various biclustering concepts and structures canbe considered
when usingin silico data; Madeira and Oliveira, 2004, propose several cate-
gories on the basis of which they classify existing biclustering approaches.
Here, we investigate two types of bicluster concepts: biclusters with con-
stant expression values and biclusters following an additive model where the
expression values are varying over the conditions. The former type can be
used to test methods designed to identify—according to the terminology in
(Madeira and Oliveira, 2004)—biclusters with constant andcoherent values,
while the latter type, where the expression values show the same trend for all
genes included, serves as a basis to validate algorithms tailored to biclusters
with coherent values and coherent evolutions. Concerning the biclustering
structure, we consider two scenarios: (i) multiple biclusters without any
overlap in any dimension and (ii) multiple biclusters with overlap.

Validation Using Synthetic Data
The artificial model used to generate synthetic gene expression data is simi-
lar to an approach proposed by Ihmelset al., 2002. In this setting, biclusters
representtranscription modules; these modules are defined by (i) a setG of
genes regulated by a set of common transcription factors, and (ii) a setC
of conditions in which these transcription factors are active. In the first con-
sidered scenario,10 non-overlapping transcription modules, each extending
over10 genes and5 conditions, emerge. Each gene is regulated by exactly
one transcription factor and in each condition only one transcription factor
is active. The corresponding data sets contain10 implanted biclusters and
have been used to study the effects of noise on the performanceof the bic-
lustering methods. For the second scenario, the regulatory complexity has
been systematically varied: here, each gene can be regulatedby d transcrip-
tion factors and in each condition up tod transcription factors can be active.
As a consequence, the original10 biclusters overlap whered is an indicator
for the overlap degree; overall, nine different levels havebeen considered
with d = 0, 1, . . . , 8. Moreover, we have investigated for each scenario
two types of biclusters: (i) constant biclusters and (ii) additive biclusters (see
supplementary material).

In order to assess the performance of the selected biclustering approaches,
we will use the following gene match score.

DEFINITION 2. Let M1, M2 be two sets of biclusters. Thegene match
scoreof M1 with respect toM2 is given by the function

S∗
G(M1, M2) =

1

|M1|

X
(G1,C1)∈M1

max
(G2,C2)∈M2

|G1 ∩G2|

|G1 ∪G2|

which reflects the average of the maximum match scores for allbiclusters in
M1 with respect to the biclusters inM2.

Now, let Mopt denote the set of implanted biclusters andM the out-
put of a biclustering method. Theaverage bicluster relevanceis defined as
S∗

G(M, Mopt) and reflects to what extent the generated biclusters represent
true biclusters in the gene dimension. In contrast, theaverage module reco-
very, given byS∗

G(Mopt, M), quantifies how well each of the true biclusters
is recovered by the biclustering algorithm under consideration. Both scores
take the maximum value of1, if Mopt = M . A detailed description of this
score can be found in the supplementary material.

Validation Using Prior Knowledge
Prior biological knowledge in the form of natural language descriptions of
functions and processes that genes are related to has become widely availa-
ble. One of the largest organized collection of gene annotations is currently
provided by The Gene Ontology Consortium, 2000. Similarly to the idea
pursued in (Tanayet al., 2002), we here investigate whether the groups
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of genes delivered by the different algorithms show significant enrichment
with respect to a specific Gene Ontology (GO) annotation. In detail, biclu-
sters are evaluated by computing the hypergeometric functional enrichment
score, cf. (Berrizet al., 2003), based on Molecular Function and Biological
Process annotations; the resulting scores are adjusted formultiple testing by
using the Westfall and Young procedure (Westfall and Young,1993; Berriz
et al., 2003). This analysis is performed for the model organismSaccharomy-
ces cerevisiae, since the yeast GO annotations are more extensive compared
to other organisms. The gene expression data set used is the one provided
by Gaschet al., 2000, which contains a collection of173 different stress
conditions and a selection of2993 genes.

In addition to GO annotations, we consider specific biological networks,
namely metabolic and protein-protein interaction networks,that have been
derived from other types of data than gene expression data. Although each
type of data reveals other aspects of the underlying biological system, one
can expect to a certain degree that genes that participate inthe same pathway
respectively form a protein complex also show similar expression patterns as
discussed in (Zienet al., 2000; Idekeret al., 2002; Ihmelset al., 2002). The
question here is whether the computed biclusters reflect thiscorrespondence.

To this end, we model both pathway information as well as protein interac-
tions in terms of an undirected graph where a node stands for a protein and
an edge represents a common reaction in that the two connected proteins
participate respectively a measured interaction between the two connected
proteins. In order to verify whether a given bicluster(G, C) is plausible with
respect to the metabolic respectively protein interaction graph, we consider
two scores: (i) the proportion of pairs of genes inG for which there exists
no connecting path in the graph, and (ii) the average path length of pairs
of genes inG for which such a path exists. One may expect that both the
number of disconnected gene pairs and the average distance between two
connected genes is significantly smaller for genes inG than for randomly
chosen genes. For both scores, a resampling method is applied where1000
random gene groups of the same size asG are considered; a Z-test is used to
check whether the scores for the bicluster(G, C) are significantly smaller
or larger than the average score for the random gene groups.

As to the metabolic level, we use a pathway map that describes the
main bio-synthetic pathways at the level of enzymatic reactions for the
model organismArabidopsis thaliana(Wille et al., 2004). As this map
has been manually assembled at the Institute for Plant Scienceat ETH
Zurich by an extensive literature search, the resulting graph represents a
high level of confidence. The gene expression data set used inthis context
are publicly available athttp://nasc.nott.ac.uk/ and comprise69
experimental conditions and a selection of734 genes.

To investigate the correspondence of biclusters and protein-protein inter-
action networks, againSaccharomyces cerevisiaeis considered because the
amount of interaction data available is substantially larger than forArabidop-
sis thaliana. Here, we combine the aforementioned data set for yeast (Gasch
et al., 2000) with protein interactions stored in the DIP database (Salwinski
et al., 2004), resulting in11498 interactions for3665 genes overall.

Implementation Issues
All of the selected methods have been re-implemented accordingto the
specifications in the corresponding papers, except of Samba for which a
publicly available software tool, Expander (Sharanet al., 2003), has been
used. The OPSM algorithm has been slightly extended to return not only
a single bicluster but theq largest biclusters among those that achieve the
optimal score;q has been set to100. Furthermore, the standard hierarchical
clustering method (HCL) in MATLAB has been included in the compari-
son, which uses single linkage in combination with Euclideandistance. The
parameter settings for the various algorithms correspond to the values that
the authors have recommended in their publications (supplementary mate-
rial). For the reference method, Bimax, the discretization threshold has been
set toe + (e − e)/2 wheree ande represent the minimum respectively
maximum expression values in the data matrix.

As the number of generated biclusters varies strongly among the conside-
red methods, a filtering procedure, similarly to (Tanayet al., 2002; Ihmels

et al., 2002), has been applied to the output of the algorithms to provide
a common basis for the comparison. The filtering procedure adopted here
follows a greedy approach: in each step, the largest of the remaining biclu-
sters is chosen that has less thano percent of its cells in common with any
previously selected bicluster; the algorithm stops if either q biclusters have
been selected or none of the remaining ones fulfills the selection criterion.
For the synthetic data sets,q equals the number of optimal biclusters, which
is known beforehand, and for the real data sets,q is set to100; in both cases,
a maximum overlap ofo = 0.25 is considered.

RESULTS

Synthetic Data
The data derived from the aforementioned artificial model enables us to inve-
stigate the capability of the methods to recover known groupings, while at
the same time further aspects like noise and regulatory complexity can be
systematically studied. The data sets used in this context are kept small, i.e.,
n = 100, m = 50 for scenario1 andn = 100, m = 100, . . . , 108 for
scenario2, in order to allow a large number of numerical experiments to be
performed—for a100× 100-matrix, the running-times of the selected algo-
rithms varied between1 and120 seconds. The size of the considered data
sets, though, does not restrict the generality of the results presented in the
following, since the inherent structure of the data matrix, i.e., the overlap
degree, is the main focus of our study.

Note that the input matrices have not been discretized beforehand, e.g.,
converted into binary matrices as required by the reference method Bimax.
Instead, for each algorithm the corresponding preprocessing procedures have
been employed as described in the relevant papers.

Effects of Noise The first artificial scenario, where all biclusters are non-
overlapping, serves as a basis to assess the sensitivity of the methods to noise
in the data. It is to be expected that hierarchical clustering works well in such
a scenario as the implanted gene groups are clearly separatedin the condition
dimension.

Noise is imitated by adding random values drawn from a normal distri-
bution to each cell of the original gene expression matrix. The noise level,
i.e., the standard deviationσ, is systematically increased, and for each noise
value,10 different data matrices have been generated from the original gene
expression matrixE. The performance of each algorithm is averaged over
these10 input matrices. Fig. 2a summarizes the performances of the consi-
dered methods with respect to constant biclusters, while Fig. 2b depicts the
results for the matrices where the implanted biclusters represent trends over
the conditions.

In the absence of noise, ISA, Samba, and Bimax are able to identify a high
percentage (> 90%) of implanted transcription modules; as expected, the
same holds for the hierarchical clustering approach, if the numberk of clu-
sters to be generated corresponds to the actual number of implanted modules.
In contrast, the scores obtained by CC and xMotif are substantially lower. In
the case of constant biclusters, this phenomenon can be explained by the
fact that the largest biclusters found by these two methods mainly contain
0-cells, i.e., the algorithms do not focus on changes in gene expression, but
consider the similarity of the selected cells as the only clustering criterion.
This problem has been discussed in detail in (Cheng and Church (2000)).
For the specific scenario with the particular type of additive biclusters con-
sidered here, CC tends to find large groups of genes extendingover a few
columns only, which is due to the used greedy heuristic; theoretically, the
implanted biclusters achieve the optimal mean residue score. Since xMotif
is mainly designed to find biclusters with coherent row values, the underly-
ing bicluster problem formulation is not well suited for the second bicluster
type. A similar argument applies to OPSM which seeks clear trends of up-
or down-regulation and cannot be expected to perform well inthe scenarios
with constant biclusters. The high average bicluster relevance in Fig. 2a is
rather an artifact of the implementation used in this paper which keeps the
order of the columns when identical expression values are present; however,
as soon as noise is added, this artificial order is destroyed,which in turn
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Fig. 2: Results for the artificial scenarios: non-overlapping modules with increasing noise levels for (a) constant and (b) additive biclusters, overlapping
modules with increasing overlap degree and no noise for (c) constant and (d) additive biclusters. Note that OPSM is excluded in (c), cf. results section.

leads to considerably lower gene match scores. In contrast, biclusters follo-
wing an additive model with respect to the condition dimensionrepresent
optimal order-preserving submatrices. In this setting, the correspondence
between the implanted biclusters and those found by OPSM is about 50%,
cf. Fig. 2b. A potential reason for the unexpectedly low scores is the way the
heuristic algorithm works: per number of columns, only a single bicluster
is considered—however, the implanted biclusters all extendover the same
number of columns.

Concerning the influence of noise, ISA is only marginally affected by
either type of noise and still recovers more than90% of all implanted modu-
les even for high noise levels. The same holds for Bimax in the constant
bicluster case, but for the other bicluster type a substantial decrease in the
relevance score can be observed in Fig. 2b. This reveals a potential problem
with discretization approaches: as noise blurs the differences between back-
ground and biclusters, many small submatrices emerge that not necessarily
are meaningful. With HCL, noise has no observable effects in the constant
bicluster scenarios, while for the second bicluster type increasing noise leads
to a decrease in performance. The latter observation is due tothe fact that
background and biclusters are not that clearly separated inthe data sets with
biclusters exhibiting trends. Samba seems to be sensitive to noise in the con-
stant bicluster case as the average gene match scores decrease by 40% to
50% for a medium noise level; still, the scores are significantly larger than
for CC and xMotif. In the case of additive biclusters, noise has only little
effect on the performance of Samba. Concerning OPSM, noise affects the
outcome; the scores slightly decrease. Remarkably, the performance of CC
on the constant bicluster matrices appears to improve with increasing noise.
This phenomenon, though, is again a result of the adopted algorithmic stra-
tegy, cf. (Cheng and Church, 2000): the largest biclusters may mainly cover
the background, i.e.,0-cells. With noise, the biclusters found in the matrix
background tend to be smaller, and this results in an improved gene match
score; further evidence is provided in the supplementary material.
Regulatory Complexity The focus of the second artificial scenario is to
study the behavior of the chosen algorithms with respect to increased regula-
tory complexity. Here, a single gene may be activated by asetof transcription
factors, and accordingly the implanted transcription modules may overlap.
This setting is expected to reveal the advantages of the biclustering approach
over traditional clustering methods such as hierarchical clustering.

Fig. 2c (constant biclusters) as well as Fig. 2d (additive biclusters) depict
the results for different overlap degrees in the absence of noise, cf. the
description of the data sets on Page 3. The only method that fully reco-
vers all hidden modules in the data matrix is—by design—the reference
method, Bimax. Among the remaining methods, Samba provides the best

performance: most of the biclusters found (> 90%) represent hidden modu-
les2; however, not all implanted modules are recovered. While OPSM is not
significantly affected by the overlap degree (only the non-constant bicluster
data sets have been considered as OPSM cannot handle identical expression
values), ISA appears to be more sensitive to increased regulatory comple-
xity, especially with the second bicluster type. An explanation for this is
the normalization step in the first preprocessing step of the algorithm. With
increasing overlap, the expression value range after normalization becomes
narrower. As a result, the differences between unchanged and up- or down-
regulated expression values blur and are more difficult to separate based
on the gene and chip threshold parameterstg, tc. These parameters have
a strong impact on the performance as shown in the supplementarymate-
rial. As to CC, the performance increases with larger overlaps degrees, but
the gene match scores are still lower than the ones by Bimax, Samba, and
ISA; again, this is due to the fact that the number of background cells dimi-
nishes with larger overlaps. xMotif shows the same behavior on the data
matrices with constant biclusters. Comparing the biclustering methods with
HCL, one can observe that already a minimal overlap causes a large decre-
ase in the performance of HCL—even if the optimal number of clusters is
used. The reason is that clusters obtained by HCL form a partition of genes,
i.e., are non-overlapping, and this implies that not every planted transcription
module can be possibly recovered.

Real Data
Any artificial scenario inevitably is biased regarding the underlying model
and only reflects certain aspects of biological reality. Therefore, the algo-
rithms are tested in the following on real data sets, normalized using
mean centering, and the biological relevance of the obtainedbiclusters is
evaluated with respect to GO annotations, metabolic pathwaymaps, and
protein-protein interaction data.

Functional Enrichment The histogram in Fig. 3 reflects for each method
the proportion of biclusters for which one or several GO categories are
overrepresented—at different levels of significance. Bestresults are obtai-
ned by OPSM. Given that this approach only returns a small number of
biclusters, here12 in comparison to100 with the other methods, it deli-
vers gene groups that are highly enriched with the GO Biological Process
category. This result is insofar interesting as the effect of the noise observed
in the artificial setting does not seem to be a problem with theconsidered

2 As to the outlier in Fig. 2d at overlap degree7, repeated applications of
Samba on the same matrix yielded similar scores.
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Fig. 3:Proportion of biclusters significantly enriched by any GO Biological
Process category (Saccharomyces cerevisiae) for the six selected biclustering
methods as well as for hierarchical clustering withk ∈ {15, 30, 50, 100}.
The columns are grouped method-wise, and different bars within a group
represent the results obtained for five different significance levelsα.

real data set. Bimax, ISA, and Samba also provide a high portionof func-
tionally enriched biclusters, with a slight advantage of Bimax and ISA (over
90% at a significance level of5%) over Samba (over80% at a significance
level of 5%). In contrast, the scores for CC are considerably lower (around
30%) due to the same problem as discussed in the previous section.Cheng
and Church, 2000 mention that the first few biclusters should probably be
discarded, but the practical issue remains that it is not clear which biclusters
are meaningful and should be considered for further analysis.

Except for xMotif, though, all biclustering methods achievehigher scores
than HCL with different values fork, the number of clusters to be sought.
This can be explained in terms of the data set used: Since it refers to different
types of stresses, it is likely that local, stress-dependent expression patterns
emerge that are hard to find by traditional clustering techniques. This hypo-
thesis is also supported by the fact that most functionally enriched biclusters
only contain one or two overrepresented GO categories and that there is no
clear tendency towards any of the categories.

Comparison to Metabolic and Protein NetworksUnder the assumption that
the structure of a metabolic pathway map respectively a protein-protein inter-
action network is somehow reflected in the gene expression data, the degree
of connectedness of the genes associated with a bicluster can be used to
assess its biological relevance. In particular, one may expect that both the
number of disconnected gene pairs and the average shortest distance bet-
ween connected gene pairs tend to be smaller for the biclusters found than
for random gene groups.

Table 1 shows that this holds for the data set and the metabolicpathway
map used forArabidopsis thaliana. If there exists a path between two
genes of a bicluster in the metabolic graph, then with high probability
the distance between these genes is significantly smaller than the average
shortest distance between randomly chosen gene pairs. Although for most
methods, the biclusters are better connected than random gene groups, the
differences to the random case are not as striking as for the average gene pair
distance. This indicates that combining gene expression data with pathway
maps within a biclustering framework can be useful to focus on specific gene
groups. Note that also hierarchical clustering withk ∈ {15, 30, 50, 100}
has been applied to these expression data; however, a singlecluster usually
contains almost all the genes of the data set, while the remaining clusters
comprise only few genes. Accordingly, no significant differences to random
clusters can be observed.

Table 1. Biological relevance of biclusters with respect to a metabolic pathway
map (MPM) forArabidopsis thalianaand a protein-protein interaction network
(PPI) for Saccharomyces cerevisiae. For each bicluster, a Z-test is carried out
to check whether its score is significantly smaller or greaterthan the expected
value for random gene groups; the table gives for each method the proportion of
biclusters with statistically significant scores (significance levelα = 10−3). The
results for HCL are omitted as all scores equal0%.

Method proportion of average shortest distance
disconnected gene pairs in the graph

smaller greater smaller greater

MPM PPI MPM PPI MPM PPI MPM PPI

Bimax 58.9 14.0 19.5 64.0 85.3 58.0 3.4 16.0
CC 70.0 52.0 15.0 26.0 70.0 42.0 15.0 34.0
OPSM 42.8 18.8 28.6 50.0 92.9 56.3 0.0 43.8
Samba 41.6 0.0 37.5 100.0 75.6 25.6 13.1 46.2

xMotif 49.0 2.0 17.0 92.0 84.0 4.0 3.0 72.0
ISA 25.0 58.0 25.0 22.0 50.0 70.0 25.0 22.0

The results for the corresponding comparison for the protein-protein
interaction, though, are ambiguous, cf. Table 1. As to the degree of dis-
connectedness, there is no clear tendency in the data which can be attributed
to the fact that not all possible protein pairs have been tested for interac-
tion. Focusing on connected gene pairs only, ISA and Bimax seem to mostly
generate gene groups that have a low average distance withinthe protein
network in comparison to random gene sets; for xMotif, the numbers sug-
gest the opposite. Overall, the differences between the biclustering methods
demonstrate that special care is necessary when integratinggene expression
and protein interaction data: not only the incompleteness ofthe data needs
to be taken into consideration, but also the confidence in themeasurements
has to be accounted for, see, e.g., Gilchristet al. (2004).

CONCLUSIONS
The present study compares five prominent biclusterings methods
with respect to their capability of identifying groups of (locally) co-
expressed genes; hierarchical clustering and a baseline biclustering
algorithm, Bimax, proposed in this paper serve as a reference. To
this end, different synthetic gene expression data sets correspon-
ding to different notions of biclusters as well as real transcription
profiling data are considered. The key results are:

• In general, the biclustering concept allows to identify groups of
genes that cannot be found by a classical clustering approach
that always operates onall experimental conditions. On the
one hand side, this is supported by the observation that with
increased regulatory complexity the ability of hierarchical clu-
stering to recover the implanted transcription modules in an
artificial scenario decreases substantially. On the other hand
side, on real data the groups outputted by hierarchical cluste-
ring for different similarity measures and parameters do not
exhibit any significant enrichment according to GO annotations
and metabolic pathway information. In contrast, most bicluste-
ring methods under consideration are capable of dealing with
overlapping transcription modules and generate functionally
enriched clusters.

• There are significant performance differences among the five
biclustering methods. On the real data sets, ISA, Samba, and
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OPSM provide similarly good results: a large portion of the
resulting biclusters is functionally enriched and indicates a
strong correspondence with known pathways. In the context
of the synthetic scenarios, Samba is slightly more robust regar-
ding increased regulatory complexity, but also more sensitive
regarding noise than ISA. While Samba and ISA can be used
to find multiple biclusters with both constant and coherently
increasing values, OPSM is mainly tailored to identify a sin-
gle bicluster of the latter type. Proposed extensions of the
OPSM approach such as (Liu and Wang, 2003) may resolve
these issues. The remaining two algorithms, CC and xMo-
tif, both tend to generate large biclusters that often represent
gene groups with unchanged expression levels and therefore
not necessarily contain interesting patterns in terms of, e.g.,
co-regulation. Accordingly, the scores for CC and xMotif are
significantly lower than for the other biclustering methods
under consideration.

• The Bimax baseline algorithm presented in this paper achieves
similar scores as the best performing biclustering techniques in
this study. This may be explained by the rather global evalua-
tion approach pursued here, and a more specific analysis may
lead to different results. Nevertheless, the reference method can
be useful as a preprocessing step by which potentially relevant
biclusters may be identified; later, the chosen biclusters can be
used, e.g., as an input for more accurate biclustering methods
in order to speed up the processing time and to increase the
bicluster quality. An advantage of Bimax is that it is capable of
generating all optimal biclusters, given the underlying binary
data model.
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Considered Biclustering Algorithms
Five prominent biclustering methods have been chosen for this
comparative study according to three criteria: (i) to what extent
the methods have been used or referenced in the community, (ii)
whether their algorithmic strategies are similar and therefore bet-
ter comparable, and (iii) whether an implementation was available
or could be easily reconstructed based on the original publications.
The selected algorithms are briefly described in the following; they
are all based on greedy search strategies.

Cheng and Church’s Algorithm (CC)Cheng and Church, 2000
define a bicluster to be a submatrix for which themean squared
residue scoreis below a user-defined thresholdδ, where0 repres-
ents the minimum possible value. In order to identify the largest
δ-bicluster in the data, they propose a two-phase strategy: first, rows
and columns are removed from the orginal expression matrix until
the above constraint is fulfilled; later, previously deleted rows and
columns are added to the resulting submatrix as along as the biclu-
ster score does not exceedδ. This procedure is iterated several times
where previously found biclusters are masked with random values.
Recently, Yanget al., 2003 proposed an improved version of this
algorithm which avoids the problem of random interference caused
by masked biclusters.

Samba Tanayet al., 2002 presented a graph-theoretic approach to
biclustering in combination with a statistical data model. In this fra-
mework, the expression matrix is modelled as a bipartite graph, a
bicluster is defined as a subgraph, and a likelihood score is used
in order to assess the significance of observed subgraphs. A corre-
sponding heuristic algorithm called Samba aims at finding highly
significant and distinct biclusters. In a recent study (Tanayet al.,
2004), this approach has been extended to integrate multiple types
of experimental data.

Order Preserving Submatrix Algorithm (OPSM)In (Ben-Dor
et al., 2002), a bicluster is defined as a submatrix that preserves the
order of the selected columns for all of the selected rows. In other
words, the expression values of the genes within a bicluster induce
an identical linear ordering across the selected samples. Based on a
stochastical model, the authors developed a deterministic algorithm
to find large and statistically significant biclusters. This concept has
been taken up in a recent study by Liu and Wang, 2003.

Iterative Signature Algorithm (ISA)The authors of (Ihmelset al.,
2002, 2004) consider a bicluster to be a transcription module, i.e., a
set of co-regulated genes together with the associated set of regula-
ting conditions. Starting with an initial set of genes, all samples are
scored with respect to this gene set and those samples are chosen for

which the score exceeds a predefined threshold. In the same way,
all genes are scored regarding the selected samples and a new set of
genes is selected based on another user-defined threshold. The entire
procedure is repeated until the set of genes and the set of samp-
les converge, i.e., do not change anymore. Multiple biclusters can
be identified by running the iterative signature algorithm on several
initial gene sets.

xMotif In the framework proposed by Murali and Kasif, 2003, bic-
lusters are sought for which the included genes are nearly constantly
expressed—across the selection of samples. In a first step, the input
matrix is preprocessed by assigning each gene a set of statistically
significantstates. These states define the set of valid biclusters: a
bicluster is a submatrix where each gene is exactly in the same state
for all selected samples. To identify the largest valid biclusters, an
iterative search method is proposed that is run on different random
seeds, similarly to ISA.

Bimax (Reference Method)
Algorithm The following algorithm realizes the divide-and-
conquer strategy as illustrated in Fig. 1. Note that special operations
are required for processing theV submatrices. As mentioned in the
discussion of the reference model, the algorithm needs to guarantee
that only optimal, i.e., inclusion-maximal biclusters are generated.
The problem arises becauseV contains parts of the biclusters found
in U , and as a consequence we need to ensure that the algorithm
only considers those biclusters inV that extend overCV . The para-
meterZ serves this goal. It contains sets of columns that restricts the
number of admissible biclusters. A bicluster(G, C) is admissible,
if (G, C) shares one or more columns with each column setC+ in
Z, i.e.,∀C+ ∈ Z : C ∩ C+ 6= ∅.

1: procedure Bimax (E)
2: Z ← ∅
3: M ← conquer(E, ({1, . . . , n}, {1, . . . , m}), Z)
4: return M

5: end procedure

6: procedure conquer (E, (G, C), Z)
7: if ∀i ∈ G, j ∈ C : eij = 1 then
8: return {(G, C)}
9: end if

10: (GU , GV , GW , CU , CV ) = divide(E, (G, C), Z)

11: MU ← ∅, MV ← ∅
12: if GU 6= ∅ then
13: MU ← conquer(E, (GU ∪GW , CU ), Z)
14: end if
15: if GV 6= ∅ ∧GW = ∅ then
16: MV ← conquer(E, (GV , CV ), Z)
17: else if GW 6= ∅ then
18: Z′ ← Z ∪ {CV }
19: MV ← conquer(E, (GW ∪GV , CU ∪ CV ), Z′)
20: end if
21: return MU ∪̇MV

22: end procedure

23: procedure divide(E, (G, C), Z)
24: G′ ← reduce(E, (G, C), Z)

25: choosei ∈ G′ with 0 <
P

j∈C eij < |C|
26: if such ani ∈ G′ existsthen
27: CU ← {j | j ∈ C ∧ eij = 1}
28: else
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29: CU = C
30: end if
31: CV ← C \ CU

32: GU ← ∅, GV ← ∅, GW ← ∅
33: for each i ∈ G′ do
34: C⋆ ← {j | j ∈ C ∧ eij = 1}
35: if C⋆ ⊆ CU then
36: GU ← GU ∪ {i}
37: else if C⋆ ⊆ CV then
38: GV ← GV ∪ {i}
39: else
40: GW ← GW ∪ {i}
41: end if
42: end for
43: return (GU , GV , GW , CU , CV )
44: end procedure

45: procedure reduce(E, (G, C), Z)
46: G′ ← ∅
47: for each i ∈ G do
48: C⋆ ← {j | j ∈ C ∧ eij = 1}
49: if C⋆ 6= ∅ ∧ ∀C+ ∈ Z : C+ ∩ C⋆ 6= ∅ then
50: G′ = G′ ∪ {i}
51: end if
52: end for
53: return G′

54: end procedure

Running-Time Analysis

THEOREM 1. The running-time complexity of the Bimax algo-
rithm is O(nmβ min{n, m}), where β is the number of all
inclusion-maximal biclusters inEn×m.

Proof of Theorem 1. To derive an upper bound for the running-
time complexity, we will first calculate the number of steps required
to execute the procedureconquer once, disregarding the recursive
procedure calls. Afterwards, the maximum number of invokations
of conquer will be determined, which then leads to the overall
running-time complexity.

As to the procedurereduce, one can observe that the number of
column sets stored inZ is bounded by the number of rows,n, and
each column set contains at mostm elements. IfZ is implemented
as a list andC∗ is represented by an array, the if statement in line
49 can be executed inO(nm) time. Accordingly, one call toreduce

takesO(n2m) steps resp.O(m2n) steps, ifn > m and the trans-
posed matrix is considered. Overall, the running time complexity is
of orderO(nm min{n, m}).

The partitioning of a submatrix is accomplished by the procedure
divide. We assume that all sets except ofC∗ are implemented using
list structures, whileC∗ is stored in an array. Thereby, the inclusion-
tests can be performed in timeO(m), and the entire loop takes
O(nm) steps. Overall, the running time of the procedure amounts
to O(nm).

The main procedureconquer requiresO(nm) steps to check
whether(G, C) represents a valid bicluster (lines7 to 9), andO(1)
steps to perform the union operations at lined18 and21, again assu-
ming a list implementation. Altogether, one invokation ofconquer

takesO(nm) time.
The question now is how many timesconquer is executed. Taking

into account that every invokation ofconquer returns at least one

inclusion-maximal bicluster, there are at maximumβ procedure
calls that do not perform any further recursive calls. In other words,
the corresponding recursion tree, where each node represents one
instance ofconquer and every directed edge stands for a recursive
invokation, has at mostβ leafs. Each inner node of the recursion
tree has an outdegree of1 or 2, on whetherGW andGV are empty
(GU is always non-empty except of the special case thatE con-
tains only0-cells). Suppose an instance ofconquer in the tree that
only has one child to which the submatrixU is passed.U has at
least one row that contains a1 in all columns ofU ; this is the row
according to which the partitioning in the parent is performed. Now,
either there is another row inU that contains both0s and1s (line
25) or all remaining rows only contain1s. In the former case, the
partitioning ofU produces a non-empty setGW and therefore the
outdegree of the child is two. In the latter case, the submatrix resul-
ting from the partitioning contains only1s, which in turn, means
that the following invokation ofconquer is a leaf in the recursion
tree. Therefore, at least one half of all inner nodes have an outdegree
greater than1.

We first give an upper bound for the number of inner nodes with
more than one child, and for this purpose disregard all nodes with
outdegree1. Consider a tree where all inner nodes have an outde-
gree of2 and the number of leafs equalsβ. Then the number of
inner nodes is less than2(log2 β)+1 = 2β. For the recursion tree, this
means that there are at maximum2 · 2β inner nodes, and as a con-
sequence the overall number of nodes and invokations ofconquer

is of orderO(β).
By combining the two main results, (i) oneconquer call needs

O(nm min n, m) steps and (ii) there are at maximumO(β) invo-
kations ofconquer , we obtain the upper bound for the running-time
of the Bimax algorithm.

Limitations Theoretically, the number of inclusion-maximal bic-
lusters can be exponential inn andm and therefore generating the
entire set can become infeasible. For real data, though, the actual
number lies within reasonable bounds as the number of1-cells is
small. For instance, for a6000 × 50-matrix with a density of5%,
around6500 biclusters are returned by the algorithm, while the theo-
retical bound is1.13e+15, see Table 2. The running time for such a
matrix is below1 second on a3 GHz Intel Xeon machine, and about
10 minutes for corresponding6000× 450-matrices.

Furthermore, a secondary filtering procedure, similarly to other
biclustering approaches such as (Tanayet al., 2002; Ihmelset al.,
2004), can be applied to reduce the number of biclusters to the
desired size; this issue will be discussed in the next section. Ano-
ther possibility is to constrain the size of the biclusters during the
search process. The advantage of the Bimax algorithm over the
incremental procedure is that such size constraints can be naturally
integrated—thereby, further speed-ups are achievable.

Incremental Procedure
Algorithm The incremental procedure, see below, is based on
work by Alexe et al., 2002, who propose a method to find all
inclusion-maximal cliques in general graphs. Shortly summarized,
each node in the input graph is visited, and all maximal cliques are
found that contain that node. A visit-to-a-node operation comprises
an iteration through all other nodes of the graph as well, and each
newly found bicluster is globally extended to its maximality. For the
special class of bipartite graphs we are dealing with, it is important
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Table 2. Average number of inclusion-maximal biclusters for random matri-
ces with 6000 genes and varying number of columns and densities, i.e.,
proportion of1 cells to0-cells. Each number gives the average over100 matri-
ces. The last row comprises the theoretical upper bounds for the number of
inclusion-maximal biclusters.

density number of samplesm

D6000×... 50 150 250 350 450

1 % 530.0 3475.5 7594.2 12405.5 17919.9
2 % 1468.7 11829.2 28938.8 53438.2 86657.3
3 % 2490.1 21693.7 62005.3 132435.8 238598.5
4 % 3933.7 44463.7 155929.8 367228.8 694202
5 % 6554.9 100213.8 390835 956255 1838979.7

1.13e+15 1.43e+45 1.81e+75 2.29e+105 2.91e+135

to notice that several steps of the above method are redundant: it
suffices to iterate through only one partition of the graph nodes—in
matrix terminology this means we will have to iterate either through
the set of rows or columns, but not both. Moreover, extending new
biclusters can be avoided with a guarantee that no bicluster will be
missed this way.

1: procedure IncrementalAlgorithm(E)
2: M ← ∅
3: for i← 1 to n do
4: C⋆ ← {j | eij = 1 ∧ 1 ≤ j ≤ m}
5: for each (G, C) ∈M do
6: C′ ← C ∩ C⋆

7: if ∃ (G′′, C′′) ∈M with C′′ = C′ then
8: M ←M \ {(G′′, C′′)} ∪ {(G′′ ∪ {i}, C′′)}
9: else

10: M ←M ∪ {(G′′ ∪ {i}, C′)}
11: end if
12: end for
13: if 6 ∃ (G′′, C′′) ∈M with C′′ = C⋆ then
14: M ←M ∪ {({i}, C⋆)}
15: end if
16: end for
17: return M
18: end procedure

Running-Time Analysis

THEOREM 2. The running-time complexity of the Incremental
Algorithm isΘ(nmβ log β), whereβ is the number of all inclusion-
maximal biclusters inEn×m.

LEMMA 1. Given the binary matrixEn×m, a duplicate row or
column inE does not contribute to the total number of all inclusion-
maximal biclusters inE.

LEMMA 2. Given the binary matrixEn×m, the upper bound on
the number of all inclusion-maximal biclusters inE is (2min(n,m)−
1).

Proof of Theorem 2. The incremental algorithm proceeds in sta-
ges: at stagei, a row/genei of the matrix is considered and the
steps within the outerfor instruction are performed. The set of
instructions within steps 5 to 12 amounts to:i) computing an inter-
section of the sets of samples (having value1) corresponding to
genei and a currently considered bicluster, which takesΘ(m),
and ii) the search through the listM , followed by a set equality
comparison operations, which costs furtherΘ(m log2 β), assuming
that binary search through the listM is made. This inner cycle
(steps 5 - 12) is performedβ times, and the outer onen times,
wheren is the number of rows of the matrixE. We then obtain
Θ(n β (m + m log2β)) = Θ(n m β log2 β). Note that the worst-
case running time complexity amounts toO(n m2β) in the case
thatm ≤ n, because the upper bound onβ is then exponential in
m, hence,log2 β ≤ m.

In the algorithm proposed by Alexeet al., 2002, the main dif-
ferences to our incremental approach is an additional step that is
performed within the steps7 to 11 of globally extending newly
created biclusters to their maximality, and an additional ”absorp-
tion check” operation is made which costsΘ(n m log2 β). Hence,
the difference in the running-time complexities.

Validation Using Synthetic Data
Data Sets The artificial model used to generate synthetic gene
expression data is similar to an approach proposed by Ihmelset al.,
2002. In this setting, biclusters representtranscription modules;
these modules are defined by (i) a setG of genes regulated by a
set of common transcription factors, and (ii) a setC of conditions
in which these transcription factors are active. More specifically, we
consider

• A set oft transcription factors;

• A binary activation matrixAt×m whereaij = 1 iff transcrip-
tion factori is active in conditionj;

• A binary regulation matrixRt×n whererij = 1 iff transcrip-
tion factori regulates genej;

on the basis of which two scenarios have been created.
In the first scenario,10 non-overlapping transcription modules,

each extending over10 genes and5 conditions, emerge. Each gene
is regulated by exactly one transcription factor and in each condi-
tion only one transcription factor is active. The corresponding data
sets contain10 implanted biclusters and have been used to study the
effects of noise on the performance of the biclustering methods. For
the second scenario, the regulatory complexity has been systema-
tically varied: here, each gene can be regulated byd transcription
factors and in each condition up tod transcription factors can be
active. As a consequence, the original10 biclusters overlap whered
is an indicator for the overlap degree; overall, nine different levels
have been considered withd = 0, 1, . . . , 8.In detail, activation and
regulation matrices were created as follows:

rij =

�
1 if (i− 1)n′/t + 1 ≤ j ≤ in′/t + d
0 else

for 1 ≤ i ≤ t, 1 ≤ j ≤ n′ + d, and

aij =

�
1 if (i− 1)m′/t + 1 ≤ j ≤ im′/t + d
0 else
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for 1 ≤ i ≤ t, 1 ≤ j ≤ m′ + d. For scenario1, the parameters
weren′ = 100, m′ = 50, t = 10, andd = 0. For scenario2, the
parameter setting wasn′ = 100, m′ = 100, t = 10 in combination
with different overlap degreesd ∈ {0, . . . , 8}.

Moreover, we have investigated for each scenario two types of
biclusters: (i) constant biclusters and (ii) additive biclusters. In the
first case, the corresponding gene expression matrixE is defined by
setting the expression valueeij of genei at conditionj to eij =
max1≤k≤t rki · akj ; E is a binary matrix where the cells contained
in biclusters are set to1. In the second case,E is constructed as
follows

eij =

�
m + (j − 1) if max1≤k≤t rki · akj 6= 0
U [0, m− 1] else

whereU [l, u] is a uniformly randomly chosen integer in the interval
[l, u]. In the resulting matrix, all cells belonging to an implanted bic-
luster have a value greater than or equal tom, while the background
contains random numbers in the range of0 to m − 1. Within each
bicluster, the values increase column-wise by one.

Match Scores In order to assess the performance of the selec-
ted biclustering approaches, we will use a score that describes
the degree of similarity between the computed biclusters and the
transcription modules implanted in the synthetic data sets.

The following score is designed to compare two biclusters.

DEFINITION 3. Let G1, G2 ⊆ {1, . . . , n} be two sets of genes.
Thematch scoreof G1 andG2 is given by the function

SG(G1, G2) =
|G1 ∩G2|

|G1 ∪G2|

which characterizes the correspondence between the two gene sets.

This match score, which resembles theJaccard coefficient,
cf. (Halkidi et al., 2001), is symmetric, i.e.,SG(G1, G2) =
SG(G2, G1), and its value ranges from0 (the two sets are disjoint)
to 1 (the two sets are identical). A match scoreSC for sample sets
can defined by analogy.

On this basis, a score for comparing two sets of biclusters can be
introduced as follows.

DEFINITION 4. Let M1, M2 be two sets of biclusters. Thegene
match scoreof M1 with respect toM2 is given by the function

S∗
G(M1, M2) =

P
(G1,C1)∈M1

max(G2,C2)∈M2
SG(G1, G2)

|M1|

which reflects the average of the maximum match scores for all
biclusters inM1 with respect to the biclusters inM2.

The gene match score is not symmetric and usually yields
different values whenM1 and M2 are exchanged; accordingly,
both S∗

G(M1, M2) andS∗
G(M2, M1) need to be considered. Alt-

hough, this comparative study takes only the gene dimension into
account, an overall match score can be defined asS∗(M1, M2) =p

S∗
G(M1, M2) · S∗

C(M1, M2) where S∗
C is the corresponding

condition match score.
Now, let Mopt denote the set of implanted biclusters andM the

output of a biclustering method. Theaverage bicluster relevance
is defined asS∗

G(M, Mopt) and reflects to what extent the gene-
rated biclusters represent true biclusters in the gene dimension. In
contrast, theaverage module recovery, given by S∗

G(Mopt, M),
quantifies how well each of the true biclusters is recovered by the
biclustering algorithm under consideration. Both scores take the
maximum value of1, if Mopt = M .
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Fig. 6: This figure shows for the first artificial scenario with constant
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expressed cells. As argued in the article, the two methods CC and
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area of the input matrix, i.e., the cells containing0).
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Fig. 4: Results for the artificial scenarios where the implanted biclusters are characterized by constant expression values: (a), (b) non-overlapping modules
with increasing noise levels; (c), (d) overlapping modules with increasing overlap degree and no noise. Note that OPSM isexcluded in the lower two figures
as explained in the results section.

Table 3. Parameter settings used for different biclustering methods.Default settings (i.e., the parameter values recommended/used by the
authors of original papers) were occasionally changed in order to force the methods to output at least a single bicluster.The changed values
are reported in the third column (an empty third column cell indicates the default values have always been used). For the meaning of different
parameters, please refer to the original papers.

Algorithm Default Parameter Settings Changed values

Samba D = 40, N1 = 4, N2 = 6, k = 20, L = 30

ISA tg = 1.8− 4.0 (step 0.1), tc = 2.0, nr. seeds = 20000 tg = 2.0, nr. seeds = 500
CC α = 1.2, δ lower end of the range of expression values δ ≤ 0.5, for biclusters with increasing valuesδ = 0.1

OPSM l = 100

xMotifs ns = 10, nd = 1000, sd = 7− 10, α not given, P value 10−10, sd = 7, α = 0.1,max length = 0.7m

max length not given for increasing noise matrix p-value10−7
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Fig. 5: Results for the artificial scenarios where the biclusters follow an additive model: (a), (b) non-overlapping modules withincreasing noise levels; (c),
(d) overlapping modules with increasing overlap degree and no noise.
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Fig. 7: Variability of the average bicluster relevance score depending onthe parameter settings (constant biclusters). The plotted values
represent averages over the biclusters obtained by ISA, xMotif and CC. (a), (b): For ISA, we varied the(tg, tc) parameters, in all cases,
tg = tc, with 1.0 ≤ tg ≤ 2.4; the value recommended by authors is(2.0, 2.0). (c), (d): As to xMotif, the size of the random seeds was
changed in the range1− 50; values recommended by the authors are in the range7− 10. (e), (f): For CC, the homogeneity threshold,δ, has
been systematically varied; the red bold line in (e) shows the results obtainedfor δ = 0, i.e., when only perfect biclusters are sought.
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