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ABSTRACT

Motivation: In recent years, there have been various efforts to
overcome the limitations of standard clustering approaches for the
analysis of gene expression data by grouping genes and samples
simultaneously. The underlying concept, which is often referred to
as biclustering, allows to identify sets of genes sharing compatible
expression patterns across subsets of samples, and its usefulness
has been demonstrated for different organisms and data sets. Several
biclustering methods have been proposed in the literature; however,
it is not clear how the different techniques compare to each other with
respect to the biological relevance of the clusters as well as to other
characteristics such as robustness and sensitivity to noise. Accordin-
gly, no guidelines concerning the choice of the biclustering method
are currently available.

Results: First, this paper provides a methodology for comparing and
validating biclustering methods that includes a simple binary refe-
rence model. Although this model captures the essential features of
most biclustering approaches, it is still simple enough to exactly deter-
mine all optimal groupings; to this end, we propose a fast divide-and-
conquer algorithm (Bimax). Second, we evaluate the performance of
five salient biclustering algorithms together with the reference model
and a hierarchical clustering method on various synthetic and real
data sets for Saccharomyces cerevisiae and Arabidopsis thaliana.
The comparison reveals that (i) biclustering in general has advan-
tages over a conventional hierarchical clustering approach, that (ii)
there are considerable performance differences between the tested
methods, and that (iii) already the simple reference model delivers
relevant patterns within all considered settings.

Availability: The data sets used, the outcomes of the biclustering
algorithms, and the Bimax implementation for the reference model
are available atht t p: // www. ti k. ee. et hz. ch/ sop/ bi max
Contact: bleuler@tik.ee.ethz.ch, zitzler@tik.ee.ethz.ch

INTRODUCTION

In recent years, several biclustering methods have been sugg
sted to identify local patterns in gene expression data. In contra§{
to classical clustering techniques such as hierarchical clustering
(Sokal and Michener, 1958), aitdmeans clustering (Hartigan and
Wong, 1979), biclustering does not require genes in the same cl
ster to behave similarly ovell experimental conditions. Instea
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a biclusteris defined as a subset of genes that exhibit compatible
expression patterns over a subset of conditions. This modified clu-
stering concept can be useful to uncover processes that are active
only over some but not all samples as has been demonstrated in
several studies (Cheng and Church, 2000; lhraekd., 2002; Ben-

Dor et al., 2002; Tanayet al., 2002; Murali and Kasif, 2003), see
(Madeira and Oliveira, 2004) for a survey.

Comparing clustering methods in general is difficult as the for-
malization in terms of an optimization problem strongly depends on
the scenario under consideration and accordingly varies for diffe-
rent approaches. In the end, biological merit is the main criterion
for validation, though it can be intricate to quantify this objective.

In the literature, there are several comparative studies on traditional
clustering techniques (Yeurs al.,, 2001; Azuaje, 2002; Datta and
Datta, 2003); however, for biclustering no such extensive empiri-
cal comparisons exist as pointed out by Madeira and Oliveira, 2004.
Although first steps in this directions have been made (Tahay,
2002; Yanget al., 2003; Ihmelset al., 2004), the corresponding
studies focus on validating a new algorithm with regard to one or
two existing biclustering methods and usually consider a specific
objective function.

The main goal of this paper is to provide a systematic compari-
son and evaluation of prominent biclustering methods in the light of
gene classification. In particular, we focus on the following questi-
ons: (i) What comparison / validation methodology is adequate for
the biclustering context, (ii) how meaningful are the biclusters selec-
ted by existing methods, and (iii) how do different methods compare
to each other, i.e., do some techniques have advantages over others
or are there common properties that all approaches share?

In order to answer these questions, we have selected a number of
salient biclustering methods, implemented them, and tested them on
both synthetic and real gene expression data set& gitico scena-
rio has been chosen to (i) investigate the capability of the algorithms
to recover implantedranscription moduleglhmelset al., 2002),

i%?" sets of co-regulated genes together with their regulating condi-
ons, and to (ii) study the influence of regulatory complexity and
oise on the performance of the algorithms. To assess the biological
elevance of biclusters on gene expression dat&é&mcharomyces

d:_erevisiaeandArabidopsis thalianamultiple quantitative measures
g are introduced that relate the biclustering outcomes to annotations

by The Gene Ontology Consortium, 2000, metabolic pathway maps,
and protein-interaction data.
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Moreover, we propose a simple biclustering model, which retainsused or referenced in the community, (i) whether their atharic strategies
common features of most biclustering methods, in combination withare similar and therefore better comparable, and (jii) whethémplemen-
a fast and exact algorithm (Bimax)—in contrast, existing biclu- tation was available or could be easily reconstructed baseithe original
stering algorithms usually do not guarantee to find global Optimapublica_tions. The selected algorithms, which all are basegreedy search
Although restricted from a biological point of view, this model Strategies, are: Cheng and Church's algoriti@G, (Cheng and Church,

allows to study the validity of the biclustering idea independent
of the interfering effects due to approximate algorithms. As such
Bimax has been considered as a reference method in our study. As,

2000);Samba(Tanayet al., 2002); Order Preserving Submatrix Algorithm,
OPSM (Ben-Doret al., 2002); Iterative Signature AlgorithniSA (Ihmels
et al,, 2002, 2004)xMotif, (Murali and Kasif, 2003). A brief description of
corresponding approaches can be found in the supplemematerial.

will be shown in the remainder of this paper, even such a simple )
approach delivers biologically relevant results and compares welR€ference Method (Bimax)

with more sophisticated biclustering methods.

RELATED WORK

There exist several studies that address the issue of cargpand valida-
ting one-dimensional clustering methods (Kerr and Churck@D1; Yeung
et al, 2001; Azuaje, 2002; Datta and Datta, 2003; Gat-\éksal., 2003;
Handlet al., 2005). All of them make use of different quantitative measur
or validity indices which can be divided into three categories (Halletal.,
2001): internal, external, and relative indices. Interinglices solely rely
on the input data as, e.g., the measurdsoshogeneitandseparation(Gat-
Viks et al., 2003). In contrast, external criteria are based on amftitidata in
order to validate the obtained results. In the context obgetpression data,
these would correspond to prior biological knowledge ofsjistems being
studied; alternatively, a validation can be done by refigriio other types
of genomic data representing similar aspects of the regualatiechanisms
being investigated. The third category of relative indice=asures the influ-
ence of the input parameter settings on the clustering outcAméiscussed
in (Handlet al., 2005), external indices are preferable in order to agbess
performance of an algorithm on a given data set, while intémtices can
be used to investigate why a particular method does not penrfaell.

In the context of biclustering, mainly external validatioashbeen used.
Biological analyses and interpretations by human expeetsrast common
for the evaluation of a single, newly proposed biclustegtgprithm (Cheng
and Church, 2000; Gett al.,, 2000; Ben-Dokt al., 2002; Murali and Kasif,
2003; Bergmanet al., 2003; Getzt al., 2003; Ihmelst al., 2004); they are
usually descriptive and qualitative only, and thereforesuited for compa-
ring multiple methods. In terms of quantitative measures, mapgrnsarely
on known classifications and categorizations given by turypes (Tanay
et al, 2002; Klugeret al., 2003; Murali and Kasif, 2003), GO annotations
(Tanayet al., 2002; Tanaet al., 2004), metabolic pathways (Ihmasal.,
2002), or promoter motifs (Ihmelst al, 2004), which are closely related
to the specific data sets under consideration. Some auttswrsrekestigate
in silico data sets with implanted biclusters where the optimal outcame i
known beforehand (lhmelst al, 2002; Ben-Doret al, 2002; Bergmann
et al, 2003; Yanget al.,, 2002).

Most biclustering papers are concerned with the introdacséind valida-
tion of a new approach, while only a few contain quantitatieeparisons to
existing methods. Cheng and Church, 2000, and Klegat, 2003, validate
the biclustering results in comparison to hierarchicaltelisg and singular
value decomposition respectively. Tanetyal,, 2002, and Yangt al., 2002,
2003, provide a comparison to the algorithm by Cheng and ®h@@00,
regarding synthetic data respectively the problem fornmutahtroduced in
(Cheng and Church, 2000). In (Ihmedsal., 2004), two biclustering tech-
niques (Cheng and Church, 2000; Getal., 2000) as well as five classical
clustering methods are tested with respect to the problemuiation used
by the iterative signature algorithm proposed in (lhnetlal., 2002). In most
of the studies, the comparison has been carried out withdegahe gene
dimension.

BICLUSTERING METHODS
Selected Algorithms

Five prominent biclustering methods have been chosen foctmgparative
study according to three criteria: (i) to what extent the rodthhave been

The above methods use different models which are all too conples sol-

ved exactly; most of the corresponding optimization problemstshown
to be NP-hard. Therefore, advantages of one method overeruzth be due
to a more appropriate optimization criterion or a better atgor.

To decouple these two aspects, we propose a reference metmod|y
Bimax, that uses a simple data model reflecting the fundamew@ldtibic-
lustering, while allowing to determine all optimal biclustén reasonable
time. This method has the benefit of providing a basis to ingeti(i) the
usefulness of the biclustering concept in general, indeégetly of interfe-
ring effects caused by approximate algorithms, and (ii) tfecéfeness of
more complex scoring schemes and biclustering methods in casopao
a plain approach. Note that the underlying binary data medakh is des-
cribed below, is only used by Bimax and does not representlétfopn on
the basis of which the different algorithms are compared. Athoés under
consideration are employed using their specific data models.

Model The model assumes two possible expression levels per gene: no
change and change with respect to a control experith@atordingly, a set

of m microarray experiments fon genes can be represented by a binary
matrix E™*™, where a celk;; is 1 whenever gené responds in the con-
dition 5 and otherwise it i). A bicluster (G, C') corresponds to a subset
of genesG C {1,..,n} that jointly respond across a subset of samples
C C {1,..,m}. In other words, the paifG, C') defines a submatrix of

E for which all elements equdl. Note that, by definition, every cedl;;
having valuel represents a bicluster by itself. However, such a pattern is
not interesting per se; instead, we would like to find all tstérs that are
inclusion-maximali.e., that are not entirely contained in any other bicluste

DEFINITION 1. The pair(G,C) € 2{1-»n} x 2{1,--m} s called an
inclusion-maximal biclusteif and only if (1)Vi € G,j € C : e;; = 1
and (2) A(G’,C) € 2{Ln} 5 o{lmb with (Y)Y € &7, 5 € C' -
ey =land ()G CG' NCCC'A(G,C)#(G,O).

This model is similar to the one presented in (Taegagl, 2002) where a
bicluster can also contaiicells.

Algorithm Since the size of the search space is exponentiat iand
m, an enumerative approach is infeasible in order to deternhieesét of
inclusion-maximal biclusters. Alexet al., 2002 proposed an algorithm in a
graph-theoretic framework that can be employed in this confeke matrix

E is regarded as an adjacency matrix of a graph. By exploitiadabt that
the graph induced by is bipartite, their incremental algorithm can be tai-
lored to this application which reduces the running-time clexity from
O(n? m?3) to ©(nmBlog B), whereg is the number of all inclusion-
maximal biclusters inE™*™ (see supplementary material). However, the
memory requirements of this algorithm are of or@&mm/[3) which causes
practical problems, especially for larger matrices.

In this paper, though, we propose and use a fast divide-andeer
approach, the binary inclusion-maximal biclustering alyon (Bimax) that
requires much less memory resourcél(®m min{n, m})), while pro-
viding a worst-case running-time complexity that for matricesitaining

1 To this end, a preprocessing step normalizes log expressines and
then transforms matrix cells into discrete values, e.g., biygua twofold
change cutoff.
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Fig. 1:lllustration of the Bimax algorithm. To divide the input matiixo
two smaller, possibly overlapping submatriddsand V, first the set of
columns is divided into two subsefs;; and C'y, here by taking the first
row as a template. Afterwards, the rows Bfare resorted: first come all
genes that respond only in conditions given®y, then those genes that
respond to conditions iy and inC'y, and finally the genes that respond
to conditions inCy, only. The corresponding sets of ger@g, Gy, and
G'y then define in combination witt';; andC'y the resulting submatrices
U andV which are decomposed recursively.

disjoint biclusters only is of ordeD(nm/) and for arbitrary matrices is of
orderO(nmBmin{n, m}). The complete algorithm and the proof of the
general upper bound for the running-time complexity are givetine sup-
plementary material. Bimax tries to identify areastothat contain only0s
and therefore can be excluded from further inspection. 3tigegy is espe-
cially beneficial for our purposes @s$is, depending on the cutoff threshold,
sparse; in all data sets used in this study, the proportidroefls overo-cells
never exceede@” when considering a twofold change cutoff.

More specifically, the idea behind the Bimax algorithm, whighlustra-
ted in Fig. 1, is to partitior into three submatrices, one of which contains
only O-cells and therefore can be disregarded in the following dlgorithm
is then recursively applied to the remaining two submatricesndV'; the
recursion ends if the current matrix represents a bicluiséercontains only
1s. If U andV do not share any rows and columnsiofi.e., Gy is empty,
the two matrices can be processed independently from eaeh btbwever,
if U andV have a seG'y of rows in common as shown in Fig. 1, special
care is necessary to only generate those biclustdrstirat share at least one
common column withC'y,.

COMPARISON METHODOLOGY

In general, a fair comparison of clustering and bicluste@pgroaches is
inherently a difficult task because every method uses a diffeproblem
formulation and algorithm which may work well in certain sceos and
fail in others. Here, the main goal is to define a common settiagréflects
the general basis of the majority of the biclustering studieslable and in
particular of those techniques considered in this paper.

First, the comparison focuses on the identification of (lggato-
expressed genes as in (Cheng and Church, 2000; Edrahy2002; Ben-Dor
et al, 2002; Ihmelt al., 2002, 2004; Tanagt al., 2004). Classification of
samples or inference of regulatory mechanisms may be otherftaskhkich
biclustering can be used; however, considering mainly time gémension
has the advantage of various available annotations—imastrtb the condi-
tion dimension—and of the possibility to compare the resulth wlassical
clustering techniques.

Second, external indices are used to assess the methodscondate-
ration as in most biclustering papers. The reasons are: i§) 1ibt clear
how to extend notions such as homogeneity and separationViigaet al.,
2003) to the biclustering context (to our best knowledgegeieral internal
indices have been suggested so far for biclustering), anthére are some
issues with internal measures, due to which Gat-¥ikal., 2003, and Handl
et al., 2005, recommend external indices for evaluating the pedioce of
(bi)clustering methods. We consider both synthetic and detd sets for
the performance assessment. Only the latter allow reliabtersents about
the biological usefulness of a specific approach, and futitedogical data,

namely GO annotations, as in (Taretyal., 2002; Tanat al., 2004), meta-
bolic pathways maps, similarly to (lhmeds al,, 2002), and protein-protein
interactions, are used here. In contrast, the former degargegrently reflect
only certain aspects of biological reality, but they have #uvantage that
the optimal solutions are known beforehand and that the cotitylean be
controlled and arbitrarily scaled to different levels.

Finally, various biclustering concepts and structures loarconsidered
when usingn silico data; Madeira and Oliveira, 2004, propose several cate-
gories on the basis of which they classify existing bicltiatgapproaches.
Here, we investigate two types of bicluster concepts: Biels with con-
stant expression values and biclusters following an additiodel where the
expression values are varying over the conditions. The fotype can be
used to test methods designed to identify—according to timeitelogy in
(Madeira and Oliveira, 2004)—biclusters with constant eolderent values,
while the latter type, where the expression values showaimegrend for all
genes included, serves as a basis to validate algorithrosa@dito biclusters
with coherent values and coherent evolutions. Concerriegotclustering
structure, we consider two scenarios: (i) multiple biclisteithout any
overlap in any dimension and (ii) multiple biclusters with dag.

Validation Using Synthetic Data

The artificial model used to generate synthetic gene expressita is simi-
lar to an approach proposed by Ihmetsl., 2002. In this setting, biclusters
representranscription modulesthese modules are defined by (i) a 6ebf
genes regulated by a set of common transcription factors, igral getC
of conditions in which these transcription factors arewvactin the first con-
sidered scenarid,0 non-overlapping transcription modules, each extending
over 10 genes and conditions, emerge. Each gene is regulated by exactly
one transcription factor and in each condition only onedcaiption factor
is active. The corresponding data sets contdiimplanted biclusters and
have been used to study the effects of noise on the perfornwdribe bic-
lustering methods. For the second scenario, the regulatimplexity has
been systematically varied: here, each gene can be regblaiéttanscrip-
tion factors and in each condition upddranscription factors can be active.
As a consequence, the origindl biclusters overlap wheré is an indicator
for the overlap degree; overall, nine different levels hbeen considered
with d = 0,1,...,8. Moreover, we have investigated for each scenario
two types of biclusters: (i) constant biclusters and (ilititle biclusters (see
supplementary material).

In order to assess the performance of the selected biclugt@pproaches,
we will use the following gene match score.

DEFINITION 2. Let My, M> be two sets of biclusters. Tlgene match
scoreof M with respect tal/s is given by the function

>

(G1,C1)eM;

‘Gl ﬂG2|

SE(My, M) =
G(M, M) (GzA,nClg)XEM2 |G1 U G2

[ M|

which reflects the average of the maximum match scores foidhlisters in
M; with respect to the biclusters /5.

Now, let Mopt denote the set of implanted biclusters ahf the out-

put of a biclustering method. Theeverage bicluster relevands defined as

S (M, Mopt) and reflects to what extent the generated biclusters regirese
true biclusters in the gene dimension. In contrasta¥erage module reco-
very, given byS¢ (Mopt, M), quantifies how well each of the true biclusters
is recovered by the biclustering algorithm under consitlemaBoth scores
take the maximum value df, if Mopt = M. A detailed description of this
score can be found in the supplementary material.

Validation Using Prior Knowledge

Prior biological knowledge in the form of natural languagssctiptions of
functions and processes that genes are related to has beddelg availa-
ble. One of the largest organized collection of gene aniwoisiis currently
provided by The Gene Ontology Consortium, 2000. Similarlyhe idea
pursued in (Tanagt al, 2002), we here investigate whether the groups
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of genes delivered by the different algorithms show signifi@nrichment
with respect to a specific Gene Ontology (GO) annotation.eltait] biclu-
sters are evaluated by computing the hypergeometric furadtemrichment

et al, 2002), has been applied to the output of the algorithms ¢wige
a common basis for the comparison. The filtering procedure eddptre
follows a greedy approach: in each step, the largest of timairéng biclu-

score, cf. (Berrizt al., 2003), based on Molecular Function and Biological sters is chosen that has less thapercent of its cells in common with any

Process annotations; the resulting scores are adjusteuldtiple testing by
using the Westfall and Young procedure (Westfall and Your893; Berriz
etal, 2003). This analysis is performed for the model orgargsocharomy-

previously selected bicluster; the algorithm stops if@itpbiclusters have
been selected or none of the remaining ones fulfills the sefectiterion.
For the synthetic data setgequals the number of optimal biclusters, which

ces cerevisiaesince the yeast GO annotations are more extensive compared known beforehand, and for the real data sgts set to100; in both cases,

to other organisms. The gene expression data set used is ehgravided
by Gaschet al.,, 2000, which contains a collection @f3 different stress
conditions and a selection 8093 genes.

In addition to GO annotations, we consider specific biolabietworks,
namely metabolic and protein-protein interaction netwotkat have been
derived from other types of data than gene expression déifaogh each
type of data reveals other aspects of the underlying bic&gystem, one
can expect to a certain degree that genes that participéte same pathway
respectively form a protein complex also show similar expoesgatterns as
discussed in (Zieet al., 2000; Idekeet al., 2002; Ihmelst al., 2002). The
question here is whether the computed biclusters refleattnisspondence.

To this end, we model both pathway information as well as pnoteérac-
tions in terms of an undirected graph where a node stands fiateip and
an edge represents a common reaction in that the two connecteing
participate respectively a measured interaction betweervtb connected
proteins. In order to verify whether a given biclustét, C) is plausible with
respect to the metabolic respectively protein interacti@ply, we consider
two scores: (i) the proportion of pairs of genesGnfor which there exists
no connecting path in the graph, and (ii) the average patijtheof pairs

a maximum overlap o = 0.25 is considered.

RESULTS

Synthetic Data

The data derived from the aforementioned artificial model Esals to inve-
stigate the capability of the methods to recover known gmggiwhile at
the same time further aspects like noise and regulatory cortylean be
systematically studied. The data sets used in this conteXtept small, i.e.,
n = 100, m = 50 for scenariol andn = 100, m = 100,...,108 for
scenari®, in order to allow a large number of numerical experiments to be
performed—for al00 x 100-matrix, the running-times of the selected algo-
rithms varied betweet and 120 seconds. The size of the considered data
sets, though, does not restrict the generality of the reguksented in the
following, since the inherent structure of the data matrig,,ithe overlap
degree, is the main focus of our study.

Note that the input matrices have not been discretized bedot e.g.,
converted into binary matrices as required by the referentbadeBimax.
Instead, for each algorithm the corresponding preproeggsbcedures have

of genes inG for which such a path exists. One may expect that both thebeen employed as described in the relevant papers.

number of disconnected gene pairs and the average distatweebnetwo
connected genes is significantly smaller for gene&ithan for randomly
chosen genes. For both scores, a resampling method is apiereé 1000

Effects of Noise The first artificial scenario, where all biclusters are non-
overlapping, serves as a basis to assess the sensitiViitg oféthods to noise

random gene groups of the same siz&aare considered; a Z-test is used to N the data. Itis to be expected that hierarchical clusgariorks well in such

check whether the scores for the biclustét, C') are significantly smaller
or larger than the average score for the random gene groups.

a scenario as the implanted gene groups are clearly separ#teccondition
dimension.

As to the metabolic level, we use a pathway map that descrites th Noise is imitated by adding random values drawn from a normnsitidi

main bio-synthetic pathways at the level of enzymatic reastitor the
model organismArabidopsis thaliana(Wille et al, 2004). As this map
has been manually assembled at the Institute for Plant Scien&H
Zurich by an extensive literature search, the resultinglyreepresents a
high level of confidence. The gene expression data set usiisicontext
are publicly available &ttt p: / / nasc. nott . ac. uk/ and compris&9
experimental conditions and a selectiori78f. genes.

To investigate the correspondence of biclusters and prgteitein inter-
action networks, agaiSaccharomyces cerevisigeconsidered because the
amount of interaction data available is substantially latigen forArabidop-

bution to each cell of the original gene expression matrixe Mhise level,
i.e., the standard deviation is systematically increased, and for each noise
value,10 different data matrices have been generated from the otigéme
expression matri¥z. The performance of each algorithm is averaged over
thesel0 input matrices. Fig. 2a summarizes the performances of the-consi
dered methods with respect to constant biclusters, whileZtiglepicts the
results for the matrices where the implanted biclusters semitetrends over
the conditions.

In the absence of noise, ISA, Samba, and Bimax are able tofgeritigh
percentage>* 90%) of implanted transcription modules; as expected, the

sis thaliana Here, we combine the aforementioned data set for yeast (Gaschame holds for the hierarchical clustering approach, if tnetver of clu-

et al, 2000) with protein interactions stored in the DIP datab@salwinski
et al, 2004), resulting in 1498 interactions foi3665 genes overall.

Implementation | ssues

All of the selected methods have been re-implemented accotdirije
specifications in the corresponding papers, except of Sambwiich a
publicly available software tool, Expander (Shaetral., 2003), has been
used. The OPSM algorithm has been slightly extended torretat only

sters to be generated corresponds to the actual number ofitaglaodules.
In contrast, the scores obtained by CC and xMotif are subatiriower. In
the case of constant biclusters, this phenomenon can beiregblby the
fact that the largest biclusters found by these two methodslyeontain
0-cells, i.e., the algorithms do not focus on changes in gepeession, but
consider the similarity of the selected cells as the onlytetirsg criterion.
This problem has been discussed in detail in (Cheng and 6H@600)).
For the specific scenario with the particular type of additiclusters con-

a single bicluster but the largest biclusters among those that achieve the sidered here, CC tends to find large groups of genes extendima few
optimal scorey has been set t00. Furthermore, the standard hierarchical columns only, which is due to the used greedy heuristic; gteally, the

clustering method (HCL) in MATLAB has been included in the camip
son, which uses single linkage in combination with Euclidéatance. The
parameter settings for the various algorithms corresponbeoalues that
the authors have recommended in their publications (supplemyemate-
rial). For the reference method, Bimax, the discretizatioaghold has been
set toe + (€ — ¢)/2 wheree ande represent the minimum respectively
maximum expression values in the data matrix.

As the number of generated biclusters varies strongly amangahside-
red methods, a filtering procedure, similarly to (Tamyal, 2002; Ihmels

implanted biclusters achieve the optimal mean residue scaree 8Motif
is mainly designed to find biclusters with coherent row valtles underly-
ing bicluster problem formulation is not well suited for trexend bicluster
type. A similar argument applies to OPSM which seeks cleadge@f up-
or down-regulation and cannot be expected to perform wehénscenarios
with constant biclusters. The high average bicluster eglee in Fig. 2a is
rather an artifact of the implementation used in this papecwkeeps the
order of the columns when identical expression values aseptehowever,
as soon as noise is added, this artificial order is destroybéth in turn
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Fig. 2: Results for the artificial scenarios: non-overlapping medwiith increasing noise levels for (a) constant and (b)taedbiclusters, overlapping
modules with increasing overlap degree and no noise for @teot and (d) additive biclusters. Note that OPSM is exadud (c), cf. results section.

leads to considerably lower gene match scores. In contrigiisters follo-
wing an additive model with respect to the condition dimengigpresent
optimal order-preserving submatrices. In this setting, theespondence
between the implanted biclusters and those found by OPSMoistabh %,
cf. Fig. 2b. A potential reason for the unexpectedly low ssas the way the
heuristic algorithm works: per number of columns, only a @ngjcluster
is considered—however, the implanted biclusters all exmret the same
number of columns.

Concerning the influence of noise, ISA is only marginally etiéel by
either type of noise and still recovers more ti88% of all implanted modu-
les even for high noise levels. The same holds for Bimax in thestemt
bicluster case, but for the other bicluster type a substhdécrease in the
relevance score can be observed in Fig. 2b. This revealsatmitproblem
with discretization approaches: as noise blurs the diffezs between back-
ground and biclusters, many small submatrices emerge that cesserily
are meaningful. With HCL, noise has no observable effecthénconstant
bicluster scenarios, while for the second bicluster typedasing noise leads
to a decrease in performance. The latter observation is dtrettact that
background and biclusters are not that clearly separatieidata sets with
biclusters exhibiting trends. Samba seems to be sensitiv@ige m the con-
stant bicluster case as the average gene match scores @eloye¥, to
50% for a medium noise level; still, the scores are significardhgér than
for CC and xMotif. In the case of additive biclusters, noises lonly little
effect on the performance of Samba. Concerning OPSM, noisetafthe
outcome; the scores slightly decrease. Remarkably, therpefee of CC
on the constant bicluster matrices appears to improve witie@sing noise.
This phenomenon, though, is again a result of the adoptedithigic stra-
tegy, cf. (Cheng and Church, 2000): the largest biclustessmmeinly cover
the background, i.eQ-cells. With noise, the biclusters found in the matrix
background tend to be smaller, and this results in an improeee gnhatch

score; further evidence is provided in the supplementary niahte
Regulatory Complexity The focus of the second artificial scenario is to

study the behavior of the chosen algorithms with respecti@ased regula-
tory complexity. Here, a single gene may be activated $staf transcription

factors, and accordingly the implanted transcription moslaf@y overlap.
This setting is expected to reveal the advantages of thedtéring approach
over traditional clustering methods such as hierarchicaiteking.

Fig. 2c (constant biclusters) as well as Fig. 2d (additidusiters) depict
the results for different overlap degrees in the absenceoifen cf. the
description of the data sets on Page 3. The only method thgt redo-
vers all hidden modules in the data matrix is—by design—theresice

performance: most of the biclusters foune 90%) represent hidden modu-
les; however, not all implanted modules are recovered. While OPShobi
significantly affected by the overlap degree (only the nonstant bicluster
data sets have been considered as OPSM cannot handle atlerficession
values), ISA appears to be more sensitive to increased teguleomple-
xity, especially with the second bicluster type. An explanafor this is
the normalization step in the first preprocessing step of ldparighm. With
increasing overlap, the expression value range after nazatiain becomes
narrower. As a result, the differences between unchangedignor down-
regulated expression values blur and are more difficult t@arsep based
on the gene and chip threshold parametgrs.. These parameters have
a strong impact on the performance as shown in the supplementtey
rial. As to CC, the performance increases with larger overtdggrees, but
the gene match scores are still lower than the ones by Bimax, &aanbl
ISA; again, this is due to the fact that the number of backgiaeils dimi-
nishes with larger overlaps. xMotif shows the same behauiothe data
matrices with constant biclusters. Comparing the biclusgemethods with
HCL, one can observe that already a minimal overlap causege dcre-
ase in the performance of HCL—even if the optimal number of ehssis
used. The reason is that clusters obtained by HCL form atjpartf genes,
i.e., are non-overlapping, and this implies that not eveayad transcription
module can be possibly recovered.

Real Data

Any artificial scenario inevitably is biased regarding threderlying model
and only reflects certain aspects of biological reality. réfare, the algo-
rithms are tested in the following on real data sets, normdligsing
mean centering, and the biological relevance of the obtaedsters is
evaluated with respect to GO annotations, metabolic pathways, and
protein-protein interaction data.

Functional Enrichment The histogram in Fig. 3 reflects for each method
the proportion of biclusters for which one or several GO gates are
overrepresented—at different levels of significance. Bestllts are obtai-
ned by OPSM. Given that this approach only returns a small nurobe
biclusters, herd 2 in comparison tol00 with the other methods, it deli-
vers gene groups that are highly enriched with the GO BickdgProcess
category. This result is insofar interesting as the efféthe noise observed
in the artificial setting does not seem to be a problem withcitresidered

2 As to the outlier in Fig. 2d at overlap degr@grepeated applications of

method, Bimax. Among the remaining methods, Samba provides tie beSSamba on the same matrix yielded similar scores.




Preli¢ et al.

Enrichment with GO Biological Process Category
100 L T T T T T T T T
_ [ o = 0.001 %
ENo=01%
[ a=05%
n [Ja=1%
[ Ja=5%

90

80

70

60

50

40

30

20

Proportion of biclusters per signif. level, a (%)

10

OPSM BiMax ISA Samba CC xMotif k=15 k=30 k=50 k=100
Biclustering algorithms and HCL

Fig. 3: Proportion of biclusters significantly enriched by any G@IBgical
Process categoraccharomyces cerevisjder the six selected biclustering
methods as well as for hierarchical clustering witte {15, 30,50, 100}.
The columns are grouped method-wise, and different barsmwiétgroup
represent the results obtained for five different signifieaievelso.

real data set. Bimax, ISA, and Samba also provide a high poofidanc-
tionally enriched biclusters, with a slight advantage ahBk and ISA (over
90% at a significance level di%) over Samba (ove80% at a significance
level of 5%). In contrast, the scores for CC are considerably lowerfado
30%) due to the same problem as discussed in the previous seCliamg
and Church, 2000 mention that the first few biclusters shoubthably be
discarded, but the practical issue remains that it is not e&h biclusters
are meaningful and should be considered for further analysis

Except for xMotif, though, all biclustering methods achiéigher scores

than HCL with different values fok, the number of clusters to be sought.

This can be explained in terms of the data set used: Sinceitrif different
types of stresses, it is likely that local, stress-depenéepression patterns
emerge that are hard to find by traditional clustering tealesq This hypo-
thesis is also supported by the fact that most functionalfickad biclusters
only contain one or two overrepresented GO categories atdhhbre is no
clear tendency towards any of the categories.

Comparison to Metabolic and Protein Network&/nder the assumption that
the structure of a metabolic pathway map respectively a prqieitein inter-
action network is somehow reflected in the gene expressiar ttet degree
of connectedness of the genes associated with a biclustebeaised to
assess its biological relevance. In particular, one may&xpat both the
number of disconnected gene pairs and the average shorsémta bet-
ween connected gene pairs tend to be smaller for the bictufstend than
for random gene groups.

Table 1 shows that this holds for the data set and the metghatiovay
map used forArabidopsis thaliana If there exists a path between two
genes of a bicluster in the metabolic graph, then with highbabdity
the distance between these genes is significantly smallarttieaaverage
shortest distance between randomly chosen gene pairs.ugglthfmr most
methods, the biclusters are better connected than randoengyenps, the
differences to the random case are not as striking as fovtirage gene pair
distance. This indicates that combining gene expressicnwiigh pathway
maps within a biclustering framework can be useful to focuspatiic gene
groups. Note that also hierarchical clustering withe {15, 30, 50, 100}
has been applied to these expression data; however, a slogter usually
contains almost all the genes of the data set, while the rentaiiusters
comprise only few genes. Accordingly, no significant diffezes to random
clusters can be observed.

Table 1. Biological relevance of biclusters with respect to a metabjphthway
map (MPM) forArabidopsis thalianand a protein-protein interaction network
(PPI) for Saccharomyces cerevisiaEor each bicluster, a Z-test is carried out
to check whether its score is significantly smaller or gretitan the expected
value for random gene groups; the table gives for each metieoproportion of
biclusters with statistically significant scores (sigrafice levebr = 10~2). The
results for HCL are omitted as all scores equf#l.

Method proportion of average shortest distance
disconnected gene pairs in the graph
smaller greater smaller greater
MPM | PPI | MPM | PPI || MPM | PPl | MPM | PPI
Bimax 58.9 | 14.0 19.5 64.0 85.3 | 58.0 3.4 | 16.0
CcC 70.0 | 52.0 15.0 26.0 70.0 | 42.0 15.0 | 34.0
OPSM 42.8 | 18.8 | 28.6 50.0 92.9 | 56.3 0.0 | 43.8
Samba 41.6 0.0 37.5 | 100.0 75.6 | 25.6 13.1 | 46.2
xMotif 49.0 2.0 17.0 92.0 84.0 4.0 3.0 | 72.0
ISA 25.0 | 58.0 | 25.0 22.0 50.0 | 70.0 | 25.0 | 22.0

The results for the corresponding comparison for the pretedtein
interaction, though, are ambiguous, cf. Table 1. As to theeteof dis-
connectedness, there is no clear tendency in the data wéichecattributed
to the fact that not all possible protein pairs have beeredegir interac-
tion. Focusing on connected gene pairs only, ISA and Bimamgeenostly
generate gene groups that have a low average distance withiprotein
network in comparison to random gene sets; for xMotif, the nemaisug-
gest the opposite. Overall, the differences between tHastéring methods
demonstrate that special care is necessary when integgetimgexpression
and protein interaction data: not only the incompletenegb®flata needs
to be taken into consideration, but also the confidence imtbéasurements
has to be accounted for, see, e.g., Gilctetsl (2004).

CONCLUSIONS

The present study compares five prominent biclusterings methods
with respect to their capability of identifying groups of (locally) co-
expressed genes; hierarchical clustering and a baseline biclustering
algorithm, Bimax, proposed in this paper serve as a reference. To
this end, different synthetic gene expression data sets correspon-
ding to different notions of biclusters as well as real transcription
profiling data are considered. The key results are:

e In general, the biclustering concept allows to identify groups of
genes that cannot be found by a classical clustering approach
that always operates acall experimental conditions. On the
one hand side, this is supported by the observation that with
increased regulatory complexity the ability of hierarchical clu-
stering to recover the implanted transcription modules in an
artificial scenario decreases substantially. On the other hand
side, on real data the groups outputted by hierarchical cluste-
ring for different similarity measures and parameters do not
exhibit any significant enrichment according to GO annotations
and metabolic pathway information. In contrast, most bicluste-
ring methods under consideration are capable of dealing with
overlapping transcription modules and generate functionally
enriched clusters.

e There are significant performance differences among the five
biclustering methods. On the real data sets, ISA, Samba, and
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OPSM provide similarly good results: a large portion of the Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.BrzS@.,
resulting biclusters is functionally enriched and indicates a Botstein, D., Brown, P.O., (2000) Genomic Expression Programs in ¢#ispdtise

strong correspondence with known pathways. In the context, of Yeast Cells to Environmental Changdol. Biol. Cell, 11, 4241-4257. .
. X . K at-Viks, ., Sharan, R., Shamir, R., (2003) Scoring Clustering SolsitipnTheir
of the synthetic scenarios, Samba is slightly more robust regar- Biological RelevanceBioinformatics 19, 2381-2389.

ding increased regulatory complexity, but also more sensitiveqalkidi, M., Batistakis, Y., Vazirgiannis, M., (2001) On Clusteringaldation
regarding noise than ISA. While Samba and ISA can be used Techniquesjournal of Intelligent Information Systents:2/3, 107-145.
to find multiple biclusters with both constant and coherently Hartigan, J.A. and Wong, M.A. (1979) A-means Clustering AlgorithmApplied

. . . . . . . . Statistics 28, 100-108.
Increasing values, OPSM is malnly tailored to Identlfy asin- Hartigan, J.A., (1972) Direct Clustering of a Data Matrdaurnal of the American

gle bicluster of the latter type. Proposed extensions of the gistical Organization67, 123-129.

OPSM approach such as (Liu and Wang, 2003) may resolveiartigan, J.A., (1975) Clustering Algorithmsiew York: John Willey and Sons, Inc.
these issues. The remaining two a|gorithm3, CC and xMo-deker, T., Ozier, O, Schwikowski, B., Siegel, Andrew F., (2002) Discimg Regula-
tif, both tend to generate Iarge biclusters that often represent tory and Signaling Circuits in Molecular Interaction NetworBspinformatics 18,

. . S233-40
gene groups with unChanged expression levels and t}!‘e“:"forlﬁmels, J., Bergmann, Barkai, N., (2004) Defining Transcription Modulesdsarge-

not necessarily contain interesting patterns in terms of, €.9., Scale Gene Expression DaBipinformatics 20, 1993-2003.
co-regulation. Accordingly, the scores for CC and xMotif are Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., Barkai, W0ZPReve-
significantly lower than for the other biclustering methods aling Modular Organization in the Yeast Transcriptional Netwdt&ture Genetics

under consideration 31, 370-377.
. Handl, J., Knowles, J., Kell, D.B., (2005) Computational Clusteiidédlon in Post-

e The Bimax baseline algorithm presented in this paper achieves Genomic Data Analysigioinformatics 21/15, 3201-3212.
similar scores as the best performing biclustering techniques iffe™ M. K., Churchill, G. A., (2001) Bootstrapping Cluster Analysisisses-

. . . _sing the Reliability of Conclusions From Microarray ExperimeR&(AS 98/16,
this study. This may be explained by the rather global evalua 8961-8965.

tion approach pursued here, and a more specific analysis Mayuger, v., Basri, R., Chang, J. T., Gerstein, M., (2003) Spectral Biclugjeof
lead to different results. Nevertheless, the reference method can microarray Cancer Data: Co-clustering Genes and ConditiGesome Research

be useful as a preprocessing step by which potentially relevant 13, 703-716.

icl rsm identified: | r. the ch n bicl r n ju, J., Wang, W., (2003) OP-Clusters: Clustering by tendency in higiedsional
biclusters ay be identified; later, the chosen biclusters ca bb space,Proc. of the 3rd IEEE International Conference on Data Mining (ICDM)

used, e.g., as an input for more accurate biclustering methods ;g7 194

in order to speed up the processing time and to increase thRadeira, S.C., Oliveira, A.L., (2004) Biclustering Algorithms for Biolcal Data
bicluster quality. An advantage of Bimax is that it is capable of ~ Analysis: A Survey, IEEE/ACM Transactions on Computational Biology and

generating all optimal biclusters, given the underlying binary Bicinformatics, 1, 24-45. _ _ _
data model Murali, T.M., Kaglf, S, (2093) Extractmg Consgrved Ger?e Expression Mirtifs
! Gene Expression DatRacific Symposium on Biocomputjr@) 77-88.
Sharan, R., Maron-Katz, A., Shamir, R., (2003) CLICK and EXPANDER: A Sy$tem
Clustering and Visualizing Gene Expression D&ijnformatics 14, 1787-1799.
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SUPPLEMENTARY MATERIAL

A Systematic Comparison and Evaluation of Biclustering
Methods for Gene Expression Data

which the score exceeds a predefined threshold. In the same way,
all genes are scored regarding the selected samples and a new set of
genes is selected based on another user-defined threshold. The entire
(Bioinformatics, 2006) procedure is repeated until the set of genes and the set of samp-
Amela Prele,* Stefan Bleule?, Philip Zimmermant¥, Anja Wille <, 1€ converge, i.e., do not change anymore. Multiple biclusters can
Peter Bihimanrf', Wilhelm Gruissen¥, Lars Hennid’, Lothar Thiele*, be .identified by running the iterative signature algorithm on several
and Eckart Zitzlet initial gene sets.

Reverse Engineering GroupComputer Engineering and Networks
Laboratory,”Institute for Plant Sciences and Functional Genomic
Center Zurich*Colab, *Seminar for Statistics, ETH Zurich, 8092
Zurich, Switzerland.

xMotif In the framework proposed by Murali and Kasif, 2003, bic-
Slusters are sought for which the included genes are nearly constantly
expressed—across the selection of samples. In a first step, the input
matrix is preprocessed by assigning each gene a set of statistically
Considered Biclustering Algorithms significantstates These states define the set of valid biclusters: a
bicluster is a submatrix where each gene is exactly in the same state

Five prominent biclustering methods have been chosen for thig,. 5 selected samples. To identify the largest valid biclusters, an

comparative study according to three C”te”?: (i) to what e_Xten_titerative search method is proposed that is run on different random
the methods have been used or referenced in the community, ('Qeeds similarly to ISA

whether their algorithmic strategies are similar and therefore bet-
ter comparable,_ and (i) whether an implementa_tiqn was a_vail_ableBimaX (Reference Method)
or could be easily r.econstructe.d based on thelorlglnal pupllcatlonsAlgorithm The following algorithm realizes the divide-and-
The selected algorithms are briefly described in the following; they ) P . .

; conquer strategy as illustrated in Fig. 1. Note that special operations
are all based on greedy search strategies. : . . . .

are required for processing thésubmatrices. As mentioned in the

discussion of the reference model, the algorithm needs to guarantee
define a bicluster to be a submatrix for which timean squared that only optimal, i.e., inclusion-maximal biclusters are generated.
residue scorés below a user-defined threshaidwhere0 repres- ~ The problem arises becaugecontains parts of the biclusters found
ents the minimum possible value. In order to identify the largestn U, and as a consequence we need to ensure that the algorithm
S-bicluster in the data, they propose a two-phase strategy: first, row@nly considers those biclustersinthat extend ove€'y . The para-
and columns are removed from the orginal expression matrix untimeterZ serves this goal. It contains sets of columns that restricts the
the above constraint is fulfilled; later, previously deleted rows andnumber of admissible biclusters. A biclustgr, C') is admissible,
columns are added to the resulting submatrix as along as the biclit (G, C) srares one or more columns with each columr(setin
ster score does not exce&dThis procedure is iterated several times Z, i.6.,YC" € Z: CNCT # 0.
where previously found biclusters are masked with random values.

Cheng and Church’s Algorithm (CC)Cheng and Church, 2000

Recently, Yanget al., 2003 proposed an improved version of this ; proc;dure@Bimaz(E)
zlgonthlr(n ngll;]'ICP atv0|ds the problem of random interference caused 3 M — conquer(E, ({1,...,n},{1,...,m}), Z)
y masked biclusters. 4: return M
5: end procedure

Samba Tanayet al., 2002 presented a graph-theoretic approach to

biclustering in combination with a statistical data model. In this fra- 6: procedure conquer(E, (G, C), Z)

mework, the expression matrix is modelled as a bipartite graph, a7;
bicluster is defined as a subgraph, and a likelihood score is usedg.
in order to assess the significance of observed subgraphs. A correg:
sponding heuristic algorithm called Samba aims at finding highly10:

significant and distinct biclusters. In a recent study (Taeggl, 11:
2004), this approach has been extended to integrate multiple type&2:
of experimental data. ﬁ?

Order Preserving Submatrix Algorithm (OPSM)n (Ben-Dor 15:
et al, 2002), a bicluster is defined as a submatrix that preserves th&6:
order of the selected columns for all of the selected rows. In othe”:
words, the expression values of the genes within a bicluster inducésf
an identical linear ordering across the selected samples. Based ont :
stochastical model, the authors developed a deterministic algorithralg
to find large and statistically significant biclusters. This concept has,,.
been taken up in a recent study by Liu and Wang, 2003.

. . . 23:
Iterative Signature Algorithm (ISA) The authors of (Ihmelst al., 24

2002, 2004) consider a bicluster to be a transcription module, i.e., 3.
set of co-regulated genes together with the associated set of regulag-
ting conditions. Starting with an initial set of genes, all samples arep7:
scored with respect to this gene set and those samples are chosen £«

ifViEG,jGC:eij = 1then
return {(G,C)}
end if
(Gy,Gv,Gw,Cy,Cy) = divide(E, (G, C), Z)
My «— 0, My «— 0
if Gy # 0 then
My < conquer(E,(Gy UGw,Cuy), Z)
end if
if Gy # 0 A Gy = 0 then
My, — conquer(E, (Gv,Cv), Z)
dseif Gy # 0 then
Z' — ZU{Cy}
My « conquer(E, (Gw UGy,Cy UCYy),Z")
end if
return My UMy,

end procedure

procedure divide(E, (G, C), Z)

G’ « reduce(E, (G,C), Z)

choose € G' with0 < 3, eij < |C]|

if such ani € G’ existsthen
CU<—{j|j€C'/\€ij:1}

else
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29: Cy=C inclusion-maximal bicluster, there are at maximuinprocedure
30: end if calls that do not perform any further recursive calls. In other words
3L Cy < C\Cuy the corresponding recursion tree, where each node represents one
82. Gu 0, Gy 0, Gw —0 instance ofconquer and every directed edge stands for a recursive
gi for egih(z_e{ﬁ ‘?'Z Chew =1} invokation, has at mosf leafs. Each inner node of the recursion
35; it o CJCUJthen Y tree has an outdegree bbr 2, on whethelG apde are empty

36: Gu — Gy U (i} (GU is always non-empty excgpt of the spemal_ case faton-

37: dseif C* C Cy then tains only0-cells). Suppose an instance @fnquer in the tree that
38 Gy — Gy U {i} only has one child to which the submatiix is passedUU has at

39: dse least one row that containslain all columns ofU’; this is the row

40: Gw «— Gw U {i} according to which the partitioning in the parent is performed. Now,
41 end if either there is another row i1 that contains botlds and1s (line

42: end for 25) or all remaining rows only contaiis. In the former case, the
43: return (Gu, Gy, Gw, Cu, Cv) partitioning of U produces a non-empty séty and therefore the

44: end procedure outdegree of the child is two. In the latter case, the submatrix resul-

ting from the partitioning contains onlys, which in turn, means

45: ed d E,(G,C), Z . . . . .
procedure reduce(E, (¢, ), Z) that the following invokation ofonquer is a leaf in the recursion

46: G —0

a7 for each i € G do tree. Therefore, at least one half of all inner nodes have an oetelegr
48: C* —{jljeCNey =1} greater thar.
49: if C* £0AVCT € Z:CT NC* # 0 then We first give an upper bound for the number of inner nodes with
50: G' =G U {i} more than one child, and for this purpose disregard all nodes with
51 end if outdegreel. Consider a tree where all inner nodes have an outde-
52 end for gree of2 and the number of leafs equals Then the number of
53:  return &’ inner nodes is less tha{°s2 )+1 = 23. For the recursion tree, this
54: end procedure means that there are at maxim@m2 inner nodes, and as a con-
sequence the overall number of nodes and invokationgwfuer
is of orderO(3).

Running-Time Analysis By combining the two main results, (i) onenquer call needs

THEOREM 1. The running-time complexity of the Bimax algo- O(nmminn,m) steps and (ii) there are at maximufy(;3) invo-
rithm is O(nmBmin{n,m}), where 3 is the number of all kations ofconquer, we obtain the upper bound for the running-time
inclusion-maximal biclusters if"™*™. of the Bimax algorithm. O

Proof of Theorem 1. To derive an upper bound for the running- Limitations Theoretically, the number of inclusion-maximal bic-
time complexity, we will first calculate the number of steps required!Usters can be exponential inandm and therefore generating the

to execute the procedurenquer once, disregarding the recursive entire set can become infeasible. For real data, though, the actual
procedure calls. Afterwards, the maximum number of invokationshumber lies within reasonable bounds as the numberalls is

of conquer will be determined, which then leads to the overall Small. For instance, for €000 x 50-matrix with a density 06%,
running-time complexity. arounds500 biclusters are returned by the algorithm, while the theo-

As to the procedureeduce, one can observe that the number of retical bound isl.13e71%, see Table 2. The running time for such a
column sets stored if is bounded by the number of rows, and matrix is belowl second on & GHz Intel Xeon machine, and about
each column set contains at mastelements. IfZ is implemented 10 minutes for corresponding)00 x 450-matrices.
as a list andC™* is represented by an array, the if statement in line _Furthe_rmore, a secondary filtering procedure, similarly to other
49 can be executed i@ (nm) time. Accordingly, one call teeduce ~ Piclustering approaches such as (Taeagl, 2002; Ihmelset al,
takesO(n?m) steps respO(m>n) steps, ifn > m and the trans- 2004), can be applied to reduce the number of biclusters to the
posed matrix is considered. Overall, the running time complexity isdesired size; this issue will be discussed in the next section. Ano-
of orderO(nm min{n, m}). ther possibility is to constrain the size of the biclusters during the

The partitioning of a submatrix is accomplished by the proceduréSearch process. The advantage of the Bimax algorithm over the
divide. We assume that all sets except®f are implemented using incremental procedure is that such size constraints can be naturally
list structures, while>* is stored in an array. Thereby, the inclusion- integrated—thereby, further speed-ups are achievable.
tests can be performed in tim@(m), and the entire loop takes
O(nm) steps. Overall, the running time of the procedure amountd NCremental Procedure

to O(nm). Algorithm The incremental procedure, see below, is based on
The main procedureonguer requiresO(nm) steps to check work by Alexe et al., 2002, who propose a method to find all
whether(G, C') represents a valid bicluster (linggo 9), andO(1) inclusion-maximal cliques in general graphs. Shortly summarized,

steps to perform the union operations at lin8cnd21, again assu-  each node in the input graph is visited, and all maximal cliques are
ming a list implementation. Altogether, one invokationcohquer found that contain that node. A visit-to-a-node operation comprises
takesO(nm) time. an iteration through all other nodes of the graph as well, and each
The question now is how many timesnquer is executed. Taking  newly found bicluster is globally extended to its maximality. For the
into account that every invokation @bnquer returns at least one special class of bipartite graphs we are dealing with, it is important
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Table 2. Average number of inclusion-maximal biclusters for random matr Proof of Theorem 2. The incremental algorithm proceeds in sta-
ces with 6000 genes and varying number of columns and densities, i-eges: at stage, a row/genei of the matrix is considered and the
proportion ofl cells toO-chIs. Each numbgrgives the average av#r matri- steps within the outefor instruction are performed. The set of
ces. The last row comprises the theoretical upper boundsiéonaimber of instructions within steps 5 to 12 amounts flocomputing an inter-
inclusion-maximal biclusters. . . .
section of the sets of samples (having valyecorresponding to
gene: and a currently considered bicluster, which takeen),

density | number of samples: andii) the search through the list/, followed by a set equality
comparison operations, which costs furtkgm log, 3), assuming
DB000X. | 50 150 250 350 450 that binary search through the lidf is made. This inner cycle

(steps 5 - 12) is performed times, and the outer one times,

1% 530.0 34755 75942 124055 179199 Wheren is the number of rows of the matrik. We then obtain
2% 1468.7  11829.2 28938.8 534382  86657.3 ©O(n [ (m+mlog:f)) = ©(nm § log, 3). Note that the worst-
3% 2490.1 21693.7 620053 1324358 2385985 case running time complexity amounts @(n m?3) in the case
4% 3933.7 44463.7 155929.8 367228.8 694202 thatm < n, because the upper bound gris then exponential in
5% 6554.9 100213.8 390835 956255 1838979.7 m, hencelog, 8 < m.

| 1.13e+15 1.43e+45 1.8le+75 2.29e+105 2.91e+135 In the algorithm proposed by Alexet al, 2002, the main dif-
ferences to our incremental approach is an additional step that is
performed within the step% to 11 of globally extending newly
created biclusters to their maximality, and an additional "absorp-

to notice that several steps of the above method are redundant:tf)n C.hECk opgratlon IS ”f‘ade. which co@s@m log, /3). Hence,
the difference in the running-time complexities. O

suffices to iterate through only one partition of the graph nodes—in
matrix terminology this means we will have to iterate either through
the set of rows or columns, but not both. Moreover, extending NeWw/5jidation Using Synthetic Data

biclusters can be avoided with a guarantee that no bicluster will be o )
missed this way. Data Sets The artificial model used to generate synthetic gene

expression data is similar to an approach proposed by Ihenels
2002. In this setting, biclusters represergnscription modules

1: procedure IncrementalAlgorithm(E) - i

2 M — 0 these modules are defined by (i) a setof genes regulated by a

3 for i — 1ton do set of common transcription factors, and (ii) a 6ebf conditions

2 C* — {jles=1A1<j<m} in which these transcription factors are active. More specifically, we

5: for each (G,C) € M do consider

6: c’ <—( (;,ﬂ C/:; , ) e A set oft transcription factors;

7 if 3(G",C") e M with C" = C' then . S ixm . .
’ P p ) p e A binary activation matrixA wherea;; = 1 iff transcrip-

S- eIseM < MA{(E", CNPUAET Ui}, 6T} tion factors is active in conditiory;

10': M — MU{(G" U{i},C} e A binary regulation matrix?*"™ wherer;; = 1 iff transcrip-

11 end if tion factori regulates geng;

12: end for

; S ) . . on the basis of which two scenarios have been created.
13: if A(G",C") € M with C" = C™ then In the first scenariol0 non-overlapping transcription modules,

14: M — M U{({i},C")} each extending ovel) genes and conditions, emerge. Each gene
15: defnd if is regulated by exactly one transcription factor and in each condi-
16: end for

tion only one transcription factor is active. The corresponding data
sets contairn 0 implanted biclusters and have been used to study the
effects of noise on the performance of the biclustering methods. For
the second scenario, the regulatory complexity has been systema-
tically varied: here, each gene can be regulated isanscription
factors and in each condition up tbtranscription factors can be

THEOREM 2. The running-time complexity of the Incremental active. As a consequence, the origih@lbiclusters overlap wherg
Algorithm is© (nm3 log 3), where3 is the number of all inclusion- is an indicator for the overlap degree; overall, nine different levels
maximal biclusters i >™. have been considered with= 0, 1, ..., 8.In detail, activation and
regulation matrices were created as follows:

17: return M
18: end procedure

Running-Time Analysis

LEMMA 1. Given the binary matrix™*™, a duplicate row or o ) o,
column inE does not contribute to the total number of all inclusion- s = { 1 ifG@—1n'/t+1<j<in'/t+d
maximal biclusters ir. 0 else

LEMMA 2. Given the binary matri™*™, the upper bound on for1 <i<t1<j<n'+d and
the number of all inclusion-maximal biclustersfihis (2 (™) — W { 1 ifG—1)m/t+1<j<im'/t+d
1). T 0 else




Preli¢ et al.

for1 <i <t 1<j<m' +d. Forscenarid, the parameters
weren’ = 100,m’ = 50,t = 10, andd = 0. For scenari@®, the
parameter setting was = 100, m’ = 100,¢ = 10 in combination
with different overlap degreetse {0, ..., 8}.

The gene match score is not symmetric and usually yields
different values when\/; and M, are exchanged; accordingly,
both S¢, (M., Mz) and S¢ (M2, M1) need to be considered. Alt-
hough, this comparative study takes only the gene dimension into

Moreover, we have investigated for each scenario two types ofccount, an overall match score can be define8d3/;, M)
biclusters: (i) constant biclusters and (i) additive biclusters. In the\/S¢ (M1, Ma) - S&(M1, M2) where S is the corresponding
first case, the corresponding gene expression matisxdefined by  condition match score
setting the expression valug; of gene: at conditionj to e;; = Now, let Mopt denote the set of implanted biclusters aWdthe
maxi<k<t Tki - @kj; E IS @ binary matrix where the cells contained output of a biclustering method. Theverage bicluster relevance
in biclusters are set td. In the second casdy is constructed as is defined asS¢, (M, Mopt) and reflects to what extent the gene-
follows rated biclusters represent true biclusters in the gene dimension. In

contrast, theaverage module recoverngiven by S¢ (Mopt, M),
€ij = { quantifies how well each of the true biclusters is recovered by the
biclustering algorithm under consideration. Both scores take the
wherelU 1, u] is a uniformly randomly chosen integer in the interval maximum value ofl, if Mopt = M.
[, u]. In the resulting matrix, all cells belonging to an implanted bic-
luster have a value greater than or equahtonvhile the background  Additional Tables and Figures

contains random numbers in the range)dd m — 1. Within each
bicluster, the values increase column-wise by one.

m+ (j—1)
Ul0,m — 1]

If maX1Sk§t Tki ak]- ?é 0
else

Match Scores In order to assess the performance of the selec-
ted biclustering approaches, we will use a score that describe %
the degree of similarity between the computed biclusters and th

Coverage of planted modules

0.9

transcription modules implanted in the synthetic data sets. —<—Bimax | |
1 i 1 i ISA

The following score is designed to compare two biclusters. o8l o suma| ]

DEFINITION 3. LetG1,G2 C {1,...,n} be two sets of genes. 07 ﬁ:gﬁw 1

Thematch scoref G; andG-, is given by the function o6k Mot |

_ |G1 ﬂG2|
|G1 UG2|

051

Sa(G1,G2)

0.4

which characterizes the correspondence between the two gene se

0.3 : q

This match score, which resembles thaccard coefficient

Proportion of expressed cells within biclusters

cf. (Halkidi et al, 2001), is symmetric, i.e.S¢(G1,G2) = ol = - i
Sa (G2, Gh), and its value ranges from(the two sets are disjoint) &
to 1 (the two sets are identical). A match scate for sample sets 0 5 ofs 00 o0i5s  os o35

noise width o

can defined by analogy.
On this basis, a score for comparing two sets of biclusters can be

introduced as follows. Fig. 6: This figure shows for the first artificial scenario with constant

biclusters what proportion of computed biclusters contain over-
expressed cells. As argued in the article, the two methods CC and
xMotif tend to produce large biclusters covering the background
area of the input matrix, i.e., the cells containilg

DEFINITION 4. Let My, M5 be two sets of biclusters. Tlyene
match scoref M, with respect tall, is given by the function

Z(Gl,cl)eMl max(G,,c;)em, Sa(G1, G2)
| M|

S& (M, M) =

which reflects the average of the maximum match scores for all
biclusters inM; with respect to the biclusters /.
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Fig. 4: Results for the artificial scenarios where the implanteduisielrs are characterized by constant expression valyegb)aon-overlapping modules
with increasing noise levels; (c), (d) overlapping moduléhwcreasing overlap degree and no noise. Note that OPSMcisided in the lower two figures
as explained in the results section.

Table 3. Parameter settings used for different biclustering methbBe$ault settings (i.e., the parameter values recommendethis¢he
authors of original papers) were occasionally changed dieroto force the methods to output at least a single biclustes.changed values
are reported in the third column (an empty third column cellgatis the default values have always been used). For the myeafrdifferent
parameters, please refer to the original papers.

Algorithm | Default Parameter Settings Changed values
Samba D =40, Ny =4, No =6, k=20, L =30
ISA ty = 1.8 — 4.0 (step 0.1), tc = 2.0, nr. seeds = 20000 ty = 2.0,nr. seeds = 500
CcC a = 1.2, lower end of the range of expression values 6 < 0.5, for biclusters with increasing valués= 0.1
OPSM 1 =100
xMotifs | ns = 10,n4 = 1000, s4 = 7 — 10, @ not given, P value 1010, sq = 7,a = 0.1, maz_length = 0.7m

maz_length not given

for increasing noise matrix p-value —7




Preli¢ et al.

Effect of Noise: Relevance of BCs Effect of Noise: Recovery of Modules
—<— BiMax —<— BiMax
ir ISA ol 1r > ISA H
—&— Samba —&— samba
—&—cCc —&—CC
O OPSM O-- OPSM
0.8} —7— xMotif |4 0.8 —— xMotif {
— — HCL — — HCL
o <
s S
8 osl ] 8 06l ; ! ; |
< =
S S
<1 T
£ £
2 =
F =
® 04l 4 8 04f 1
0.2 1 0.2 .
B
v 7
0 i i i i i i 0 i i i i i i
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
noise level noise level
@) (b)
Regulatory Complexity: Relevance of BCs Regulatory Complexity: Recovery of Modules
T T T T T T T T T T T T T T T T T T
—<— BiMax —<— BiMax
ir & ISA il 1 ISA n
—<&— Samba —&— Samba
! —&—cc —o—cc
\ —— OPSM —1— OPSM
0.8 \ —7— xMotif |4 0.8 —7— xMotif
\ — — HCL — — HCL
S \ o
<] <]
& b
2 06f 4 2 06f 1
S S
1 T
£ E
2 2
© 04t 4 © 04t 1
0.2r al 0.2 al
0 i i i i i i i i i 0
0 1 2 3 4 5 6 7 8
overlap degree overlap degree

(© (d)
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Fig. 7: Variability of the average bicluster relevance score dependinfpe@mparameter settings (constant biclusters). The plotted values
represent averages over the biclusters obtained by ISA, xMotif anda}C(b): For ISA, we varied thét,, t.) parameters, in all cases,
ty = te, With 1.0 < t, < 2.4; the value recommended by authorg2s0, 2.0). (c), (d): As to xMotif, the size of the random seeds was
changed in the range— 50; values recommended by the authors are in the ranrgéo0. (e), (f): For CC, the homogeneity thresholdhas
been systematically varied; the red bold line in (e) shows the results obfainge: 0, i.e., when only perfect biclusters are sought.
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