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CHAPTER 1

BOOSTING ALGORITHMS:

with an application to bootstrapping multivariate time series

For Peter Bickel’s 65th Birthday

Peter Bühlmann and Roman W. Lutz

Seminar für Statistik, ETH Zürich
CH-8092 Zürich, Switzerland

E-mail: buhlmann@stat.math.ethz.ch

We describe boosting as an estimation method within specified para-
metric, potentially very high-dimensional models. Besides some short
review and historical remarks, we focus on high-dimensional, multivari-
ate linear models (overcomplete dictionaries) for independent and time
series data. In particular, we propose a new bootstrap method for high-
multivariate, linear time series. We demonstrate its usefulness and we
describe relations to some of Peter Bickel’s contributions in time series
and the bootstrap.

1. Introduction

Since its inception in a practical form in Freund and Schapire,18 boosting

has attracted a lot of attention both in the machine learning and statis-

tics literature. This is in part due to its excellent reputation as a prediction

method. The gradient descent view of boosting as articulated in Breiman5,6

and Friedman et al.20 provides a basis for the understanding and new vari-

ants of boosting. As an implication, boosting is not only a black-box pre-

diction tool but also an estimation method in specified classes of models,

allowing for interpretation of specific model-terms.

We focus here on boosting with the squared error loss, mainly for the

multivariate case. Based on it, we propose here a new time series bootstrap

method, and we will make a link to some of Peter Bickel’s contributions

and ideas in time series and the bootstrap. The boosting approach for

multivariate linear time series addresses one of the problems which the first

author discussed with Peter Bickel a decade ago.

Throughout the paper, we assume that the data are realizations of ran-
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dom variables

(X1, Y1), . . . , (Xn, Yn)

from a stationary process with p-dimensional predictor variables Xi and q-

dimensional response variables Yi; the jth component of a p-dimensional x

will be denoted by x(j). Most often, we will consider Xi ∈ Rp and Yi ∈ Rq .

1.1. AdaBoost

AdaBoost (Freund and Schapire18) is an ensemble algorithm for binary clas-

sification with Yi ∈ {0, 1}. It is (still) the most popular boosting algorithm

and it exhibits a remarkable performance in numerous empirical studies. It

works by specifying a base classifier (“weak learner”) which is repeatedly

applied to iteratively reweighted data, yielding an ensemble of classifiers

ĝ[1](·), . . . , ĝ[m](·), where each ĝ[k](·) : Rp → {0, 1}. That is:

reweighted data 1
base procedure−→ ĝ[1](·)

reweighted data 2
base procedure−→ ĝ[2](·)

· · · · · ·

reweighted data m
base procedure−→ ĝ[m](·)

Finally, the AdaBoost classifier is

Ĉ[m]
AdaBoost(·) = sign(

m∑

j=1

cj ĝ
[m](·)), (1)

where cj are linear combination weights, depending on the in-sample per-

formance of the classifier ĝ[j](·). Thus, the AdaBoost classifier is a weighted

majority vote among the ensemble of individual classifiers. A key issue is

how to reweigh the original data; once we have reweighted data, one simply

applies the base procedure to it as if it would be the original dataset. A

statistically motivated description can be found in Friedman et al.20

From the description above, AdaBoost involves three specifications: (i)

the base procedure (“weak learner”), (ii) the construction of reweighted

data, (iii) the size of the ensemble m. Regarding (i), most popular are

classification trees; issue (ii) is defined by the AdaBoost description (cf.

Friedman et al.20); and the value m in (iii) is a simple one-dimensional

tuning parameter.
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2. Boosting and functional gradient descent

Breiman5,6 showed that the somewhat mysterious AdaBoost algorithm can

be represented as a steepest descent algorithm in function space which we

call functional gradient descent (FGD). This great result opened the door

to use boosting in other settings than classification. For simplicity, we focus

first on the univariate case with 1-dimensional response variables Yi (q = 1).

In the sequel, boosting and functional gradient descent (FGD) are used

as a terminology for the same method or algorithm. The goal is to estimate

a function

f0(·) = argminf(·)E[ρ(Y, f(X))] (2)

where ρ(·, ·) is a real-valued loss function which is typically convex with

respect to the second argument. The function class which we minimize over

is not of interest for the moment and hence notationally omitted.

Examples of loss functions and their population minimizers are given

in the following table; each case corresponds to a boosting algorithm, as

explained in section 2.1.

L2Boosting LogitBoost AdaBoost

spaces y ∈ R, f ∈ R y ∈ {0, 1}, f ∈ R y ∈ {0, 1}, f ∈ R
loss ρ(y, f) |y − f |2 − log2(1 + exp(−2yf)) exp(−(2y − 1)f)

minimizer f0 E[Y |X = x] 1
2 log

(
p(x)

1−p(x)

)
1
2 log

(
p(x)

1−p(x)

)

For the last row, p(x) = P[Y = 1|X = x].

2.1. The generic boosting algorithm

Having specified a loss function ρ(·, ·) we pursue some sort of empirical

minimization: instead of (2), we do some constrained minimization of the

empirical risk

n1−
n∑

i=1

ρ(Yi, f(Xi)) (3)

with respect to f(·). We emphasize here that the constraints will enter

non-implicitly in terms of a (boosting) algorithm. This is in contrast to

empirical risk minimization over suitable (small enough) function classes

or by pursuing penalized empirical risk minimization using e.g. `2- or `1-

penalties.
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2.1.1. The base procedure (“weak learner”)

Boosting or FGD pursues constrained minimization of (3) by iterative steep-

est descent in function space. To explain this, we elaborate a bit more

on the notion of a base procedure, often called the “weak learner” in the

machine learning community. Based on some (pseudo-) response variables

U = U1, . . . , Un and predictor variables X = X1, . . . , Xn, the base proce-

dure yields a function estimate

ĝ(·) = ĝ(U,X)(·) : Rp → R.

Note that we focus here on function estimates with values in R, rather than

classifiers with values in {0, 1} as described in section 1.1.

Typically, the function estimate ĝ(x) can be thought as an approxima-

tion of E[U |X = x]. For example, the base procedure could be a nonpara-

metric kernel estimator (if p is small) or a nonparametric statistical method

with some structural restrictions (for p ≥ 2) such as a regression tree (or

class-probability estimates from a classification tree).

Componentwise linear least squares: For cases with p � n, a useful

base procedure is componentwise linear least squares:

ĝ(x) = γ̂Ŝx
(Ŝ),

γ̂j =

∑n
i=1 UiX

(j)
i∑n

i=1(X
(j)
i )2

(j = 1, . . . , p), Ŝ = argmin1≤j≤p

n∑

i=1

(Ui − γ̂jX(j)
i )2.

This base procedure fits a linear regression with the one predictor variable

which reduces residual sum of squares most.

2.1.2. The algorithm

The generic FGD or boosting algorithm is as follows.

Generic FGD algorithm

Step 1. Initialize f̂ [0] ≡ 0. Set m = 0.

Step 2. Increase m by 1.

Compute the negative gradient and evaluate it at f = f̂ [m−1](Xi):

Ui = − ∂

∂f
ρ(Y, f)|f=f̂ [m−1](Xi)

, i = 1, . . . , n.
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Step 3. Fit negative gradient vector U1, . . . , Un by using the base procedure,

yielding the estimated function

ĝ[m](·) = ĝU,X(·) : Rp → R.

The function estimate ĝ[m](·) may be thought of as an approximation of

the negative gradient vector (U1, . . . , Un).

Step 4. Up-date f̂ [m] = f̂ [m−1](·) + ν · ĝm(·) where 0 < ν ≤ 1 is a step-

length which determines for how long the up-date follows the approximated

negative gradient.

Step 5. Iterate Steps 2-4 until m = mstop is reached for some specified

stopping iteration mstop.

The step-length ν in Step 4 should be chosen “small”: our proposal for a

default is ν = 0.1. The FGD algorithm does depend on the step-length, but

its choice is not very crucial as long as it is taken to be “small”. On the other

hand, the stopping iteration mstop is an important tuning parameter of

boosting or FGD. Data-driven choices can be done by using cross-validation

schemes; computationally much more attractive are internal estimates from

information criteria such as AIC, see section 3.3.

By definition, the generic FGD algorithm yields a linear combination of

base procedure estimates:

f̂ [mstop](·) = ν

mstop∑

m=1

ĝ[m](·)

which can be interpreted as an estimate from an ensemble scheme, i.e. the

final estimator is an average of individual estimates from the base proce-

dure, similar to the formula for AdaBoost in (1). Thus, the boosting solution

implies the following constraint for minimizing the empirical risk in (3): it

is a linear combination of fits from the base procedure; in addition, it will

be a regularized fit of such linear combinations, see section 2.2.2.

2.2. Boosting with the squared error loss: : L2Boosting

When using the squared error loss ρ(y, f) = |y − f |2, the generic FGD

algorithm above takes the simple form of refitting the base procedure to

residuals of the previous iteration, cf. Friedman.19
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L2Boosting

Step 1 (initialization and first estimate). Given data {(Xi, Yi); i = 1, . . . , n},
fit the base procedure

f̂ [1](·) = ĝ(Y,X)(·).
Set m = 1.

Step 2. Increase m by 1.

Compute residuals Ui = Yi − f̂ [m−1](Xi) (i = 1, . . . , n) and fit the base

procedure to the current residuals. The fit is denoted by f̂m(·) = ĝ(U,X)(·).
Up-date

f̂ [m](·) = f̂ [m−1](·) + νf̂m(·),
where 0 < ν ≤ 1 is a pre-specified step-size parameter.

Step 3 (iteration). Repeat Step 2 until some stopping value mstop for the

number of iterations is reached.

2.2.1. A glimpse of history

With m = 2 (one boosting step), L2Boosting has already been proposed by

Tukey31 under the name “twicing”.

C.F. Gauss

R.V. Southwell

J.W. Tukey

L2Boosting with the componentwise least squares base procedure for a

fixed collection of basis functions (and using ν = 1) coincides with the

matching pursuit algorithm of Mallat and Zhang.27 Matching pursuit is also

known in computational mathematics under the name of “(weak) greedy
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algorithm” (DeVore and Temlyakov16; Temlyakov29). All these methods are

also known under the keyword “Gauss-Southwell algorithm” whose origin

goes back to Carl Friedrich Gauss, the “Princeps Mathematicorum”, and

to Sir Richard Southwell. While Gauss is famous, Southwell is less known.

Sir Richard Southwell was a faculty member of the Engineering School of

Oxford University. In the early 1940’s, he developed a powerful iterative

procedure, known as the relaxation method, which was successfully applied

to a large variety of problems in engineering and physical science. Quoting

from a newsletter of the Society of Oxford University Engineers: “Southwell

was a first class lecturer and attendance at his lectures was a pleasure”.

Gauss realized that a linear system of equations

Aβ = b, A ∈ Rn×p, β ∈ Rp, b ∈ Rn

can be solved for β by iteratively pursuing the solution for one component

of β while keeping all others fixed: the iteration goes over the component

indices of β: j = 1, 2, . . . , p, 1, 2, . . . , p, 1, 2, . . . This is known as the Gauss-

Seidel algorithm; the same idea is also used in backfitting (cf. Buja et al.14),

and Bickel et al.3 describe some of its (statistical) properties. Southwell’s

contribution has been to alter the way the iterations are done: instead

of going systematically through the component-indices of β as described

above, he argued for the greedy version: select the component such that a

suitable error-norm is minimized. In our context, this translates to select

the predictor variable such that residual sum of squares is minimized which

is exactly what the componentwise linear least squares base procedure does.

Tukey’s31 twicing seems to be the first proposal to formulate the Gauss-

Southwell idea in the context of a nonparametric smoothing estimator,

beyond the framework of linear models (dictionaries of basis functions).

2.2.2. L2Boosting, Lasso and LARS

Efron et al.17 made an intriguing connection between L2Boosting with com-

ponentwise linear least squares and the Lasso (Tibshirani30) which is an `1-

penalized least squares method for linear regression. They consider a version

of L2Boosting, called forward stagewise least squares (denoted in the sequel

by FSLR) and they show that for the cases where the design matrix satis-

fies a “positive cone condition”, FSLR with infinitesimally small step-sizes

produces a set of solutions which coincides with the set of Lasso solutions

when varying the regularization parameter in Lasso (see also (4) below).

Furthermore, Efron et al.17 proposed the least angle regression (LARS)

algorithm as a clever computational short-cut for FSLR and Lasso.
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As Efron et al. (sec. 8)17 write, their LARS procedure is not directly

applicable to more general base procedures (e.g. regression trees) and to

problems which we will present in section 3.

During the iterations of L2Boosting, we get an interesting set of so-

lutions {f̂ [m](·);m = 1, 2, . . .} and corresponding regression coefficients

{β̂[m] ∈ Rp; m = 1, 2, . . .}. Heuristically, due to the results in Efron et

al.,17 it is “similar” to the set of Lasso solutions {β̂λ ∈ Rp; λ ∈ R+} when

varying the penalty parameter λ, where

β̂λ = argminβ∈Rp
n∑

i=1

(Yi −
p∑

j=1

β(j)X
(j)
i )2 + λ

p∑

j=1

|β(j)|. (4)

Computing the set of boosting solutions {f̂ [m]; m = 1, 2 . . .} is computa-

tionally quite cheap since every boosting step is typically simple: hence,

estimating a good stopping iteration mstop via e.g. cross-validation is com-

putationally attractive, and the computational gain is even more impressive

when using an internal information criterion such as AIC, see section 3.3.

(Of course, for the special case of linear regression, LARS (Efron et al.17) is

computationally even more efficient than boosting). On the other hand, reg-

ularized boosting with e.g. an `1 penalty term (cf. Lugosi and Vayatis25)

requires for tuning via cross-validation (selecting the penalty parameter)

that the whole algorithm is run repeatedly for many candidate penalty

parameters and all training-/test-sets from cross-validation.

2.3. A selective review of theoretical results for boosting

The difficulty to analyse some boosting method lies in the fact that one

has to understand the statistical properties of an algorithm. This is in con-

trast to theoretical analysis of more explicit estimators such as `1-penalized

versions of boosting or the Lasso. Regarding the latter, in case of linear

regression, we have an explicit estimation functional as in (4), and the the-

oretical analysis is not considering the numerical algorithm for computing

the solution of the convex minimization above.

Consistency results for boosting algorithms with early stopping as de-

scribed in section 2.1 have been given by Jiang23 for AdaBoost, Bickel and

Ritov4 for general loss functions, Zhang and Yu34 for general loss functions,

and Bühlmann10 for L2Boosting; Bühlmann and Yu12 have shown minimax

optimality of L2Boosting in the toy problem of one-dimensional curve es-

timation. There are quite a few other theoretical analyses of boosting-type

methods which use an `1-penalty instead of early stopping for regulariza-
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tion. We have outlined in the last paragraph of section 2.2.2 a computa-

tional advantage of early-stopped boosting which distinguishes itself – as a

method – from `1-regularized boosting.

3. L2Boosting for high-dimensional multivariate regression

We are describing here a boosting method for multivariate data, including

seemingly unrelated (Zellner32,33) structures. Consider the multivariate lin-

ear regression model with n observations of a q-dimensional response and

a p-dimensional predictor. In matrix notation:

Y = XB + E, (5)

with Y ∈ Rn×q, X ∈ Rn×p, B ∈ Rp×q and E ∈ Rn×q . The multivariate case

requires an extension of the notation. We denote by Yi ∈ Rq the i-th sample

point of the response variable (row-vector of Y) and by Y(k) ∈ Rn the k-th

component of the response (column-vector of Y); and analogously for X, B

and E. For each Y(k), k = 1, . . . , q, we have a univariate regression model

with the predictor matrix X and the coefficient vector B(k). For the row-

vectors of the error matrix Ei, i = 1, . . . , n, we assume Ei i.i.d. ∼ N (0,Σ).

Assuming that X has full rank p (in particular p ≤ n), the ordinary least

squares estimator exists:

B̂OLS = (XTX)−1XTY

which equals the ordinary least squares estimate for each of the q univariate

regressions. In particular, it is independent of Σ.

3.1. The implementing loss function

In many examples, p and q are large relative to sample size n and we would

like to do a sparse model fit. We construct a boosting method by specifying

a loss function and a base procedure. Regarding the former, we use the

Gaussian negative log-likelihood:

−`Σ(B) = − log((2π)nq/2det(Σ)n/2) +
1

2

n∑

i=1

(YT
i −XT

i B)Σ−1(YT
i −XT

i B)T .

The first term on the right-hand side is a constant (w.r.t. B): we drop it

and with Γ−1 = Σ−1, the loss function becomes

L(B) =
1

2

n∑

i=1

(YT
i −XT

i B)Γ−1(YT
i −XT

i B)T . (6)
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We distinguish here between Γ and Σ = Cov(Ei): Γ is the implementing

covariance matrix for the loss function. We may use for it an estimate of Σ

(e.g. from another model-fit such as univariate boosting for each response

separately) or we can choose something simpler, e.g. Γ = Iq (in particular

if q is large). In case of the latter, the loss function may still be reasonable

(if the q components are on the same scale) and the statement in Theorem

1 is then with Γ = Iq .

The right hand-side can be written as
∑n

i=1 ρ(YT
i ,B) (implicitly involv-

ing Γ−1 and XT
i ), very much like in (3).

The maximum likelihood estimator of B is the same as the OLS solution

and is therefore independent of Σ. The covariance matrix Σ becomes only

relevant in the seemingly unrelated regressions (SUR; Zellner32,33) where

some covariates influence only a few components of the q-dimensional re-

sponse.

3.2. The base procedure

The input data for the base procedure is the design matrix X and a pseudo-

response matrix U ∈ Rn×q (not necessarily equal to Y). The base procedure

fits the linear least squares regression with one selected covariate (column

of X) and one selected pseudo-response (column of U) so that the loss

function in (6), with U instead of Y, is reduced most.

Thus, the base procedure fits one selected matrix element of B:

B̂jk = 0, (jk) 6= (ŝt̂), B̂ŝt̂ = b̂ŝt̂,

b̂jk =

∑q
v=1(U(v))TX(j)Γ−1

vk

(X(j))TX(j)Γ−1
kk

,

(ŝt̂) = argmin1≤j≤p,1≤k≤q{L(B); Bjk = b̂jk,Brs = 0 (rs 6= jk)}

= argmax1≤j≤p,1≤k≤q

(∑q
v=1(U(v))TX(j)Γ−1

kv

)2

(X(j))TX(j)Γ−1
kk

. (7)

Corresponding to the parameter estimate, there is a function estimate ĝ(·) :

Rp → Rq defined as follows:

(ĝ)k(x) =

{
b̂ŝt̂x

(ŝ) if k = t̂

0 if k 6= t̂,
k = 1, . . . , q.

From (7) we see that the coefficient b̂jk is not only influenced by the k-th re-

sponse but also by other responses, depending on the partial correlations of

the errors (via Γ−1 if Γ is a reasonable estimate for Σ) and the correlations

of the other responses with the j-th covariate (i.e. (U(v))TX(j)).
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3.3. The algorithm

Our multivariate L2Boosting algorithm is defined as follows.

Multivariate L2Boosting

with componentwise linear least squares

Step 1 (initialization and first estimate): Fit the base procedure

f̂ [1](·) = ĝY,X(·),

where ĝY,X(·) is the base procedure based on data Y,X.

Set m = 1.

Step 2 : Increase m by 1.

Compute current residuals

U
[m]
i = Yi − f̂ [m−1](Xi) (i = 1, . . . , n)

and fit the base procedure from (7) to U and X. The fit is denoted by

ĝ[m](·).
Up-date

f̂ [m](·) = f̂ [m−1](·) + νĝ[m](·), 0 < ν < 1.

Step 3 (iteration): Repeat Step 2 until a stopping iteration mstop is met.

We also obtain a sequence of estimates B̂[m] which correspond to

f̂ [m](x) = (B̂m)Tx, x ∈ Rp. Multivariate L2Boosting with component-

wise linear least squares resembles very much the univariate L2Boosting

analogue described in section 2.2. The difference is that we search in ad-

dition for the best response-component k ∈ {1, . . . , q} to improve the loss

function L(·). As in the univariate case, the step-size ν should be chosen

small, e.g. ν = 0.1.

The number of iterations mstop is a tuning parameter and can be es-

timated by e.g. cross validation or an AIC criterion. The latter is compu-

tationally attractive. It relies on the fact that the base procedure in (7)

involves a linear hat operator and an optimization over the best pair of

indices (ŝt̂). Then, the boosting fit at iteration m can be represented as a

hat operator B[m] : Rnq → Rnq which maps the response Y to the fitted

values Ŷ. Neglecting the fact that a search over the best pair of indices

(ŝt̂) has taken place in the repeated use of the base procedure in (7), B[m]
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becomes a linear operator and its trace can serve as the number of degrees

of freedom (d.f.):

d.f. = trace(B[m]).

With this notion of degrees of freedom, one can then use the corrected AIC

(AICc), cf. Hurvich et al.,22 to estimate the optimal stopping iteration

mstop. Using model selection criteria for stopping the boosting iterations

has been successfully demonstrated in Bühlmann,10 Bühlmann and Yu12;

in the context of multivariate boosting, the details are described in Lutz

and Bühlmann.26

3.4. Properties of multivariate L2Boosting

We summarize here some of the results from Lutz and Bühlmann.26

3.4.1. An asymptotic result

First, we describe a consistency result for multivariate L2Boosting in linear

regression where the number of predictors p = pn and the dimension of the

response q = qn are allowed to grow very fast as sample size n increases.

Consider the model

Yi = f(Xi) + Ei, i = 1, . . . , n, Yi,Ei ∈ Rqn , Xi ∈ Rpn ,
f(x) = BTx, B ∈ Rpn×qn , x ∈ Rpn , (8)

Xi i.i.d. and Ei i.i.d. with E[Ei] = 0 and Cov(Ei) = Σ.

Because pn and qn are allowed to grow with n, also the predictors and the

responses depend on n, but we often ignore this notationally. To identify the

magnitude of bjk = bjk,n = Bn;jk, we assume E|X(j)
1 |2 = 1, j = 1, . . . , pn.

We make the following assumptions:

(A1) The dimension of the predictor and the response in model (8)

satisfies pn = O(exp(Cn1−ξ)), qn = O(exp(Cn1−ξ)) (n →
∞), for some 0 < ξ < 1, 0 < C <∞.

(A2) supn∈N
∑pn

j=1

∑qn
k=1 |bjk,n| <∞.

(A3) For the implementing Γ−1 in (6):

supn∈N,1≤k≤qn
∑qn

`=1 |Γ−1
k`,n| <∞, infn∈N,1≤k≤qn Γ−1

kk > 0.

(A4) sup1≤j≤pn ‖(X
(j)
1 ‖∞ < ∞, where ‖x‖∞ = supω∈Ω |x(ω)| (Ω denotes

the underlying probability space).

(A5) sup1≤k≤qn E|E
(k)
1 |s <∞ for some s > 4/ξ with ξ from (A1).
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Assumption (A1) allows for very large predictor and response dimen-

sions relative to sample size n. Assumption (A2) is an `1-norm sparseness

condition. Assumption (A4) could be weakened to existence of sufficiently

high moments, at the expense of a slower growth in (A1) which could still

be as fast as O(nβ) for any 0 < β <∞ (see also section 4).

Theorem 1: Consider the model (8) satisfying (A1)-(A5). Then, the mul-

tivariate L2Boosting estimate f̂ [mn] with the component-wise linear learner

from (7) satisfies: for some sequence (mn)n∈N with mn → ∞ (n → ∞)

sufficiently slowly,

Ex

∣∣∣∣
(
f̂ [mn](x)− f(x)

)T
Γ−1

(
f̂ [mn](x)− f(x)

)∣∣∣∣ = op(1) (n→∞),

where x denotes a new observation, independent of and with the same

distribution as the training data.

A proof is given in Lutz and Bühlmann.26 Theorem 1 says that multi-

variate L2Boosting recovers the true sparse regression function even if the

dimensions of the predictor or response grow essentially exponentially with

sample size n. For the univariate linear model analogue, such a result has

been shown for L2Boosting in Bühlmann10 and for the Lasso in Greenshtein

and Ritov.21

3.4.2. A summary of some empirical results

In Lutz and Bühlmann,26 multivariate L2Boosting has been compared

with multivariate forward variable selection and with individual L2Boosting

where each of the response components are fitted separately. A crude sum-

mary is as follows.

(i) Multivariate forward variable selection was often worse than boost-

ing. The reason can be attributed to the fact that it often pays off to use

a method which does variable selection and shrinkage such as boosting or

Lasso. This has been observed in various contexts, cf. Tibshirani30 for the

Lasso, Friedman,19 Bühlmann and Yu12,13 for boosting. Examples where

forward variable selection perform better than boosting are of the following

type: only very few effective predictor variables contributing a strong signal

and many non-effective predictors with no influence on the responses: e.g.,

the coefficient matrix B has only very few rows with large entries and all

others are zero.
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14 P. Bühlmann and R.W. Lutz

(ii) Multivariate L2Boosting was found to be better than individual

boosting if the errors are highly correlated, i.e. Σ is (strongly) non-diagonal.

In contrast to individual boosting and other individual methods like OLS for

multivariate regression, multivariate L2Boosting allows to take an estimate

of Σ into account via the loss function in (6). For three real data sets, where

we do not know whether Σ is strongly non-diagonal, multivariate boosting

and individual boosting were comparable in terms of a cross-validation

score; larger differences may be masked by a substantial noise variance

which enters because we consider differences Ŷ−Y = (f̂ − f)−E, whereas

for simulated data-sets we measure the discrepancy f̂ − f directly.

4. L2Boosting for multivariate linear time series

Obviously, the boosting method from section 3 can be used for vector au-

toregressive processes

Xt =

p∑

j=1

AjXt−j + Et, t ∈ Z, (9)

where Xt ∈ Rq is the q-dimensional observation at time t, Aj ∈ Rq×q and

Et ∈ Rq i.i.d. with E[Et] = 0 and Cov(Et) = Σ. The model is stationary

and causal if all roots of det(I−∑p
j=1 Ajz

j) (z ∈ C) are greater than one

in absolute value.

For observations Xt (t = 1, . . . , n), the equation in (9) can be written

as a multivariate regression model as in (5) with Y = [Xp+1, . . . ,Xn]T ∈
R(n−p)×q , B = [A1, . . . ,Ap]T ∈ Rqp×q and X ∈ R(n−p)×qp the correspond-

ing design matrix. The consistency result from Theorem 1 carries over to

the time series case. We consider the following q = qn-dimensional VAR(∞)

model:

Xt =
∞∑

j=1

AjXt−j + Et, t ∈ Z, (10)

with Et ∈ Rqn i.i.d. with E[Et] = 0, Cov(Et) = Σ and Et independent of

{Xs; s < t}. Again, we ignore notationally that the model and its terms

depend on n due to the growing dimension qn. Assume that:

(B1) {Xt}t∈Z in (10) is strictly stationary and α-mixing with mixing co-

efficients α(·) = αn(·).
(B2) The dimension satisfies: q = qn = O(nβ) for some 0 < β <∞.

(B3) supn∈N
∑∞
j=1

∑qn
k,r=1 |ak,r;j,n| <∞, ak,r;j,n = (Aj;n)kr .
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(B4) The mixing coefficients and moments satisfy: for some s ∈ N with

s > 2(1 + β)− 2 (β as in (B2)) and γ > 0

∞∑

k=1

(k + 1)s−1αn(k)γ/(2s+γ) <∞,

sup
1≤j≤qn,n∈N

E|X(j)
t |4s+2γ <∞, sup

1≤j≤qn,n∈N
E|E(j)

t |2s+γ <∞.

Theorem 2: Assume the model (10), satisfying the assumptions (B1)-

(B4), and require that (A3) holds. Consider multivariate L2Boosting with

componentwise linear least squares (as in section 3) using p = pn lagged

variables (as in model (9)) with pn → ∞, pn = O(n1−κ) (n → ∞), where

2(1 + β)/(s+ 2) < κ < 1. Then, the assertion from Theorem 1 holds with

f(x) =
∑∞

j=1 Ajxt−j , F̂(mn)(x) =
∑pn

j=1 Â
(mn)
j xt−j and x a new realization

from (10), independent from the training data.

A proof is given in Lutz and Bühlmann.26 Multivariate L2Boosting

is thus a consistent method for vector autoregressive models of infi-

nite order. Assuming invertibility of the autoregressive representation, i.e.

det(I−∑∞j=1 Ajz
j) 6= 0 for |z| ≤ 1, the range of consistency of multivariate

L2Boosting covers all causal, linear multivariate processes.

4.1. The modification for stationary model fitting

It is a desirable feature that a time series fit yields a stationary model. This

property holds e.g. for the Yule-Walker estimator in autoregressive models

(cf. Brockwell and Davis8) and it allows to simulate stationary processes

from the fitted model. The latter will be important for bootstrapping sta-

tionary time series data, cf. section 4.3. Ensuring a stationary model fit

is not so easily possible with the Lasso or Ridge regression which are well

known regularization methods for regression.

With boosting, it is straightforward to modify the algorithm so that

stationarity of the fitted model is ensured. In every iteration, we only allow

an up-date f̂ [m](·) which is stationary. This can be achieved as follows.

Modified multivariate L2Boosting for stationary model fitting

We modify Step 2 of the algorithm in section 3.3.

Modified Step 2 (a): Check if f̂ [m](·) corresponds to a stationary process.

To do so, denote the corresponding estimates by Â
[m]
j and consider the
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condition:

det(I − Â
[m]
1 z − . . .− Â[m]

p zp) 6= 0 for |z| ≤ 1. (11)

If (11) holds, then accept this f̂ [m](·) and proceed to Step 3 in the multi-

variate L2Boosting algorithm from section 3.3.

If (11) fails, then go to the modified Step 2 (b) below.

Modified Step 2 (b): Consider the set V = ({1, . . . , p} × {1, . . . q}) \ (ŝ, t̂),

where (ŝ, t̂) have been chosen by the base procedure from (7) in Step 2,

yielding ĝ[m] and a violation of (11). Use the best argument (ŝnew, t̂new) in

the base procedure in (7) from the restricted set V and up-date to get a

new f̂ [m](·). Go back to Step 2 (a).

4.2. Two problems discussed with Peter Bickel around 1995

What is a linear process? This question has been raised by Peter Bickel

when the first author has been staying at Berkeley. We then realized that

the class of linear processes is surprisingly large and we pointed out the

difficulties for testing whether a process is linear (Bickel and Bühlmann1,2).

While the latter is more a negative result, the former “supports” the idea of

approximations with linear processes in an automatic way. The notion of an

automatic approximation, i.e. learned by a machine, has been particularly

motivated for bootstrapping linear time series.

We certainly do not rule out the possibility that some time series data

should be modelled using nonlinear processes, ideally by incorporating

mechanistic understanding about the underlying scientific problem.

How should we model higher-order Markov transition probabili-

ties? When sticking to automatic approximations for a stationary process,

it is most common to do this in a Markovian framework of higher order.

The transition probabilities or densities for Xt given the previous Xt−1, . . .

are then of the form

p(xt|xt−1, . . .) = p(xt|xt−1, . . . , xt−p). (12)

Obviously, if p is large we run into the curse of dimensionality.

In the context of categorical processes with values in a finite space, the

idea of variable length Markov chains {Xt}t∈Z (Rissanen28; Bühlmann and
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Wyner11) is

p(xt|xt−1, . . .) = p(xt|xt−1, . . . , xt−`),

` = `(xt−1, . . .) = min{r;P[Xt = xt|Xt−1
−∞ = xt−1

−∞] = P[Xt = xt|Xt−1
t−r = xt−1

t−r]

for all xt},
where ` ≡ 0 corresponds to independence.

Here, we denote by xt−1
t−r = xt−1, . . . , xt−r. Thus, the memory-length func-

tion ` = `(·) depends on how the past actually looks like. It can be con-

veniently represented by a tree: Figure 1 shows an example for a binary

process. The memory-length function can be read top-down from the tree:

`(xt−1, . . .) =





2 if xt−1 = 1, xt−2 ∈ {0, 1}, xt−3
−∞ = arbitrary,

2 if xt−1 = 0, xt−2 = 1, xt−3
−∞ = arbitrary,

3 if xt−1 = 0, xt−2 = 0, xt−3 ∈ {0, 1}, xt−4
−∞ = arbitrary.

Each terminal node in the tree from Figure 1 corresponds to a state in

the variable length Markov chain. It becomes clear from the tree repre-

0

0

0 1

1

1 0 1

Fig. 1. Tree representation of a variable length Markov chain with binary values. The
memory-length function can be read top-down from the tree. Each terminal node corre-
sponds to a state in the Markov chain.

sentation that the model for the memory is hierarchical: Peter Bickel kept

asking whether one could allow for “holes” in the tree and proceed non-

hierarchically. This issue has also shown up in the context of motif finding

in computational biology by the need to model long range interactions: for

example, Zhao et al.35 propose permuted variable length Markov models.

From the perspective of boosting or also the Lasso, we can do a computa-

tionally efficient approach for modelling non-hierarchical dependence. Take

p in (12) large and do a sparse model fit: as a result p(xt|xt−1, . . . , xt−p) =



April 8, 2005 9:28 WSPC/Trim Size: 9in x 6in for Review Volume buhlmann-lutz
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p(xt|{xt−j ; j ∈ A}) where A ⊆ {1, . . . , p}, i.e. only some of the lagged vari-

ables will be effective for modelling xt. What seems quite natural today

has not been so obvious 10 years ago. We have described in section 4.1 a

boosting approach for non-hierarchical, higher order Markov modelling in

the context of multivariate, linear time series; from a methodological point

of view, the multivariate-ness causes no additional major complication for

our sparse model fitting, while for more classical approaches, the extension

to high-multivariate models is often complicated.

4.3. L2Boost-Bootstrap

We propose here a new bootstrap for stationary, multivariate time series,

based on vector autoregressive model fitting. It works as follows.

L2Boost-Bootstrap

Step 1. Specify the maximal lag p.

Step 2. Use multivariate L2Boosting for the vector-autoregressive model

of order p as in (9), with the modification from section 4.1. This yields

estimated coefficient matrices Â1, . . . , Âp.

Compute residuals Êt = Xt −
∑p

j=1 ÂjXt−j and consider the centered

versions Ẽt = Êt − (n− p)−1
∑n

t=p+1 Êt (t = p+ 1, . . . , n).

Step 3. Do i.i.d. resampling, more than n times, from the empirical c.d.f.

of Ẽt which yields E∗1, . . . ,E
∗
n+k. Then, generate

X∗1 = . . . = X∗p = 0,

X∗t =

p∑

j=1

ÂjX
∗
t−j + E∗t , t = p+ 1, . . . , n+ k.

Use the last stretch X∗k+1, . . . ,X
∗
n+k as a (approximately) stationary real-

ization from the fitted model.

Step 4. Define the bootstrapped estimator by the plug-in rule:

θ̂∗ = hn(X∗k+1, . . . ,X
∗
n+k),

where hn(·) is the function defining the estimator θ̂ = hn(X1, . . . ,Xn).

The maximal lag p should be chosen “large”: due to sparse model fitting,

there is often no big decrease in performance when choosing a too large p.

Theorems 1 and 2 support this proposal;. The value k should be chosen
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“large” to ensure that the initial conditions for the simulation in Step 3

have negligible influence.

Bootstrap inference can now be done in a standard way. Note that

in contrast to model-based time series bootstraps, the block bootstrap

(Künsch24) is not using the plug-in rule as in Step 4; for a discussion,

see also Bühlmann.9

4.3.1. Some numerical examples

It is not difficult to present examples where the L2Boost-Bootstrap is su-

perior than a vector-autoregressive, model based bootstrap using the (non-

parsimonious) Yule-Walker estimator with the AIC-order selection (AR-

YW Bootstrap). The gains of the L2Boost-Bootstrap over the AR-YW

method are most pronounced if q is large relative to sample size and the

true model is sparse; but already for moderate q, we see substantial improve-

ments (see below). Sparseness includes dependence structures with “holes”:

e.g. the true coefficients are A1 6= 0, A2 = 0, A3 6= 0, corresponding to a

sparse VAR(3).

We present in Figure 2 variance estimates with the L2Boost-Bootstrap

and the AR-YW bootstrap for sample partial autocorrelation estimators

P̂arcor(X
(r)
t ,X

(s)
t−j) (13)

for some lags j ∈ {1, 2, 3} and some r, s ∈ {1, . . . , q}, r 6= s. The sample

partial correlation is the sample correlation after having subtracted the

linear effects (from OLS regression) of all variables Xt−1, . . . ,Xt−j+1 in

between. The true underlying model is a 5-dimensional VAR(3) (q = 5) as

YW BB YW BB YW BB YW BB YW BB

0.
01

0
0.

01
8

0.
02

6
0.

03
4

Fig. 2. Boxplots of bootstrap variance estimates of sample partial autocorrelations as

in (13) for 5 combinations of various lags j and components r, s: AR-YW bootstrap
(YW) and L2Boost-Bootstrap with AICc stopping (BB); true variances indicated by
horizontal line. 50 model simulations.
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in (9) with A2 = 0 and A1, A3 sparse having only 7 non-zero entries (out of

25) each. Sample size is chosen as n = 50. The number of bootstrap samples

is 1000. The reductions in mean squared error of the L2Boost-Bootstrap

variance estimates over the AR-YW bootstrap for the five situations from

left to right in Figure 2 are substantial:

MSE reductions: 41.9% 62.7% 64.7% 74.4% 61.6%

4.4. Graphical modelling for stochastic processes: an

outlook

Graphical models are very useful for describing conditional dependencies

for multivariate observations. For multivariate stationary stochastic pro-

cesses {Xt}t∈Z, an object of interest is the conditional dependence struc-

ture among the components {X(j)
t }t∈Z for j = 1, . . . , q. Various notions of

conditional dependencies, associations and causality exist, cf. Brillinger7 or

Dahlhaus and Eichler.15

Without having some mechanistic understanding about the underlying

process {Xt}t∈Z, and if q is large relative to sample size n, the Gaussian

framework often yields a useful first approximation. It requires knowledge

of second order moments of the process {Xt}t∈Z only, and this may be

approximated by (potentially high-order) VAR(p) models as in (9). One

specific graphical model within this framework is the partial correlation

graph: Dahlhaus and Eichler15 give a precise description for VAR(p) models

in terms of zero-elements in the coefficient matrices Aj . When using our

multivariate L2Boosting from sections 3.3 and 4.1, we get a sparse VAR(p)

model fit, and we can then immediately read off a boosting estimate for

a partial correlation graph. We remark that such a straightforward graph

estimate is only possible due to the sparseness of the VAR(p)-model fit with

many estimated zeroes.

So far, we have not analyzed some properties of the boosting estimate

for (high-dimensional) partial correlation graphs for stochastic processes.

But we think that the boosting methods have an interesting potential for

graphical modelling, both for multivariate stationary stochastic processes

as outlined above as well as for multivariate i.i.d. data.
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1. Bickel, P.J. and Bühlmann, P. (1996). What is a linear process? Proc. Nat.
Acad. Sci. USA 93, 12128–12131.



April 8, 2005 9:28 WSPC/Trim Size: 9in x 6in for Review Volume buhlmann-lutz

Boosting 21
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22 P. Bühlmann and R.W. Lutz

selection in nonparametric regression using an improved Akaike information
criterion. J. Roy. Statist. Soc., Ser. B, 60, 271–293.

23. Jiang, W. (2004). Process consistency for AdaBoost. Ann. Statist. 32, 13–29
(disc. pp. 85–134).
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