
Very high-dimensional data:
prediction and variable selection

Peter Bühlmann
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substantial part: work with Nicolai Meinshausen



High-dimensional data

(X1, Y1), . . . , (Xn, Yn) i.i.d. or stationary

Xi p-dimensional predictor variable

Yi univariate response variable, e.g. Yi ∈ R or Yi ∈ {0, 1}

high-dimensional: p � n

areas of application: astronomy, biology, imaging, marketing
research, text classification,...
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High-dimensional linear models

Yi = (β0+)

p∑
j=1

βjX
(j)
i + εi , i = 1, . . . , n

p � n

in short: Y = Xβ + ε

goals:
I prediction, e.g. squared prediction error
I variable selection

i.e. estimating the effective variables
(having corresponding coefficient 6= 0)
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The best approach: ask a clever mind...



Other approaches include:

Ridge regression (Tikhonov regularization) for prediction

variable selection via AIC, BIC, (g)MDL (in a forward manner)

Bayesian methods for regularization, ...

computational feasibility for high-dimensional problems 
I (quasi-) convex optimization: (relaxed) Lasso

I greedy methods: Boosting
I “hierarchical” methods: PC-algorithm

(Spirtes, Glymour, Scheines; for Graphical Modeling)
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Lasso for linear models

β̂(λ) = argminβ(n−1‖Y − Xβ‖2 + λ︸︷︷︸
≥0

‖β‖1︸ ︷︷ ︸Pp
j=1 |βj |

)

 convex optimization problem

I Lasso does variable selection
some of the β̂j(λ) = 0
(because of “`1-geometry”)

I β̂(λ) is (typically) a shrunken LS-estimate



The prediction problem

Theorem (Greenshtein & Ritov, 2004)

I linear model with p = pn = O(nα) for some α < ∞
(high-dimensional)

I ‖β‖1 = ‖βn‖1 =
∑pn

j=1 |βj,n| = o((n/ log(n))1/4) (sparse)
I other minor conditions

Then, for suitable λ = λn,

EX [( f̂ (X )︸︷︷︸
β̂(λ)T X

− f (X )︸︷︷︸
βT X

)2] −→ 0 in probability (n →∞)



and Lasso performs “quite well” for prediction

binary lymph node classification using gene expressions:
a high noise problem

n = 49 samples, p = 7130 gene expressions

cross-validated misclassification error (2/3 training; 1/3 test)

Lasso L2Boosting FPLR Pelora 1-NN DLDA SVM
21.1% 17.7% 35.25% 27.8% 43.25% 36.12% 36.88%

multivariate gene selection
best 200 genes (Wilcoxon test)
no additional gene selection

Lasso selected on CV-average 13.12 out of p = 7129 genes



The variable selection problem

Yi = (β0+)

p∑
j=1

βjX
(j)
i + εi , i = 1, . . . , n

goal: find the effective predictor variables
i.e. the set Etrue = {j ; βj 6= 0}

`0-penalty methods, e.g. BIC, AIC,...

β̂(λ) = argminβ(n−1‖Y − Xβ‖2 + λ ‖β‖0︸ ︷︷ ︸Pp
j=1 I(βj 6=0)

)

I computationally infeasible
ad-hoc heuristic optimization such as forward-backward
etc...

I often “instable” poor prediction (Breiman (1996, 1998))



convexization of computationally hard problem Lasso

β̂(λ) = argminβ(n−1‖Y − Xβ‖2 + λ‖β‖1)

which does variable selection, i.e. β̂j(λ) = 0 for some j ’s

selected variables

Ê(λ) = {j ; β̂j(λ) 6= 0}

 can be computed efficiently for all λ’s using the LARS
algorithm (Efron, Hastie, Johnstone, Tibshirani, 2004)

O(np min(n, p)) operation counts
linear in p if p � n



CPU time
lymph node classification example: p = 7129, n = 49

computing Lasso solutions for all λ’s

2.603 seconds using lars in R (with use.gram=F )

with L2Boosting (i.e. Gauss-Southwell)
for large range of solutions

it’s less than a second!

0.906 seconds using mboost in R (PB & Hothorn, 2006)

C.F. Gauss in 1803
“Princeps Mathematicorum”

R.V. Southwell in 1933
Professor in Oxford
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Properties of Ê(λ)

Theorem (Meinshausen & PB, 2004)

I Y , X (j)’s Gaussian (not crucial)
I sufficient and almost necessary LfV condition

(LfV = Lasso for Variable selection); see also Zhao & Yu
(2006)

I if p = p(n) is growing with n
I p(n) = O(nα) for some 0 < α < ∞ (high-dimensionality)
I |Etrue,n| = O(nκ) for some 0 < κ < 1 (sparsity)
I the non-zero βj ’s are outside the n−1/2-range

Then: if λ = λn ∼ const .n−1/2−δ/2 (0 < δ < 1/2),

P[Ê(λ) = Etrue] = 1−O(exp(−Cn1−δ))

statistical (asymptotic) justification of convexization of
computationally hard problem for variable selection
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LfV condition is restrictive
sufficient and necessary for consistent model selection with Lasso

it fails to hold if design matrix is “too correlated”
⇒ Lasso is not consistent anymore for selecting the true model



The LfV condition: a condition on the covariance of X

LfV condition︸ ︷︷ ︸
Meinshausen & PB (2004)

⇔ Irrepresentable condition︸ ︷︷ ︸
Zhao & Yu (2006)

′′ ⇔′′ Lasso is consistent for variable selection

Irrepresentable condition ⇔ |Σ̂noise;eff Σ̂
−1
eff ;eff sign(βeff )| ≤ 1− η

it holds for
I Σ̂ij ≤ ρ|i−j| (0 ≤ ρ < 1) power decay correlations
I dictionaries with coherence︸ ︷︷ ︸

max. correlation

< (2peff − 1)−1

(notion of coherence: Donoho, Elad & Temlyakov (2004))
I easy to construct examples where condition fails to hold



Choice of λ

first (not so good) idea: choose λ to optimize prediction
e.g. via some cross-validation scheme

but: for prediction oracle solution

λ∗ = argminλE[(Y −
p∑

j=1

β̂
(
j λ)X (j))2]

P[Ê(λ∗) = Etrue] < 1 (n →∞) (or = 0 if pn →∞ (n →∞))

asymptotically: prediction optimality yields too large models
(Meinshausen & PB, 2004; related example by Leng et al., 2004)



in summary:
I prediction optimal solution yields asymptotically too large

models
I if LfV condition fails to hold (and assuming weaker

conditions)
Lasso yields models which contain the true model

 Lasso as a
“filter for variable selection”

i.e. true model is contained in selected models from Lasso



Binary lymph node classification in breast cancer: n = 49 p = 7130

5-fold CV tuned Lasso selects 23 genes (on whole data set)

note (in practice): identifiability problem among highly
correlated predictor variables

 an ad-hoc approach:
keep the 23 plus all its highly correlated genes for further
modeling, interpretation etc...



From filtering to selection of variables

with Lasso, we obtain sequence of sub-models

ŜUB = {Ê(λr ); 1 ≤ r ≤ rmax︸︷︷︸
=O(min(n,p))

}, λ1 = 0 < λ2 < . . . < λmax

typically

Ê(λmax) ⊂ . . . ⊂ Ê(λ2) ⊂ Ê(λ1)

assuming the LfV and other conditions:
with high probability,

Etrue ∈ ŜUB,

(and Etrue ⊆ Ê(λ∗))

 we only need a good selector within ŜUB



first (empirically not so good idea): choose best model in ŜUB
using BIC or related method

better:
use the Lasso again for the models in ŜUB:

Ê(λmax)︸ ︷︷ ︸
 Lasso again

Ê(λrmax−1)︸ ︷︷ ︸
 Lasso again

. . . Ê(λ2)︸ ︷︷ ︸
 Lasso again

Ê(λ1)︸ ︷︷ ︸
 Lasso again

this is the Relaxed Lasso (Meinshausen, 2005)
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Relaxed Lasso

for λ ≥ 0, 0 ≤ φ ≤ 1

β̂λ,φ = argminβ(n−1
n∑

i=1

(Yi −
∑

j∈Ê(λ)

βjX
(j)
i )2 + φλ‖β‖1)

for φ = 0: OLS on selected variables from Lasso(λ)
for φ = 1: Lasso(λ)

amount of computation for finding all solutions over λ and φ:
often, the same computational complexity as for Lasso/LARS:

O(np min(n, p)) = O(p) if p � n
worst case: O(np min(n, p)2) = O(p) if p � n still linear in p

this is “quasi-convex” optimization
two levels of a convex problem
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Properties of the relaxed Lasso

for orthonormal case:
XT X = I

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

relaxed Lasso

z

hard−theshold
soft−threshold
relaxed Lasso

for general case:
assume the LfV and other “Lasso conditions”

prediction optimal tuned relaxed Lasso
is consistent for variable selection

(Meinshausen, 2005)
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for very high-dimensional case:

I p = pn ∼ C1 exp(C2n1−ξ) (0 < ξ < 1)

I effective number of variables is finite (finite `0-norm)
non-effective variables are independent

I “Lasso assumptions” from before

Lasso has very slow MSE convergence rate (depending on ξ)
Relaxed Lasso has MSE rate O(n−1)

(Meinshausen, 2005)



n = 300, p = 20, . . . 650, peff = 20
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1: Lasso 2: relaxed Lasso
additional pure noise variables are much less damaging with
the relaxed Lasso than for Lasso



for prediction:
Relaxed Lasso never substantially worse than the Lasso

the price for the flexibility of the relaxed Lasso is
the larger search space 0 ≤ φ ≤ 1 (Lasso: φ = 1)

for variable selection:
Relaxed Lasso almost always sparser than Lasso



Binary lymph node classification in breast cancer: n = 49 p = 7130

5-fold CV tuning for each method

cross-validated quantities (2/3 training; 1/3 test)

misclassif. error number of selected genes
Lasso 21.1% 13.12

Relaxed Lasso 20.1% 7.3
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DNA splice site detection

DNA sequence

. . . ACGGC . . . NNN GC︸︷︷︸
potential donor site

NNNN

︸ ︷︷ ︸
3 positions exon GC 4 positions intron

. . . AAC . . .

response Y ∈ {0, 1}: splice or non-splice site
predictor variables: 7 factors each having 4 levels

(full dimension: 47 = 16′384)
data: p = 16′384, n = 11′220



logistic regression:

log
(

p(x)

1− p(x)

)
= β0 + main effects + first order interactions + . . .

with sum-to-zero constraints

use “Lasso” which selects whole terms
instead of selection of dummy indicator variables
e.g. the interaction term between factor 2 and 5 (which is
encoded with 9 free parameters/dummy indicators)

 Group Lasso (Yuan and Lin (2006), for Gaussian regression)

penalty: λ
∑

term j

‖βj‖2

I invariant under orthonormal parameter transformations
I if term j is of dimension 1: ‖βj‖2 = ‖βj‖1



I new efficient algorithms are needed for Group Lasso with
binomial likelihood
 Block gradient descent with tight approximations for the
Hessian

I theory and methodology for high-dimensions: “similar” as
for the Lasso

(Meier, v.d. Geer & PB, 2006)

Group Lasso/Ridge: in spirit of the Relaxed Lasso
1st stage: Group Lasso for logistic regression
2nd stage: Ridge logistic regression on models from 1st stage

 allows for hierarchical model fitting
 better term selection and better prediction than Group Lasso



Term

1 3 5 7 1:3 1:5 1:7 2:4 2:6 3:4 3:6 4:5 4:7 5:7
2 4 6 1:2 1:4 1:6 2:3 2:5 2:7 3:5 3:7 4:6 5:6 6:7

l 2
−

no
rm

0
1

2 GL
GL/R
GL/MLE

Term

1:2:3 1:2:5 1:2:7 1:3:5 1:3:7 1:4:6 1:5:6 1:6:7 2:3:5 2:3:7 2:4:6 2:5:6 2:6:7 3:4:6 3:5:6 3:6:7 4:5:7 5:6:7
1:2:4 1:2:6 1:3:4 1:3:6 1:4:5 1:4:7 1:5:7 2:3:4 2:3:6 2:4:5 2:4:7 2:5:7 3:4:5 3:4:7 3:5:7 4:5:6 4:6:7

l 2
−

no
rm

0
1

2

I mainly neighboring DNA positions show interactions
(has been “known” and “debated”)

I no interaction among exon and intron positions
(with Group Lasso/Ridge method)

I no second-order interactions
(with Group Lasso/Ridge method)



predictive power:
competitive with “state to the art” maximum entropy modeling
from Yeo and Burge (2004)

correlation between true and predicted class

Logistic Group Lasso/Ridge 0.6593
max. entropy (Yeo and Burge) 0.6589

I our model is simple (not necessarily the method/algorithm)
and has clear interpretation

I it is as good or better than many of the complicated
non-Markovian stochastic process models
(e.g. Zhao, Huang and Speed (2004))



Conclusions

especially for high-dimensional data:

I Lasso useful for variable filtering
it is computationally attractive: linear in dimensionality p
the “true model” is contained in the solution set of Lasso

I Relaxed Lasso (or similar two stage procedures):

I often better prediction than Lasso

I optimal prediction penalty yields consistent model selection

I sparser solutions than Lasso
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