greedy boosting and convex Lasso-optimization Very high-dimensional data:

Peter Bühlmann

ETH Zürich

1. High-dimensional data

 $(X_1,Y_1),\ldots,(X_n,Y_n)$ i.i.d. or stationary

 $X_i \in \mathbb{R}^p$ predictor variable

 Y_i univariate response variable, e.g. $Y_i \in \mathbb{R}$ or $Y_i \in \{0,1\}$

high-dimensional: $p\gg n$

classification,... areas of application: astronomy, biology, imaging, marketing research, text

High-dimensional linear models

$$Y_i = eta_0 + \sum_{j=1}^p eta_j X_i^{(j)} + arepsilon_i, \ i = 1, \dots, n$$

 $p \gg n$

How should we fit this model?

approaches include:

(in a forward manner); Bayesian methods for regularization, ... Ridge regression (Tikhonov regularization); variable selection via AIC, BIC, gMDL

Boosting, Lasso, ...

our requirements:

- computationally feasible
- yields variable selection
- statistically accurate for prediction or selecting the correct variables

computational feasibility for high-dimensional problems

}

greedy methods

9

convex optimization

2. Greedy is good for $p \gg n$: L_2 Boosting

(Friedman, 2001)

specify a base procedure ("weak learner"):

data algorithm A

 $\hat{ heta}(\cdot)$ (a f

(a function estimate)

e.g.: simple linear regression, tree (CART), ...

 L_2 Boosting with base procedure $ilde{ heta}(\cdot)$: repeated fitting of residuals

$$m=1: (X_i,Y_i)_{i=1}^n \leadsto \hat{\theta}_1(\cdot), \ f_1=\underbrace{\nu}_{\text{e.g.}=0.1} \hat{\theta}_1 \iff \text{resid. } U_i=Y_i-f_1(X_i)$$
 $m=2: (X_i,U_i)_{i=1}^n \leadsto \hat{\theta}_2(\cdot), \ f_2=f_1+\nu\hat{\theta}_2 \iff \text{resid. } U_i=Y_i-f_2(X_i)$

 $f_{m_{stop}}(\cdot) = \nu \sum_{m=1}^{m_{stop}} \hat{\theta}_m(\cdot)$ (greedy fitting of residuals)

Tukey (1977): twicing for $m_{stop}=2$ and u=1

linear OLS regression against the one predictor variable which reduces residual Componentwise linear least squares base procedure

sum of squares most

$$\hat{\theta}(x) = \hat{\beta}_{\hat{S}} x^{(\hat{S})},$$

$$\hat{\beta}_{j} = \sum_{i=1}^{n} Y_{i} X_{i}^{(j)} / \sum_{i=1}^{n} (X_{i}^{(j)})^{2}, \quad \hat{S} = \arg\min_{j} \sum_{i=1}^{n} (Y_{i} - \hat{\beta}_{j} X_{i}^{(j)})^{2}$$

 L_2 Boosting with componentwise linear LS:

first round of estimation: selected predictor variable $X^{(\mathcal{S}_1)}$ (e.g. $=X^{(3)}$) corresponding $eta_{\hat{S_1}}$ use shrunken fit $\hat{f}_1(x)=
u\hat{eta}_{\hat{\mathcal{S}}_1}x^{(\hat{\mathcal{S}}_1)}$ (e.g. u=0.1)

second round of estimation: selected predictor variable $X^{(\hat{\mathcal{S}}_2)}$ (e.g.= $X^{(21)}$)

corresponding $\hat{eta}_{\hat{S}_2}$

use shrunken fit $\hat{f}_2(x)=\hat{f}_1(x)+
u\hat{eta}_{\hat{\mathcal{S}}_2}x^{(\hat{\mathcal{S}}_2)}$

etc.

for u=1, this is known as

Matching Pursuit (Mallat and Zhang, 1993)

Weak greedy algorithm (deVore & Temlyakov, 1997)

a version of Boosting (Schapire, 1992; Freund & Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gauss in 1803 "Princeps Mathematicorum"

R.V. Southwell in 1933

Professor in engineering, Oxford

Properties

variable selection

shrinkage towards zero for coefficients of selected variables

→ often much better performance than OLS on selected variables ("more stable" in Breiman's terminology)

but not the same "similar" to the Lasso (Efron, Hastie, Johnstone & Tibshirani, 2004)

computational complexity:

$$O(npm_{stop}) = O(p)$$
 if $p \gg n$, i.e. linear in dimension p

statistically consistent for very high-dimensional, sparse problems

Theorem (PB, 2004)

boosting iterations) if L_2 Boosting with comp. linear LS regression is consistent (for suitable number of

- $p_n = O(\exp(Cn^{1-\xi})) \ (0 < \xi < 1)$ (high-dimensional) essentially exponentially many variables relative to \boldsymbol{n}
- $\bullet \sup_n \sum_{j=1}^{p_n} |eta_{j,n}| < \infty \ \ell^1$ -sparseness of true function

i.e. for suitable, slowly growing $m=m_n$:

$$\mathbb{E}_X |\hat{f}_{m_n,n}(X) - f_n(X)|^2 = o_P(1) \ (n \to \infty)$$

"no" assumptions about the predictor variables/design matrix

in other words:

consistency for de-noising sparse signal with highly over-complete dictionaries

binary lymph node classification in breast cancer using gene expressions:

a high noise problem

n=49 samples, p=7130 gene expressions

CV-misclassif.err.	
24.8%	L_2 Boosting
35.25%	FPLR
27.8%	Pelora
43.25%	1-NN
36.12%	DLDA
36.88%	SVM

 L_2 Boosting, Forward Penalized Logistic Regression (FPLR), Supervised Gene Grouping (Pelora)

no gene pre-selection \leadsto all these methods do multivariate gene selection

Nearest Neighbor (1-NN), Diagonal Linear Discriminant Analysis (DLDA), SVM with radial basis kernel

with gene pre-selection: the best 200 genes from 2-sample Wilcoxon score

→ no additional gene selection anymore

 L_2 Boosting selected 42 out of p=7129 genes

for this data-set: not good prediction with all the different methods

(although we will improve to 16.3%)

but L_2 Boosting may be a good(?) multivariate gene selection method

Variable selection

do variable selection such that predictive performance is good (not necessarily optimal)

computationally infeasible for high-dimensional problems "classical": subset selection using BIC, AIC, gMDL, etc.

remedies:

- forward selection
- but often not competitive in terms of predictive performance
- L_2 Boosting: seems quite interesting, but weak theoretical basis
- ullet replace the computationally hard subset selection problem (2^p sub-models) by convex relaxation

3. Lasso-relaxation is good for $p\gg n$

consider again linear model (or highly overcomplete dictionary)

$$Y = f(X) + \varepsilon, \quad f(x) = \sum_{j=1}^{p} \beta_j x^{(j)}, \quad p \gg n$$

Lasso or ℓ^{1} -penalized regression (Tibshirani, 1996):

$$\hat{\beta}_{Lasso} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p} \beta_j X_i^{(j)})^2 + \underbrace{\lambda}_{\geq 0; \text{ penalty par. } j=1}^{p} |\beta_j|$$

- does variable selection: some (many) eta_j 's exactly equal to 0
- does shrinkage
- involves a convex optimization only

"similar" properties of convex relaxation (Lasso) and greedy algorithm (Boosting):

variable selection; shrinkage;

consistency for prediction in high-dimensions (Greenshtein & Ritov (2004))

and indeed: there are relations

Efron, Hastie, Johnstone, Tibshirani (2004): for special design matrices,

iterations of L_2 Boosting with "infinitesimally" small u yield all Lasso solutions when varying λ

~ computationally interesting to produce all Lasso solutions in one sweep of boosting

clever and efficient than L_2 Boosting Least Angle Regression LARS (Efron et al., 2004) is computationally even more

 $O(np\min(n,p))$ essential operations to compute all Lasso solutions

$$=O(p)$$
 if $p\gg n$

the solutions from Lasso and Boosting coincide Zhao and Yu (2005): in general, when adding some backward step greedy (plus backward steps) and convex relaxation are surprisingly similar

3.1. Variable selection and graphical modeling with the Lasso

random variables (this includes regression) goal: use the Lasso for determining presence/absence of associations between

Gaussian conditional independence graph

assume that $X=X^{(1)},\ldots,X^{(p)}\sim \mathcal{N}_p(\mu,\Sigma)$

graph:

set of edges $E\subseteq \Gamma \times \Gamma$ defined as: set of nodes $\Gamma = \{1, 2, \dots, p\}$, corresponding to the p random variables

there is an undirected edge between node i and j

 $X^{(i)}$ conditionally dependent of $X^{(j)}$ given all other $\{X^{(k)};\, k
eq i,j\}$

\$

 $\sum_{ij}^{-1} \neq 0$

₽

note: Σ_{ij}^{-1} corresponds to $eta_j^{(i)} = \Sigma_{ij}^{-1}/\Sigma_{ii}^{-1}$, where

$$X^{(i)} = \beta_j^{(i)} X^{(j)} + \sum_{k \neq i, j} \beta_k^{(i)} X^{(k)} + \operatorname{error}^{(i)}$$

we can infer the graph from variable selection in regression

$$\beta_j^{(i)} = 0 \Leftrightarrow \Sigma_{ij}^{-1} = 0$$

huge computational problem when using e.g. BIC: $p2^{p-1}$ least squares problems!

Just relax!

replace the computationally hard problem by a convex problem: compute the Lasso estimates $\hat{eta}_i^{(j)}$

Estimation of graph:

estimate an edge between node i and j if

$$\hat{eta}_j^{(i)}
eq 0$$
 and $\hat{eta}_i^{(j)}
eq 0$

(for finite samples: it could happen that only one of the $\hat{eta}_j^{(i)}, \hat{eta}_i^{(j)}$ is eq 0)

note: depends on the tuning parameter λ in Lasso

this involves only one convex optimization problem!

instead of checking exhaustively $2^{p-1}p$ least squares problems (e.g. using BIC)

Comparison of Lasso and classical stepwise selection

dotted · · · ·

stepwise selection

dashed _ _ _

Lasso

true graphs are sparse, having at most 4 edges out of every node ROC-curves for estimated graphs with p=10,30 nodes and n=40 obs.

Some theory for high dimensions

Theorem (Meinshausen & PB, 2004)

For
$$\lambda_n \sim C n^{-1/2 + \delta/2}$$
,

$$\mathbb{P}[\operatorname{estimated} \operatorname{graph}(\lambda_n) = \operatorname{true} \operatorname{graph}] = 1 + O(\exp(-Cn^\delta)) \ (n o \infty)$$

 $(0<\delta<1)$

≕:

- Gaussian data
- ullet $p=p_n=O(n^r)$ for any r>0 (high-dimensional)
- plus some other technical conditions

justification for relaxation with a computationally simple convex problem!

Choice of λ

Theorem doesn't say much about choosing λ ...

first (not so good) idea: choose λ to optimize prediction

e.g. via some cross-validation scheme

but: for prediction oracle solution

$$\lambda^* = \arg\min_{\lambda} \mathbb{E}[(X^{(i)} - \sum_{j \neq i} \hat{\beta}_j^{(i)}(\lambda) X^{(j)})^2]$$

$$\mathbb{P}[\mathsf{estimated}\ \mathsf{graph}(\lambda^*) = \mathsf{true}\ \mathsf{graph}] \to 0\ (p_n \to \infty, n \to \infty)$$

asymptotically: the prediction optimal graph is too large

(Meinshausen & PB, 2004; related example by Meng et al., 2004)

4. Beyond Lasso (and Boosting)

linear model $Y=X\beta+\varepsilon$

soft-threshold estimator: for orthonormal design: $\mathbf{X}^T\mathbf{X}=I$: Lasso/LARS and L_2 Boosting yield the

$$\hat{eta}_{soft}^{(j)} = \left\{ egin{array}{ll} Z_j - \lambda, & ext{if } Z_j \geq \lambda, \\ 0, & ext{if } |Z_j| < \lambda, & ext{where } Z_j = (\mathbf{X}^T\mathbf{Y})_j \\ Z_j + \lambda, & ext{if } Z_j \leq -\lambda. \end{array}
ight.$$

Is soft-thresholding or Lasso a good thing?

- ullet $eta_1, \ldots eta_p$ i.i.d. \sim Double-Exponential, soft-thresholding and the Lasso yield the MAP (which often performs well)
- minimax results for soft-thresholding (Donoho & Johnstone, ...)

but: a different story in the very high-dimensional sparse case

assume:

- $p = p_n \sim C_1 \exp(C_2 n^{1-\xi}) \ (0 < \xi < 1)$
- ullet effective number of variables is finite (finite ℓ^0 -norm) non-effective variables are independent

Theorem (Meinshausen, 2005)

$$\mathbb{P}[\inf_{\lambda} \underbrace{L(\lambda)}_{\text{risk of Lasso}} > cn^{-r}] \to 1 \ (n \to \infty) \ \text{for} \ r > \xi$$

while optimal rate is n^{-1} (achieved e.g. by OLS with the true variables)

Lasso can have very poor convergence rate

reason: need large λ for variable selection \leadsto strong bias of soft-thresholding

Better:

- SCAD (Fan and Li, 2001)
- Nonnegative Garrote (Breiman, 1995)
- Bridge estimation

(Frank and Friedman, 1993)

they all work for general ${f X}$

for non-orthogonal X:

- non-convex optimization for SCAD or Bridge estimation
- NN-Garrote only for $p \leq n$

4.1. The relaxed Lasso (Meinshausen, 2005)

for
$$\lambda \geq 0$$
, $0 \leq \phi \leq 1$

$$\hat{\beta}_{\lambda,\phi} = \arg\min_{\beta} n^{-1} \sum_{i=1}^n (Y_i - \sum_{j \in \mathcal{M}_{\lambda}} \beta_j X_i^{(j)})^2 + \phi \lambda \|\beta\|_1$$
 model from Lasso(λ)

for $\phi=0$: OLS on selected variables from Lasso(λ)

for $\phi=1$: Lasso(λ)

amount of computation for finding all solutions over λ and ϕ :

often, the same computational complexity as for Lasso/LARS (surprising):

$$O(np\min(n,p)) = O(p)$$
 if $p \gg n$

worst case: $O(np\min(n,p)^2) = O(p)$ if $p \gg n$ still linear in p

this is "quasi-convex" optimization: two levels of a convex problem

for orthonormal case:

$$\mathbf{X}^T\mathbf{X} = I$$

Theorem (Meinshausen, 2005)

with essentially the same assumptions as before

$$\inf_{\lambda,\phi} L(\lambda,\phi) = O_P(n^{-1})(n \to \infty)$$

also: use the relaxed Lasso for variable selection and graphs/dependency networks → prediction optimal (or cross-validated) tuning parameters yield (for some cases) consistent variable selection and graph estimates

and they are very disturbing for Ridge-type regularization (e.g. SVM)

additional pure noise variables are much less damaging with the relaxed Lasso than

for Lasso and Boosting

the relaxed Lasso is the larger search space $0 \leq \phi \leq 1$ (Lasso: $\phi = 1$)

relaxed Lasso never substantially worse than the Lasso: the price for the flexibility of

Results for high noise, binary lymph node classification

cross-validated misclassification rate:

relaxed Lasso (tuned by 5-fold CV): 16.3%

Lasso (tuned by 5-fold CV): 21.0%

 L_2 Boosting (tuned by 5-fold CV): 24.8%

selected genes (on whole data set):

relaxed Lasso: 2 genes (!) Lasso: 23 genes L_2 Boosting: 42 genes

the 2 genes from relaxed Lasso are also selected by Lasso and L_2 Boosting

note the identifiability problem among highly correlated predictor variables

Conclusions

high-dimensional: blue greedy or convex? the methods are similar and very useful

Boosting is more generic: can be easily extended to e.g. the nonparametric setting

nonparametric interaction modeling

 L_2 Boosting with pairwise splines

sample size n=50 p=20, effective $p_{eff}=5$

Lasso is more explicit (and hence better understood)

beyond Lasso (more sparse) is computationally feasible via relaxed Lasso doing "quasi-convex" optimization