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1. High-dimensional data

(X1,Y1),...,(Xn,Yy,) iid. orstationary

X; € RP predictor variable

Y; univariate response variable, e.g. Y; € RorY; € {0,1}
high-dimensional: p > n

areas of application: astronomy, biology, imaging, marketing research, text

classification,...
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High-dimensional linear models

p
M\&HQQ+MQAN&CV+m§ 1=1,...,n

j=1
p>n

How should we fit this model?

approaches include:

Ridge regression (Tikhonov regularization); variable selection via AIC, BIC, gMDL

(in a forward manner); Bayesian methods for regularization, ...

Boosting, Lasso, ...
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our requirements:
e computationally feasible
® yields variable selection

e statistically accurate for prediction or selecting the correct variables

computational feasibility for high-dimensional problems

A
greedy methods
or

convex optimization




2. Greedy is good for p > n: LyBoosting

(Friedman, 2001)

specify a base procedure (“weak learner”):

algorithm A A . .
data — 6(-)  (afunction estimate)

e.g.: simple linear regression, tree (CART), ...

LoBoosting with base procedure 6(+): repeated fitting of residuals

A

1: (X;,Y5)i, immcv fi= w_ 01 ~oresidU; =Y — f1(X;)
e.g. =0.1

m=2: (X;,U;))"; ~ mmcv fo=fi+vhy ~ resid U; =Y; — f2(X5)

m

frmaio, (1) =V MNMM@ mSC (greedy fitting of residuals)

/ Tukey (1977): twicing for mgtop = 2and v =1 K




mo:,_oo:m:g_mm linear least squares base procedure: /
linear OLS regression against the one predictor variable which reduces residual

sum of squares most

b(a) = B’

B = > VXD 3 (X)?, § =argminy (Vi - B; X7
1=1 1=1

J i=1

LoBoosting with componentwise linear LS:

first round of estimation: selected predictor variable Nﬁw; (e.g. = Nvav

corresponding (3 3

use shrunken fit ,Nw (x) = N\mwp&ﬁwb (e.g. v =0.1)

second round of estimation: selected predictor variable NR& (e.g.= NGCV

corresponding me

use shrunken fit ,PAHV = f1(z) + N\mww&ﬁwmv

e Y




; v = 1, this is known as /

Matching Pursuit (Mallat and Zhang, 1993)
Weak greedy algorithm (deVore & Temlyakov, 1997)
a version of Boosting (Schapire, 1992; Freund & Schapire, 1996)

Gauss-Southwell algorithm

C.F. Gaussin 1803

“Princeps Mathematicorum”

R.V. Southwell in 1933

/ Professor in engineering, Oxford K
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Properties

variable selection

shrinkage towards zero for coefficients of selected variables
~~ often much better performance than OLS on selected variables

(“more stable” in Breiman’s terminology)

“similar” to the Lasso (Efron, Hastie, Johnstone & Tibshirani, 2004)

but not the same

computational complexity:

O(npmstop) = O(p) if p > n, i.e. linear in dimension p
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\mﬁmgmgom__v\ consistent for very high-dimensional, sparse problems

Theorem (PB, 2004)
LBoosting with comp. linear LS regression is consistent (for suitable number of
boosting iterations) if:
ep, = O(exp(Cn'=¢)) (0 < £ < 1) (high-dimensional)
essentially exponentially many variables relative to n

o sup,, > " |Bjn| < o0 ¢1-sparseness of true function

l.e. for suitable, slowly growing m = m,:

Ex|frmnn(X) = fu(X)? = 0p(1) (n = o0)

no” assumptions about the predictor variables/design matrix

in other words:

/ consistency for de-noising sparse signal with highly over-complete dictionaries

~
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\ binary lymph node classification in breast cancer using gene expressions: /
a high noise problem

n = 49 samples, p = 7130 gene expressions

7hwwoom:3©7 FPLR 7_um_o<m 1-NN 7 DLDA 7 SVM

43.25%

CV-misclassif.err. 7 24.8% 7 35.25% 7 27.8% 36.12% 7 36.88%

L2 Boosting, Forward Penalized Logistic Regression (FPLR), Supervised Gene Grouping (Pelora)

no gene pre-selection ~~ all these methods do multivariate gene selection

Nearest Neighbor (1-NN), Diagonal Linear Discriminant Analysis (DLDA), SVM with radial basis kernel
with gene pre-selection: the best 200 genes from 2-sample Wilcoxon score

~~ Nno additional gene selection anymore
Lo Boosting selected 42 out of p = 7129 genes

for this data-set: not good prediction with all the different methods
(although we will improve to 16.3%)
/g: LoBoosting may be a good(?) multivariate gene selection method K
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Variable selection

do variable selection such that predictive performance is good

(not necessarily optimal)

classical’: subset selection using BIC, AIC, gMDL, etc.

computationally infeasible for high-dimensional problems

remedies:
e forward selection

but often not competitive in terms of predictive performance
e [ 5Boosting: seems quite interesting, but weak theoretical basis

e replace the computationally hard subset selection problem (2P sub-models)

N

by convex relaxation
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3. Lasso-relaxation is good forp > n

consider again linear model (or highly overcomplete dictionary)

Y =f(X)+e fl@)=>) Bz, p>n
j=1

Lasso or mH-_om:m__NmQ regression (Tibshirani, 1996):

n p p
Qh@mmo — m:d_.:_sm MAK — MQQNNCJM + A M _QL
1=1

. { .
1=1 >0; penalty par. =1

e does variable selection: some (many) @ 's exactly equal to O

e does shrinkage

/o_3<o_<mm a convex optimization only
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this is convex relaxation:
replace the computationally hard/infeasible subset selection %o-cm:m_g

by the convex £*-penalized problem
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\m::__mﬂ._ properties of convex relaxation (Lasso) and greedy algorithm (Boosting): /
variable selection; shrinkage;

consistency for prediction in high-dimensions (Greenshtein & Ritov (2004))
and indeed: there are relations

Efron, Hastie, Johnstone, Tibshirani (2004): for special design matrices,

iterations of L 9Boosting with “infinitesimally” small v

yield all Lasso solutions when varying A

~~ computationally interesting to produce all Lasso solutions in

one sweep of boosting

Least Angle Regression LARS (Efron et al., 2004) is computationally even more
clever and efficient than LoBoosting

O(np min(n, p)) essential operations to compute all Lasso solutions

/ =0O(p)ifp>n K
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Zhao and Yu (2005): in general, when adding some backward step

the solutions from Lasso and Boosting coincide

greedy (plus backward steps) and convex relaxation are surprisingly similar
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\w.p. Variable selection and graphical modeling with the _.mmmo/

goal: use the Lasso for determining presence/absence of associations between

random variables (this includes regression)

Gaussian conditional independence graph

assumethat X = XN . X®) ~ N (u, X)

graph:
set of nodes I' = ,ﬁ“ 2,... ;&,. corresponding to the p random variables
setof edges £ C I' X I' defined as:

there is an undirected edge between node ¢ and
def

& X @ conditionally dependent of X /) given all other { X *); k # 4, 5}
~1
& X 70

N
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4 N

note: Mmp corresponds to Q.Ms = MMH\MM@.H_ where
X = g0 x0) 4 3 BDX® 4 error®
kFi,]
~~ we can infer the graph from variable selection in regression

&snoﬁmﬁno

huge computational problem when using e.g. BIC: BMNTH least squares problems!

. K
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Just relax!

replace the computationally hard problem by a convex problem:

compute the Lasso estimates Q@C )

Estimation of graph:

estimate an edge between node 7 and j if
3(1) 3(7)
B;7 #0and 5;7" # 0
(for finite samples: it could happen that only one of the m%vu @.C.v is # 0)
note: depends on the tuning parameter A in Lasso
this involves only one convex optimization problem!

instead of checking exhaustively M@LB least squares problems (e.g. using BIC)

N

k
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\ Comparison of Lasso and classical stepwise selection

p=10 p =30

correct positives
10 15 20 25 30
] ] ] ]
N
correct positives
15 20 25 30
] ] ] ]
A
\
\
\

|
N
10

T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
false positives false positives

dotted - - - - stepwise selection

dashed - — — Lasso

ROC-curves for estimated graphs with p = 10, 30 nodes and n = 40 obs.

ém graphs are sparse, having at most 4 edges out of every node

k
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Some theory for high dimensions

Theorem (Meinshausen & PB, 2004)
For \,, ~ Cn—1/216/2

IP [estimated graph(A,,) = true graph| = 1 + QAmeAIquvv (n — 00)
0<s<1)

if

e Gaussian data

ep=p, =0O(n")forany r > 0 (high-dimensional)

e maximal number of edges out of a node = O(n*) (0 < k < 1) (sparseness)

® plus some other technical conditions

N

justification for relaxation with a computationally simple convex problem!
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4 N

Choice of \

Theorem doesn’t say much about choosing ...

first (not so good) idea: choose A to optimize prediction

e.g. via some cross-validation scheme

but: for prediction oracle solution
N = argminE[(X® - )" 37 (0 X @)
A j#i
IP [estimated graph(A\*) = true graph] — 0 (p, — o0, n — o0)

asymptotically: the prediction optimal graph is too large
(Meinshausen & PB, 2004, related example by Meng et al., 2004)

. K
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we have a simple proposal for choosing the penalty parameter

which avoids connecting distinct connectivity components
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4. Beyond Lasso (and Boosting)

linear model Y = X3 + ¢

for orthonormal design: XTX = I: Lasso/LARS and L Boosting yield the
soft-threshold estimator:

Zi— A, ifZ; > A,

By =10, t1Z;] <X, where Z; = (X"Y),

Zi + A, itZ; < =

23



|s soft-thresholding or Lasso a good thing?

® (31,...0p1id. ~ Double-Exponential,
soft-thresholding and the Lasso yield the MAP (which often performs well)

e minimax results for soft-thresholding (Donoho & Johnstone, ...)

N
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but: a different story in the very high-dimensional sparse case

assume:
op=pp ~ Crexp(Coen' %) (0 <€ < 1)
e effective number of variables is finite (finite No-:o:sv

non-effective variables are independent

Theorem (Meinshausen, 2005)

Plinf L(A) >en™ "] —=1(n—o0)forr>¢
A ———
risk of Lasso

while optimal rate is n~1 (achieved e.g. by OLS with the true variables)

~» Lasso can have very poor convergence rate

N
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reason: need large A for variable selection ~~ strong bias of soft-thresholding

threshold functions

--- hard-thresholding
—— nn-garrote
--- soft-thresholding

Better:
- SCAD (Fan and Li, 2001)
- Nonnegative Garrote (Breiman, 1995)
- Bridge estimation
(Frank and Friedman, 1993)

they all work for general X

for non-orthogonal X:
® non-convex optimization for SCAD or Bridge estimation

e NN-Garrote only forp < n

. K
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\ 4.1. The relaxed Lasso (Meinshausen, 2005)

forA>0,0<¢<1
Brs = argminn ™" > (¥; - 3 B; X )2 + ¢Al18]lx
B i=1 ic M,
—~
model from Lasso(\)

for @ = 0: OLS on selected variables from Lasso(\)
for = 1: Lasso(\)

amount of computation for finding all solutions over A and ¢:

often, the same computational complexity as for Lasso/LARS (surprising):
O(npmin(n,p)) = O(p)ifp>n

worst case: O(npmin(n,p)?) = O(p)ifp>n sl linearin p

/ this is “quasi-convex” optimization: two levels of a convex problem
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\ relaxed Lasso /

—— hard-theshold
— soft-threshold
—— relaxed Lasso

for orthonormal case:
XTX =171

Theorem (Meinshausen, 2005)

with essentially the same assumptions as before

inf L(A, ¢) = Op(n~")(n — o)

also: use the relaxed Lasso for variable selection and graphs/dependency networks

~~ prediction optimal (or cross-validated) tuning parameters yield (for some cases)
/ consistent variable selection and graph estimates K
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@o_ they are very disturbing for Ridge-type regularization (e.g. SVM)

n =300, p = 20,...650, pess = 20
L2-loss number of selected variables
N~ (@)
< | \ B H\
S - 1 -
o \ m N 1
1 1 /
N \ S \H
© 41 1
° T ) Q H@2--2----- R R 2
2~.9-"7
2
O p—
_ _ _ _ _ _ _ _ _ _ _ _ _ _
0 100 300 500 0 100 300 500
P P
1: Lasso 2: relaxed Lasso
additional pure noise variables are much less damaging with the relaxed Lasso than
for Lasso and Boosting

k
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p
1: Lasso

20 40 60 80 100

0

number of selected variables

2: relaxed Lasso

the relaxed Lasso is the larger search space 0 < ¢ < 1 (Lasso: ¢ = 1)

relaxed Lasso never substantially worse than the Lasso: the price for the flexibility of

k
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Results for high noise, binary lymph node classification

cross-validated misclassification rate:

relaxed Lasso (tuned by 5-fold CV): 16.3%
Lasso (tuned by 5-fold CV): 21.0%
LoBoosting (tuned by 5-fold CV):  24.8%

selected genes (on whole data set):

relaxed Lasso: 2 genes (I)  Lasso: 23 genes  LoBoosting: 42 genes

the 2 genes from relaxed Lasso are also selected by Lasso and LoBoosting

note the identifiability problem among highly correlated predictor variables

. K
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N

40o:o_cm_ozm‘

high-dimensional: blue greedy or convex?

the methods are similar and very useful

p=20, p-eff=10, n=50

nonparametric interaction modeling
Lo Boosting with pairwise splines

sample size n = 50

p = 20, effective pesr = 9

boosting iteratio

® Lasso is more explicit (and hence better understood)

beyond Lasso (more sparse) is computationally feasible

via relaxed Lasso doing “quasi-convex” optimization

~

® Boosting is more generic: can be easily extended to e.g. the nonparametric setting

k
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