### greedy boosting and convex Lasso-optimization Very high-dimensional data:

Peter Bühlmann

**ETH Zürich** 

### 1. High-dimensional data

 $(X_1,Y_1),\ldots,(X_n,Y_n)$  i.i.d. or stationary

 $X_i \in \mathbb{R}^p$  predictor variable

 $Y_i$  univariate response variable, e.g.  $Y_i \in \mathbb{R}$  or  $Y_i \in \{0,1\}$ 

high-dimensional:  $p\gg n$ 

classification,... areas of application: astronomy, biology, imaging, marketing research, text

### **High-dimensional linear models**

$$Y_i = eta_0 + \sum_{j=1}^p eta_j X_i^{(j)} + arepsilon_i, \ i = 1, \dots, n$$

 $p \gg n$ 

How should we fit this model?

approaches include:

(in a forward manner); Bayesian methods for regularization, ... Ridge regression (Tikhonov regularization); variable selection via AIC, BIC, gMDL

Boosting, Lasso, ...

#### our requirements:

- computationally feasible
- yields variable selection
- statistically accurate for prediction or selecting the correct variables

computational feasibility for high-dimensional problems

**}** 

greedy methods

9

convex optimization

## 2. Greedy is good for $p \gg n$ : $L_2$ Boosting

(Friedman, 2001)

specify a base procedure ("weak learner"):

data algorithm A

 $\hat{ heta}(\cdot)$  (a f

(a function estimate)

e.g.: simple linear regression, tree (CART), ...

 $L_2$ Boosting with base procedure  $ilde{ heta}(\cdot)$ : repeated fitting of residuals

$$m=1: (X_i,Y_i)_{i=1}^n \leadsto \hat{\theta}_1(\cdot), \ f_1=\underbrace{\nu}_{\text{e.g.}=0.1} \hat{\theta}_1 \iff \text{resid. } U_i=Y_i-f_1(X_i)$$
  $m=2: (X_i,U_i)_{i=1}^n \leadsto \hat{\theta}_2(\cdot), \ f_2=f_1+\nu\hat{\theta}_2 \iff \text{resid. } U_i=Y_i-f_2(X_i)$ 

 $f_{m_{stop}}(\cdot) = \nu \sum_{m=1}^{m_{stop}} \hat{\theta}_m(\cdot)$  (greedy fitting of residuals)

Tukey (1977): twicing for  $m_{stop}=2$  and u=1

linear OLS regression against the one predictor variable which reduces residual Componentwise linear least squares base procedure

sum of squares most

$$\hat{\theta}(x) = \hat{\beta}_{\hat{S}} x^{(\hat{S})},$$

$$\hat{\beta}_{j} = \sum_{i=1}^{n} Y_{i} X_{i}^{(j)} / \sum_{i=1}^{n} (X_{i}^{(j)})^{2}, \quad \hat{S} = \arg\min_{j} \sum_{i=1}^{n} (Y_{i} - \hat{\beta}_{j} X_{i}^{(j)})^{2}$$

 $L_2$ Boosting with componentwise linear LS:

first round of estimation: selected predictor variable  $X^{(\mathcal{S}_1)}$  (e.g.  $=X^{(3)}$ ) corresponding  $eta_{\hat{S_1}}$ use shrunken fit  $\hat{f}_1(x)=
u\hat{eta}_{\hat{\mathcal{S}}_1}x^{(\hat{\mathcal{S}}_1)}$  (e.g. u=0.1)

second round of estimation: selected predictor variable  $X^{(\hat{\mathcal{S}}_2)}$  (e.g.=  $X^{(21)}$ )

corresponding  $\hat{eta}_{\hat{S}_2}$ 

use shrunken fit  $\hat{f}_2(x)=\hat{f}_1(x)+
u\hat{eta}_{\hat{\mathcal{S}}_2}x^{(\hat{\mathcal{S}}_2)}$ 

etc.

for u=1, this is known as

Matching Pursuit (Mallat and Zhang, 1993)

Weak greedy algorithm (deVore & Temlyakov, 1997)

a version of Boosting (Schapire, 1992; Freund & Schapire, 1996)

Gauss-Southwell algorithm



C.F. Gauss in 1803 "Princeps Mathematicorum"



R.V. Southwell in 1933

Professor in engineering, Oxford

#### **Properties**

#### variable selection

shrinkage towards zero for coefficients of selected variables

→ often much better performance than OLS on selected variables ("more stable" in Breiman's terminology)

but not the same "similar" to the Lasso (Efron, Hastie, Johnstone & Tibshirani, 2004)

### computational complexity:

$$O(npm_{stop}) = O(p)$$
 if  $p \gg n$ , i.e. linear in dimension  $p$ 

statistically consistent for very high-dimensional, sparse problems

Theorem (PB, 2004)

boosting iterations) if  $L_2$ Boosting with comp. linear LS regression is consistent (for suitable number of

- $p_n = O(\exp(Cn^{1-\xi})) \ (0 < \xi < 1)$  (high-dimensional) essentially exponentially many variables relative to  $\boldsymbol{n}$
- $\bullet \sup_n \sum_{j=1}^{p_n} |eta_{j,n}| < \infty \ \ell^1$ -sparseness of true function

i.e. for suitable, slowly growing  $m=m_n$ :

$$\mathbb{E}_X |\hat{f}_{m_n,n}(X) - f_n(X)|^2 = o_P(1) \ (n \to \infty)$$

"no" assumptions about the predictor variables/design matrix

in other words:

consistency for de-noising sparse signal with highly over-complete dictionaries

# binary lymph node classification in breast cancer using gene expressions:

### a high noise problem

n=49 samples, p=7130 gene expressions

| CV-misclassif.err. |                |
|--------------------|----------------|
| 24.8%              | $L_2$ Boosting |
| 35.25%             | FPLR           |
| 27.8%              | Pelora         |
| 43.25%             | 1-NN           |
| 36.12%             | DLDA           |
| 36.88%             | SVM            |

 $L_2$ Boosting, Forward Penalized Logistic Regression (FPLR), Supervised Gene Grouping (Pelora)

no gene pre-selection  $\leadsto$  all these methods do multivariate gene selection

Nearest Neighbor (1-NN), Diagonal Linear Discriminant Analysis (DLDA), SVM with radial basis kernel

with gene pre-selection: the best 200 genes from 2-sample Wilcoxon score

→ no additional gene selection anymore

 $L_2$ Boosting selected 42 out of p=7129 genes

for this data-set: not good prediction with all the different methods

(although we will improve to 16.3%)

but  $L_2$ Boosting may be a good(?) multivariate gene selection method

#### Variable selection

do variable selection such that predictive performance is good (not necessarily optimal)

computationally infeasible for high-dimensional problems "classical": subset selection using BIC, AIC, gMDL, etc.

#### remedies:

- forward selection
- but often not competitive in terms of predictive performance
- $L_2$ Boosting: seems quite interesting, but weak theoretical basis
- ullet replace the computationally hard subset selection problem ( $2^p$  sub-models) by convex relaxation

## 3. Lasso-relaxation is good for $p\gg n$

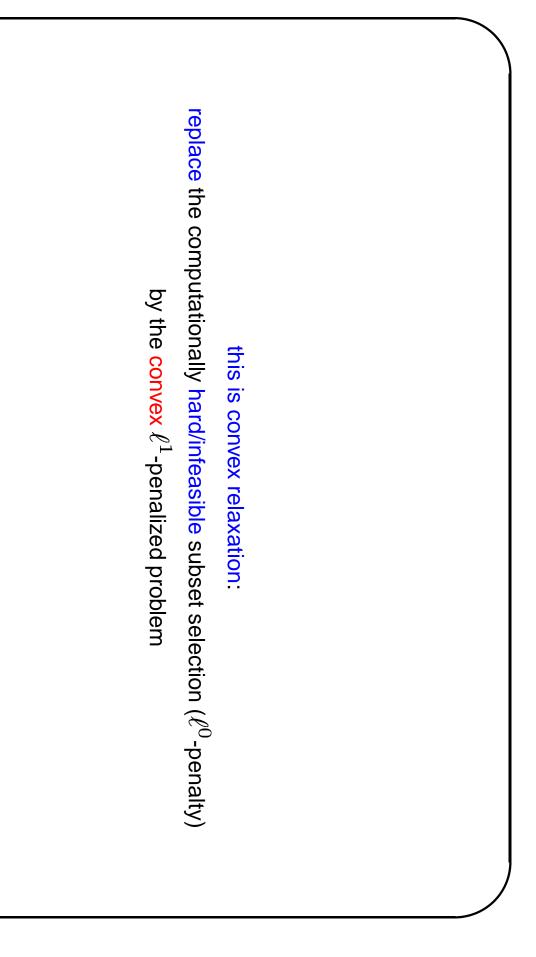
consider again linear model (or highly overcomplete dictionary)

$$Y = f(X) + \varepsilon, \quad f(x) = \sum_{j=1}^{p} \beta_j x^{(j)}, \quad p \gg n$$

Lasso or  $\ell^{1}$ -penalized regression (Tibshirani, 1996):

$$\hat{\beta}_{Lasso} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p} \beta_j X_i^{(j)})^2 + \underbrace{\lambda}_{\geq 0; \text{ penalty par. } j=1}^{p} |\beta_j|$$

- does variable selection: some (many)  $eta_j$ 's exactly equal to 0
- does shrinkage
- involves a convex optimization only



"similar" properties of convex relaxation (Lasso) and greedy algorithm (Boosting):

variable selection; shrinkage;

consistency for prediction in high-dimensions (Greenshtein & Ritov (2004))

and indeed: there are relations

Efron, Hastie, Johnstone, Tibshirani (2004): for special design matrices,

iterations of  $L_2$ Boosting with "infinitesimally" small u yield all Lasso solutions when varying  $\lambda$ 

~ computationally interesting to produce all Lasso solutions in one sweep of boosting

clever and efficient than  $L_2$ Boosting Least Angle Regression LARS (Efron et al., 2004) is computationally even more

 $O(np\min(n,p))$  essential operations to compute all Lasso solutions

$$=O(p)$$
 if  $p\gg n$ 

the solutions from Lasso and Boosting coincide Zhao and Yu (2005): in general, when adding some backward step greedy (plus backward steps) and convex relaxation are surprisingly similar

# 3.1. Variable selection and graphical modeling with the Lasso

random variables (this includes regression) goal: use the Lasso for determining presence/absence of associations between

### Gaussian conditional independence graph

assume that  $X=X^{(1)},\ldots,X^{(p)}\sim \mathcal{N}_p(\mu,\Sigma)$ 

graph:

set of edges  $E\subseteq \Gamma \times \Gamma$  defined as: set of nodes  $\Gamma = \{1, 2, \dots, p\}$ , corresponding to the p random variables

there is an undirected edge between node i and j

 $X^{(i)}$  conditionally dependent of  $X^{(j)}$  given all other  $\{X^{(k)};\, k 
eq i,j\}$ 

**\$** 

 $\sum_{ij}^{-1} \neq 0$ 

**₽** 

note:  $\Sigma_{ij}^{-1}$  corresponds to  $eta_j^{(i)} = \Sigma_{ij}^{-1}/\Sigma_{ii}^{-1}$  , where

$$X^{(i)} = \beta_j^{(i)} X^{(j)} + \sum_{k \neq i, j} \beta_k^{(i)} X^{(k)} + \operatorname{error}^{(i)}$$

we can infer the graph from variable selection in regression

$$\beta_j^{(i)} = 0 \Leftrightarrow \Sigma_{ij}^{-1} = 0$$

huge computational problem when using e.g. BIC:  $p2^{p-1}$  least squares problems!

#### Just relax!

replace the computationally hard problem by a convex problem: compute the Lasso estimates  $\hat{eta}_i^{(j)}$ 

#### Estimation of graph:

estimate an edge between node i and j if

$$\hat{eta}_j^{(i)} 
eq 0$$
 and  $\hat{eta}_i^{(j)} 
eq 0$ 

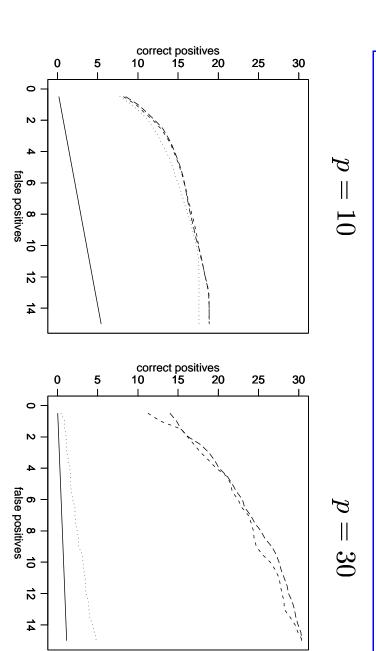
(for finite samples: it could happen that only one of the  $\hat{eta}_j^{(i)}, \hat{eta}_i^{(j)}$  is eq 0)

note: depends on the tuning parameter  $\lambda$  in Lasso

## this involves only one convex optimization problem!

instead of checking exhaustively  $2^{p-1}p$  least squares problems (e.g. using BIC)

# Comparison of Lasso and classical stepwise selection



dotted · · · ·

stepwise selection

dashed \_ \_ \_

Lasso

true graphs are sparse, having at most 4 edges out of every node ROC-curves for estimated graphs with p=10,30 nodes and n=40 obs.

### Some theory for high dimensions

Theorem (Meinshausen & PB, 2004)

For 
$$\lambda_n \sim C n^{-1/2 + \delta/2}$$
,

$$\mathbb{P}[\operatorname{estimated} \operatorname{graph}(\lambda_n) = \operatorname{true} \operatorname{graph}] = 1 + O(\exp(-Cn^\delta)) \ (n o \infty)$$

 $(0<\delta<1)$ 

≕:

- Gaussian data
- ullet  $p=p_n=O(n^r)$  for any r>0 (high-dimensional)
- plus some other technical conditions

justification for relaxation with a computationally simple convex problem!

#### Choice of $\lambda$

Theorem doesn't say much about choosing  $\lambda$ ...

first (not so good) idea: choose  $\lambda$  to optimize prediction

e.g. via some cross-validation scheme

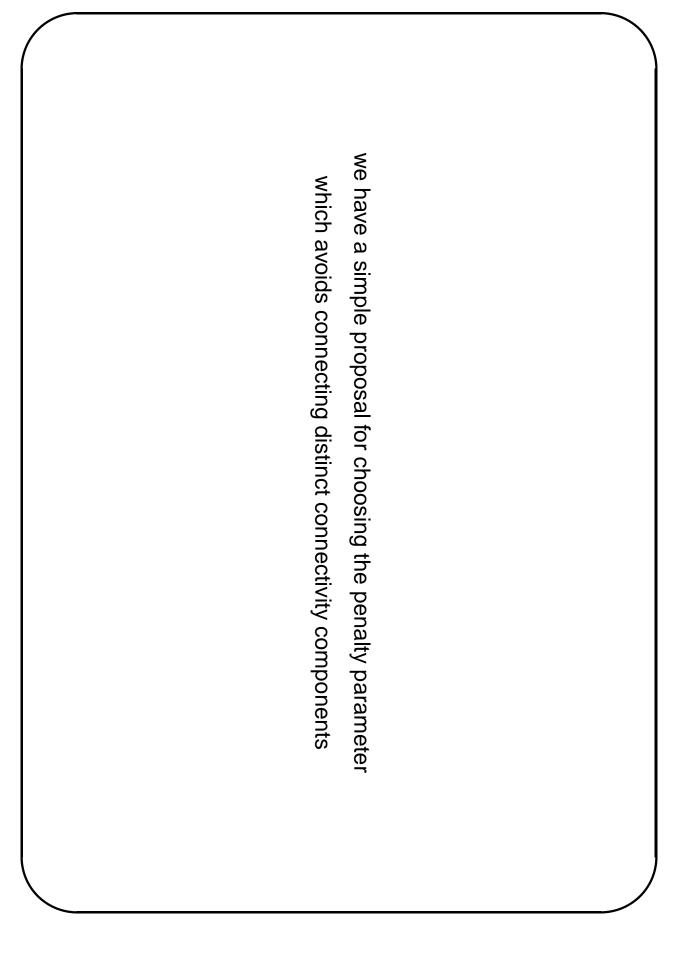
but: for prediction oracle solution

$$\lambda^* = \arg\min_{\lambda} \mathbb{E}[(X^{(i)} - \sum_{j \neq i} \hat{\beta}_j^{(i)}(\lambda) X^{(j)})^2]$$

$$\mathbb{P}[\mathsf{estimated}\ \mathsf{graph}(\lambda^*) = \mathsf{true}\ \mathsf{graph}] \to 0\ (p_n \to \infty, n \to \infty)$$

asymptotically: the prediction optimal graph is too large

(Meinshausen & PB, 2004; related example by Meng et al., 2004)



### 4. Beyond Lasso (and Boosting)

linear model  $Y=X\beta+\varepsilon$ 

soft-threshold estimator: for orthonormal design:  $\mathbf{X}^T\mathbf{X}=I$ : Lasso/LARS and  $L_2$ Boosting yield the

$$\hat{eta}_{soft}^{(j)} = \left\{ egin{array}{ll} Z_j - \lambda, & ext{if } Z_j \geq \lambda, \\ 0, & ext{if } |Z_j| < \lambda, & ext{where } Z_j = (\mathbf{X}^T\mathbf{Y})_j \\ Z_j + \lambda, & ext{if } Z_j \leq -\lambda. \end{array} 
ight.$$

### Is soft-thresholding or Lasso a good thing?

- ullet  $eta_1, \ldots eta_p$  i.i.d.  $\sim$  Double-Exponential, soft-thresholding and the Lasso yield the MAP (which often performs well)
- minimax results for soft-thresholding (Donoho & Johnstone, ...)

but: a different story in the very high-dimensional sparse case

#### assume:

- $p = p_n \sim C_1 \exp(C_2 n^{1-\xi}) \ (0 < \xi < 1)$
- ullet effective number of variables is finite (finite  $\ell^0$ -norm) non-effective variables are independent

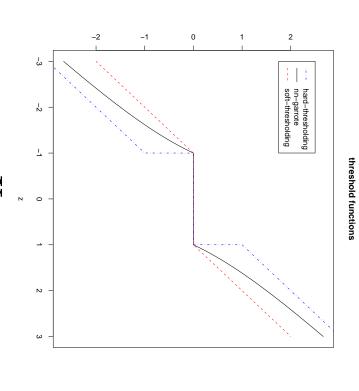
Theorem (Meinshausen, 2005)

$$\mathbb{P}[\inf_{\lambda} \underbrace{L(\lambda)}_{\text{risk of Lasso}} > cn^{-r}] \to 1 \ (n \to \infty) \ \text{for} \ r > \xi$$

while optimal rate is  $n^{-1}$  (achieved e.g. by OLS with the true variables)

Lasso can have very poor convergence rate

# reason: need large $\lambda$ for variable selection $\leadsto$ strong bias of soft-thresholding



#### Better:

- SCAD (Fan and Li, 2001)
- Nonnegative Garrote (Breiman, 1995)
- Bridge estimation

(Frank and Friedman, 1993)

they all work for general  ${f X}$ 

### for non-orthogonal X:

- non-convex optimization for SCAD or Bridge estimation
- NN-Garrote only for  $p \leq n$

# 4.1. The relaxed Lasso (Meinshausen, 2005)

for 
$$\lambda \geq 0$$
,  $0 \leq \phi \leq 1$ 

$$\hat{\beta}_{\lambda,\phi} = \arg\min_{\beta} n^{-1} \sum_{i=1}^n (Y_i - \sum_{j \in \mathcal{M}_{\lambda}} \beta_j X_i^{(j)})^2 + \phi \lambda \|\beta\|_1$$
 model from Lasso( $\lambda$ )

for  $\phi=0$ : OLS on selected variables from Lasso( $\lambda$ )

for  $\phi=1$ : Lasso( $\lambda$ )

amount of computation for finding all solutions over  $\lambda$  and  $\phi$ :

often, the same computational complexity as for Lasso/LARS (surprising):

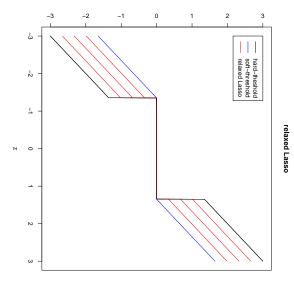
$$O(np\min(n,p)) = O(p)$$
 if  $p \gg n$ 

worst case:  $O(np\min(n,p)^2) = O(p)$  if  $p \gg n$  still linear in p

this is "quasi-convex" optimization: two levels of a convex problem

for orthonormal case:

$$\mathbf{X}^T\mathbf{X} = I$$

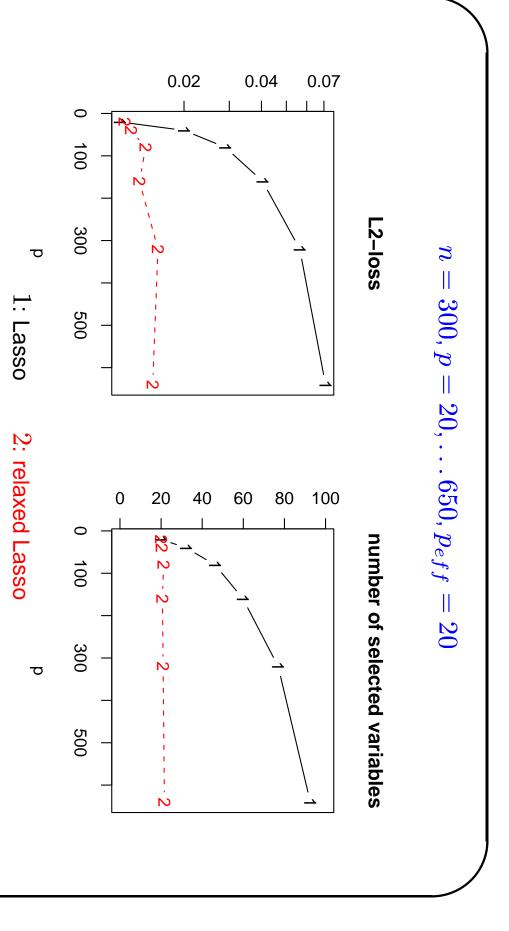


Theorem (Meinshausen, 2005)

with essentially the same assumptions as before

$$\inf_{\lambda,\phi} L(\lambda,\phi) = O_P(n^{-1})(n \to \infty)$$

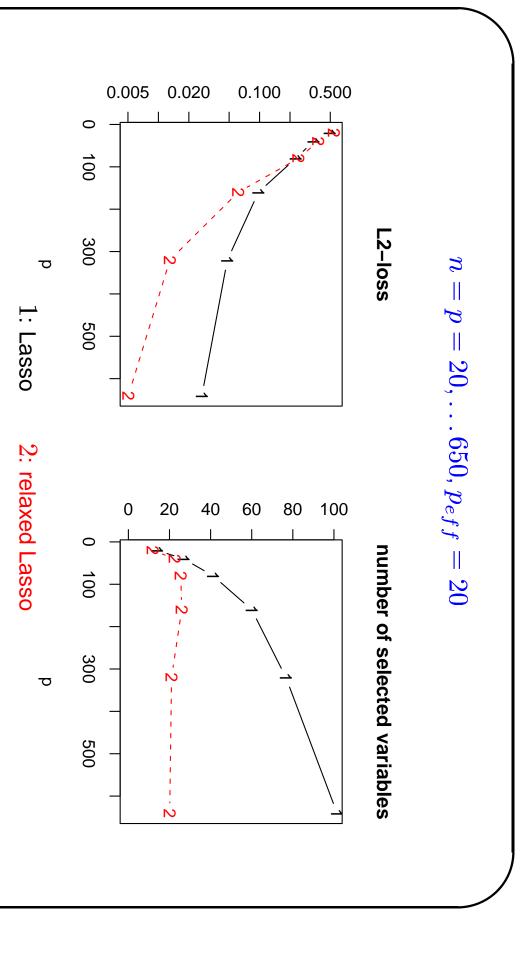
also: use the relaxed Lasso for variable selection and graphs/dependency networks → prediction optimal (or cross-validated) tuning parameters yield (for some cases) consistent variable selection and graph estimates



and they are very disturbing for Ridge-type regularization (e.g. SVM)

additional pure noise variables are much less damaging with the relaxed Lasso than

for Lasso and Boosting



the relaxed Lasso is the larger search space  $0 \leq \phi \leq 1$  (Lasso:  $\phi = 1$ )

relaxed Lasso never substantially worse than the Lasso: the price for the flexibility of

# Results for high noise, binary lymph node classification

cross-validated misclassification rate:

relaxed Lasso (tuned by 5-fold CV): 16.3%

Lasso (tuned by 5-fold CV): 21.0%

 $L_2$ Boosting (tuned by 5-fold CV): 24.8%

selected genes (on whole data set):

relaxed Lasso: 2 genes (!) Lasso: 23 genes  $L_2$ Boosting: 42 genes

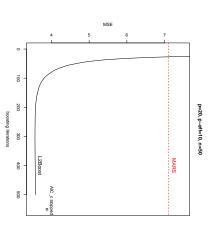
the 2 genes from relaxed Lasso are also selected by Lasso and  $L_2$ Boosting

note the identifiability problem among highly correlated predictor variables

#### Conclusions

high-dimensional: blue greedy or convex? the methods are similar and very useful

Boosting is more generic: can be easily extended to e.g. the nonparametric setting



nonparametric interaction modeling

 $L_2$ Boosting with pairwise splines

sample size n=50 p=20, effective  $p_{eff}=5$ 

Lasso is more explicit (and hence better understood)

beyond Lasso (more sparse) is computationally feasible via relaxed Lasso doing "quasi-convex" optimization