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Abstract

We propose a new sparsity-smoothness penalty for high-dimensional generalized
additive models. The combination of sparsity and smoothness is crucial for math-
ematical theory as well as performance for finite-sample data. We present a com-
putationally efficient algorithm, with provable numerical convergence properties, for
optimizing the penalized likelihood. Furthermore, we provide oracle results which
yield asymptotic optimality of our estimator for high-dimensional but sparse additive
models. Finally, an adaptive version of our sparsity-smoothness penalized approach
yields large additional performance gains.

1 Introduction

Substantial progress has been achieved over the last years in estimating high-dimensional
linear or generalized linear models where the number of covariates p is much larger than
sample size n. The theoretical properties of penalization approaches like the Lasso [22] are
now well understood [11, 18, 27, 19, 1] and this knowledge has led to several extensions
or alternative approaches like Adaptive Lasso [28], Relaxed Lasso [17], Sure Independence
Screening [9] and graphical model based methods [4]. Moreover, with the fast growing
amount of high-dimensional data in e.g. biology, imaging or astronomy, these methods have
shown their success in a variety of practical problems. However, in many situations the
conditional expectation of the response given the covariates may not be linear. While the
most important effects may still be detected by a linear model, substantial improvements
are sometimes possible by using a more flexible class of models. Recently, some progress
has been made regarding high-dimensional additive model selection [2, 14, 21] and some
theoretical results are available [21].

In this paper, we consider the problem of estimating a high-dimensional generalized
additive model where p� n. An approach for high-dimensional additive modeling is de-
scribed and analyzed in [21]. Our work is different in the following respects. (i) We use an
approach which penalizes both the sparsity and the roughness. This is particularly impor-
tant if a large number of basis functions is used for modeling the additive components. (ii)
Our computational algorithm which builds upon the idea of a group-Lasso problem has
rigorous convergence properties and thus, it is provably correct for finding the optimum of
a penalized likelihood function. (iii) We provide oracle results which establish asymptotic
optimality of the procedure.
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2 Penalized Maximum Likelihood for Additive Models

We consider high-dimensional additive regression models with a continuous response Y ∈
R and p covariates x(1), . . . , x(p) ∈ R connected through the model

Yi = c+

p
∑

j=1

fj

(

x
(j)
i

)

+ εi, i = 1, . . . , n,

where c is the intercept term, εi are i.i.d. random variables with mean zero and fj : R → R

are smooth univariate functions. For identification purposes we assume that all fj are
centered, i.e.

n
∑

i=1

fj(x
(j)
i ) = 0

for j = 1, . . . , p. We consider the case of fixed design, i.e. we treat the predictors
x(1), . . . , x(p) as non-random.

With some slight abuse of notation we also denote by fj the n-dimensional vector

(fj(x
(j)
1 ), . . . , fj(x

(j)
n ))T . For a vector f ∈ R

n we define ‖f‖2
n = 1

n

∑n
i=1 f

2
i .

2.1 The Sparsity-Smoothness Penalty

In order to construct an estimator which encourages sparsity at the function level, pe-
nalizing the norms ‖fj‖n would be a suitable approach. Some theory for the case where
a truncated orthogonal basis with O(n1/5) basis functions for each component fj is used
has been developed in [21].

If we use a large number of basis functions, which is necessary to be able to capture
some functions at high complexity, the resulting estimator will produce function estimates
which are too wiggly if the underlying true functions are very smooth. Hence, we need
some additional control or restrictions of the smoothness of the estimated functions. In
order to get sparse and sufficiently smooth function estimates, we propose the sparsity-
smoothness penalty

J(fj) = λ1

√

‖fj‖2
n + λ2I2(fj),

where

I2(fj) =

∫

(

f ′′j (x)
)2
dx

measures the smoothness of fj. The two tuning parameters λ1, λ2 ≥ 0 control the amount
of penalization.

Our estimator is given by the following penalized least squares problem

f̂1, . . . , f̂p = argmin
f1,...,fp∈F

∥

∥

∥

∥

∥

∥

Y −
p
∑

j=1

fj

∥

∥

∥

∥

∥

∥

2

n

+

p
∑

j=1

J(fj), (1)

where F is a suitable class of functions and Y = (Y1, . . . , Yn)T is the vector of responses. If
we assume that Y is centered, we can omit an unpenalized intercept term and the nature
of the objective function in (1) automatically forces the function estimates f̂1, . . . , f̂p to
be centered.
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Proposition 1. Let a, b ∈ R such that a < mini,j{x(j)
i } and b > maxi,j{x(j)

i }. Let F be
the space of functions that are twice continuously differentiable on [a, b] and assume that
there exist minimizers f̂j ∈ F of (1). Then the f̂j’s are natural cubic splines with knots

at x
(j)
i , i = 1, . . . , n.

A proof is given in the Appendix. Hence, we can restrict ourselves to the finite
dimensional space of natural cubic splines instead of considering the infinite dimensional
space of twice continuously differentiable functions.

In the following subsection we illustrate the existence and the computation of the
estimator.

2.2 Computational Algorithm

For each function fj we use a cubic B-spline parameterization with a reasonable amount
of knots or basis functions. A typical choice would be to use K − 4 � √

n interior knots
that are placed at the empirical quantiles of x(j). Hence, we parameterize

fj(x) =
K
∑

k=1

βj,kbj,k(x),

where bj,k : R → R are the B-spline basis functions and βj = (βj,1, . . . , βj,K)T ∈ R
K is the

parameter vector corresponding to fj. Based on the basis functions we can construct an
n× pK design matrix B = [B1 |B2 | . . . |Bp], where Bj is the n×K design matrix of the

B-spline basis of the jth predictor, i.e. Bj,il = bj,l(x
(j)
i ).

For twice continuously differentiable functions, the optimization problem (1) can now
be re-formulated as

β̂ = argmin
β=(β1,...,βp)

‖Y −Bβ‖2
n + λ1

p
∑

j=1

√

1

n
βT

j B
T
j Bjβj + λ2βT

j Ωjβj , (2)

where the K ×K matrix Ωj contains the inner products of the second derivatives of the
B-spline basis functions, i.e.

Ωj,kl =

∫

b′′j,k(x)b
′′
j,l(x) dx

for k, l ∈ {1, . . . ,K}.
Hence, (2) can be re-written as a general Group Lasso problem [26]

β̂ = argmin
β=(β1,...,βp)

‖Y −Bβ‖2
n + λ1

p
∑

j=1

√

βT
j Mjβj , (3)

where Mj = 1
nB

T
j Bj + λ2Ωj . By decomposing (e.g. using the Cholesky decomposition)

Mj = RT
j Rj for some quadratic K×K matrix Rj and by defining β̃j = Rjβj , B̃j = BjR

−1
j ,

(3) reduces to

ˆ̃β = argmin
β̃=(β̃1,...,β̃p)

∥

∥

∥
Y − B̃β̃

∥

∥

∥

2

n
+ λ1

p
∑

j=1

‖β̃j‖, (4)

where ‖β̃j‖ =
√
K‖β̃j‖K is the Euclidean norm in R

K . This is an ordinary Group Lasso
problem for any fixed λ2 and hence the existence of a solution is guaranteed. For λ1
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large enough, some of the coefficient groups βj ∈ R
K will be estimated to be exactly zero.

Hence, the corresponding function estimate will be zero. Moreover, there exists a value

λ1,max < ∞ such that
ˆ̃
β1 = . . . =

ˆ̃
βp = 0 for λ1 ≥ λ1,max. This is especially useful to

construct a grid of λ1 candidate values for cross-validation (usually on the log-scale).
Regarding the uniqueness of the identified components, we can make use of existing

results of the Lasso. Define by S(β̃; B̃) = ‖Y − B̃β̃‖2
n. Similar to [20], the gradient

∇β̃S(β̃; B̃) is constant across all solutions of (4). In summary, we have the following
Proposition.

Proposition 2. If pK ≤ n and if B̃ has full rank, a unique solution of (4) exists. If

pK > n, there exists a convex set of solutions of (4). Moreover, if ‖∇β̃j
S(

ˆ̃
β; B̃)‖ < λ1

then ˆ̃βj = 0 and all other solutions ˆ̃βother satisfy ˆ̃βother,j = 0.

By re-writing the original problem (1) in the form of (4), we can make use of already
existing algorithms [16, 13, 26] to compute the estimator. Coordinate-wise approaches as
in [16, 26] are efficient and have rigorous convergence properties. Thus, we are able to
compute the estimator exactly, even if p is very large.

An example of estimated functions, from simulated data according to Example 1 in
Section 3, is shown in Figure 1. For illustrational purposes we have also plotted the
estimator which involves no smoothness penalty (λ2 = 0). The latter clearly shows that
for this example, the function estimates are “too wiggly” compared to the true functions.
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Figure 1: True functions fj (solid) and estimated functions f̂j (dashed) for the first 6
components of a simulation run of Example 1 in Section 3. Small vertical bars indicate
original data and grey vertical lines knot positions. The dotted lines are the function
estimates when no smoothness penalty is used, i.e. when setting λ2 = 0.

Remark 1. If we set λ2 = 0, i.e. if we do not penalize the smoothness of the estimated
functions, the block-matrices B̃j are orthogonal. This is exactly the parameterization that
was proposed in [26]. Hence, this prediction type penalty can be interpreted as a Group
Lasso penalty which is invariant under all transformations.
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Remark 2. Two obvious alternative possibilities of our penalty would be to use either
(i) J(fj) = λ1‖fj‖n + λ2I(fj) or (ii) J(fj) = λ1‖fj‖n + λ2I

2(fj). While proposal (i)
also enjoys nice theoretical properties (see also Section 5.2), it is computationally more
demanding, because it leads to a second order cone programming problem. Proposal (ii)
basically leads again to a Group Lasso problem but appears to have theoretical drawbacks,
i.e. the term λ2I

2(fj) is really needed within the square root.

2.3 Oracle Results

We present now an oracle inequality for the penalized estimator. The proofs can be found
in the Appendix.

We consider here a more general penalty of the form

J(fj) = λ1

√

‖fj‖2
n + λ2I2(fj) + λ3I

2(fj).

This penalty involves three smoothing parameters λ1, λ2 and λ3. One may reduce this to
a single smoothing parameter by choosing

λ2 = λ3 = λ2
1,

(see Theorem 1 below). In the simulations however, the choice λ3 = 0 turned out to
provide slightly better results than the choice λ2 = λ3. With λ3 = 0, the theory goes
through provided the smoothness I(f̂j) remains bounded in an appropriate sense.

We let f 0 denote the “true” regression function (which is not necessarily additive),
i.e., we suppose the regression model

Yi = f0(xi) + εi,

where xi = (x
(1)
i , . . . , x

(p)
i )T for i = 1, . . . , n, and where ε1, . . . , εn are independent random

errors with E[εi] = 0. Let f ∗ be a (sparse) additive approximation of f 0 of the form

f∗(xi) = c∗ +

p
∑

j=1

f∗j (x
(j)
i ).

where we take c∗ = E[Ȳ ], Ȳ =
∑n

i=1 Yi/n. The result of this subsection (Theorem 1)
holds for any such f ∗ satisfying the compatibility condition below. Thus, one may invoke
the optimal additive predictor among such f ∗, which we will call the “oracle”. For an
additive function f , the squared distance ‖f − f 0‖2

n can be decomposed into

‖f − f0‖2
n = ‖f − f0

add‖2
n + ‖f0

add − f0‖2
n,

where f 0
add is the projection of f 0 on the space of additive functions. Thus, when f 0 is itself

not additive, the oracle can be seen as the best sparse approximation of the projection
f0

add of f0.
The active set is defined as

A∗ = {j : ‖f ∗j ‖n 6= 0}. (5)

We will use a compatibility condition, in the spirit of the incoherence conditions used for
proving oracle inequalities for the standard Lasso (see e.g. [1, 5, 6, 7, 23]). To avoid
digressions, we will not attempt to formulate the most general condition. A discussion
can be found in Section 5.1.
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Compatibility condition For a constant 0 < φ∗ ≤ 1, it holds that for all {fj}p
j=1,

∑

j∈A∗

‖fj‖2
n ≤ ‖

p
∑

j=1

fj‖2
n/φ

2
∗.

Consider the general case where I is some semi-norm, e.g. as in Section 2.1. Write

fj = gj + hj , (6)

with gj and hj centered orthogonal functions, satisfying I(hj) = 0 and I(gj) = I(fj). The
functions hj are assumed to lie in a d-dimensional space. The entropy of ({gj : I(gj) =
1}, ‖ · ‖n) is denoted by Hj(·), see e.g. [25]. We assume that for all j,

Hj(δ) ≤ Aδ−2(1−α), δ > 0, (7)

where 0 < α < 1 and A > 0 are constants. When I2(fj) =
∫

(

f ′′j (x)
)2
dx, the functions

hj are the linear part of fj, i.e. d = 1. Moreover, one then has α = 3/4 (see e.g. [25],
Lemma 3.9).

Finally, we assume sub-Gaussian tails for the errors: for some constants L and M ,

max
i

E
[

exp
(

ε2i /L
)]

≤M. (8)

The next lemma presents the behavior of the empirical process. We use the notation
(ε, f)n = 1

n

∑n
i=1 εif(xi) for the inner product. Define

S = S1 ∩ S2 ∩ S3 (9)

where

S1 =

{

max
j

sup
gj

(

2|(ε, gj)n|
‖gj‖α

nI
1−α(gj)

)

≤ ξn

}

,

S2 =

{

max
j

sup
hj

(

2|(ε, hj)n|
‖hj‖n

)

≤ ξn

}

,

and

S3 = {ε̄ ≤ ξn}, ε̄ =
1

n

n
∑

i=1

εi.

For an appropriate choice of ξn, the set S has large probability.

Lemma 1. Assume (7) and (8). There exist constants c and C depending only on d, α,
A, L, and M , such that for

ξn ≥ C

√

log p

n
,

one has
P(S) ≥ 1 − c exp[−nξ2

n/c
2].

For α ∈ (0, 1), we define its “conjugate” γ = 2(1 − α)/(2 − α). Recall that when

I2(fj) =
∫

(

f ′′j (x)
)2
dx, one has α = 3/4, and hence γ = 2/5.

We are now ready to state the oracle result for f̂ = ĉ+
∑p

j=1 f̂j as defined in (1), with

ĉ = Ȳ .
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Theorem 1. Take for j = 1, . . . , p,

J(fj) = λ1

√

‖fj‖2
n + λ2I2(fj) + λ3I

2(fj),

with λ1 = λ
2−γ

2 and λ2 = λ3 = λ2
1, and with 2

√
2ξn ≤ λ ≤ 1. Suppose the compatibility

condition is met. Then on the set S given in (9), it holds that

‖f̂ − f0
add‖2

n + λ
2−γ

2

p
∑

j=1

‖f̂j − f∗j ‖n

≤ 3‖f∗ − f0
add‖2

n + 4λ2−γ
∑

j∈A∗

[

I2(f∗j ) +
3

φ2
∗

]

+ ξ2n.

We remark that we did not attempt to optimize the constants given in Theorem 1,
but rather looked for a simple explicit bound.

Remark 3. In view of Lemma 1, one may take (under the conditions of this lemma) the

smoothing parameter λ of order
√

log p/n. When I2(fj) =
∫

(

f ′′j (x)
)2
dx, this gives λ2−γ

of order (log p/n)4/5, which is up to the log-term the usual rate for estimating a twice
differentiable function. If the oracle f ∗ has bounded smoothness I(f ∗

j ) for all j, the rate

is thus pact(log p/n)4/5, with pact = |A∗| being the number of active variables the oracle
needs. This is, again up to the log-term, the same rate one would obtain if it was known
beforehand which of the p functions are relevant.

Remark 4. The result implies that with large probability, the estimator selects a sup-set
of the active functions, provided that the latter have enough signal (such kind of variable
screening results have been established for the Lasso in linear and generalized linear models
[24, 19]). More precisely, let A0 = {j : ‖f 0

add,j‖n 6= 0} be the active set of f 0
add. Assume

the compatibility condition holds for A0, with constant φ0. Suppose also that for j ∈ A0,
the smoothness is bounded, say I(f 0

add,j) ≤ 1. Choosing f ∗ = f0
add in Theorem 1, tells us

that on S,
p
∑

j=1

‖f̂j − f0
add,j‖n ≤ 16λ

2−γ

2 |A0|/φ2
0 + ξ2n.

Hence, if

‖f0
add,j‖n > 16λ

2−γ

2 |A0|/φ2
0 + ξ2n, j ∈ A0,

we have (on S), that the estimated active set {j : ‖f̂j‖n 6= 0} contains A0.

3 Numerical examples

3.1 Simulations

In this section we investigate the empirical properties of the proposed estimator. We
compare our approach with the Boosting approach of [2], where smoothing splines with
low degrees of freedom are used as base learners; see also [3]. For p = 1, boosting with
splines is known to be able to adapt to the smoothness of the underlying true function
[2]. Generally, boosting is a very powerful machine learning method and a wide variety
of software implementations are available, e.g. the R add-on package mboost.
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We use a training set of n samples to train the different methods. An independent
validation set of size bn/2c is used to select the prediction optimal tuning parameters λ1

and λ2. For boosting, the number of boosting iterations is used as tuning parameter. The
shrinkage factor ν and the degrees of freedom df of the boosting procedure are set to their
default values ν = 0.1 and df = 4; see also [3].

By SNR we denote the signal-to-noise ratio, which is defined as

SNR =
Var(f(X))

Var(ε)
,

where f = f 0 : R
p → R is the true underlying function.

A total of 100 simulation runs are used for each of the following settings.

3.1.1 Models

We use the following simulation models.

Example 1 (n = 150, p = 200, pact = 4, SNR ≈ 15)
This example is similar to Example 1 in [21] and [12]. The model is

Yi = f1(x
(1)
i ) + f2(x

(2)
i ) + f3(x

(3)
i ) + f4(x

(4)
i ) + εi, εi i.i.d. N(0, 1),

with
f1(x) = − sin(2x), f2(x) = x2

2 − 25/12, f3(x) = x,

f4(x) = e−x − 2/5 · sinh(5/2).

The covariates are simulated from independent Uniform(−2.5, 2.5) distributions. The
true and the estimated functions of a simulation run are illustrated in Figure 1.

Example 2 (n = 100, p = 1000, pact = 4, SNR ≈ 6.7)
As above but high-dimensional and correlated. The covariates are simulated according to
a multivariate normal distribution with covariance matrix Σij = 0.5|i−j|; i, j = 1, . . . , p.

Example 3 (n = 100, p = 80, pact = 4, SNR ≈ 9 (t = 0), ≈ 7.9 (t = 1))
This is similar to Example 1 in [14] but with more predictors. The model is

Yi = 5f1(x
(1)
i ) + 3f2(x

(2)
i ) + 4f3(x

(3)
i ) + 6f4(x

(4)
i ) + εi, εi i.i.d. N(0, 1.74),

with

f1(x) = x, f2(x) = (2x− 1)2, f3(x) =
sin(2πx)

2 − sin(2πx)

and

f4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin2(2πx) + 0.4 cos3(2πx) + 0.5 sin3(2πx).

The covariates x = (x(1), . . . , x(p))T are simulated according to

x(j) =
W (j) + tU

1 + t
, j = 1, . . . , p,

where W (1), . . . ,W (p) and U are i.i.d. Uniform(0, 1). For t = 0 this is the independent
uniform case. The case t = 1 results in a design with correlation 0.5 between all covariates.
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Figure 2: True functions fj (solid) and estimated functions f̂j (dashed) for the first 6
components of a simulation run of Example 3 (t = 0). Small vertical bars indicate original
data and grey vertical lines knot positions. The dotted lines are the function estimates
when no smoothness penalty is used, i.e. when setting λ2 = 0.

The true functions and the first 6 estimated functions of a simulation run with t = 0
are illustrated in Figure 2.

Moreover, we also consider a “high-frequency” situation where we use f3(8x) and
f4(4x) instead of f3(x) and f4(x). The corresponding signal-to-noise ratios for these
models are SNR ≈ 9 for t = 0 and SNR ≈ 8.1 for t = 1.

Example 4 (n = 100, p = 60, pact = 12, SNR ≈ 9 (t = 0), ≈ 11.25 (t = 1))
This is similar to Example 2 in [14] but with fewer observations. We use the same functions
as in Example 3. The model is

Yi = f1(x
(1)
i ) + f2(x

(2)
i ) + f3(x

(3)
i ) + f4(x

(4)
i ) +

1.5f1(x
(5)
i ) + 1.5f2(x

(6)
i ) + 1.5f3(x

(7)
i ) + 1.5f4(x

(8)
i ) +

2f1(x
(9)
i ) + 2f2(x

(10)
i ) + 2f3(x

(11)
i ) + 2f4(x

(12)
i ) + εi,

with εi i.i.d. N(0, 0.5184). The covariates are simulated as in Example 3.

3.1.2 Performance Measures

In order to compare the prediction performances we use the mean squared prediction error

PE = EX [(f̂(X) − f(X))2]

as performance measure. The above expectation is approximated by a sample of 10,000
points from the distribution of X. In each simulation run we compute the ratio of the
prediction performance of the two methods. Finally, we take the mean of the ratios over
all simulation runs.

For variable selection properties we use the number of true positives (TP) and false
positives (FP) at each simulation run. We report the average number over all runs to
compare the different methods.
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3.1.3 Results

The results are summarized in Table 1 and 2. The sparsity-smoothness penalty approach
(SSP) has smaller prediction error than boosting, especially for the “high-frequency” sit-
uations. Because the weak learners of the boosting method only use 4 degrees of freedom,
boosting tends to neglect or underestimate those components with higher oscillation.
This can also be observed with respect to the number of true positives. By relaxing the
smoothness penalty (i.e. choosing λ2 small or setting λ2 = 0), SSP is able to handle the
high-frequency situations, at the cost of too wiggly function estimates for the remaining
components. Using a different amount of regularization for sparsity and smoothness, SSP
can work with a large amount of basis functions in order to be flexible enough to capture
sophisticated functional relationships and, on the other side, to produce smooth estimates
if the underlying functions are smooth.

With the exception of the high-frequency examples, the number of true positives (TP)
is very similar for both methods. There is no clear trend with respect to the number of
false positives (FP).

Model PESSP/PEboost

Example 1 0.93 (0.13)
Example 2 0.96 (0.10)
Example 3 (t = 0) 0.81 (0.13)
Example 3 (t = 1) 0.90 (0.19)
Example 3 “high-freq” (t = 0) 0.65 (0.11)
Example 3 “high-freq” (t = 1) 0.57 (0.10)
Example 4 (t = 0) 0.89 (0.10)
Example 4 (t = 1) 0.88 (0.13)

Table 1: Results of the different simulation models. Reported is the mean of the ratio
of the prediction error of the two methods. SSP: Sparsity-Smoothness Penalty approach,
boost: Boosting with smoothing splines. Standard deviations are given in parentheses.

Model TPSSP FPSSP TPboost FPboost

Example 1 4.00 (0.00) 24.30 (14.11) 4.00 (0.00) 22.18 (12.75)
Example 2 3.47 (0.61) 34.37 (17.38) 3.60 (0.64) 28.76 (20.15)
Example 3 (t = 0) 4.00 (0.00) 20.20 (9.30) 4.00 (0.00) 21.61 (10.90)
Example 3 (t = 1) 3.93 (0.29) 19.28 (9.61) 3.92 (0.27) 18.65 (8.35)
Example 3 “high-freq” (t = 0) 2.80 (0.78) 12.26 (7.61) 2.16 (0.94) 9.23 (9.74)
Example 3 “high-freq” (t = 1) 2.46 (0.85) 11.17 (8.50) 1.59 (1.27) 13.24 (13.89)
Example 4 (t = 0) 11.69 (0.56) 21.23 (6.85) 11.68 (0.57) 25.91 (9.43)
Example 4 (t = 1) 10.64 (1.15) 19.78 (7.51) 10.67 (1.25) 23.76 (9.89)

Table 2: Average values of the number of true (TP) and false (FP) positives. Standard
deviations are given in parentheses.

3.2 Real Data

In this section we would like to compare the different estimators on real datasets.
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3.2.1 Tecator

The meatspec dataset contains data from the Tecator Infratec Food and Feed Analyzer.
It is for example available in the R add-on package faraway and on StatLib. The p = 100
predictors are channel spectrum measurements and are therefore highly correlated. A
total of n = 215 observations are available.

The data is split into a training set of size 100 and a validation set of size 50. The
remaining data are used as test set. On the training dataset, the first 30 principal compo-
nents are calculated, scaled to unit variance and used as covariates in additive modeling.
Moreover, the validation and the test dataset are transformed to correspond to the princi-
pal component of the training dataset. We fit an additive model to predict the logarithm
of the fat content. This is repeated 50 times. For each split into training and test data
we compute the ratio of the prediction errors from the SSP and boosting method on the
test data, as in Section 3.1.2. The mean of the ratio over the 50 splits is 0.86, the corre-
sponding standard deviation is 0.46. This indicates superiority of our sparsity-smoothness
penalty approach.

3.2.2 Motif Regression

In motif regression problems [8], the aim is to predict gene expression levels or binding
intensities based on information on the DNA sequence. For our specific dataset, from the
Ricci lab at ETH Zurich, we have binding intensities Yi of a certain transcription factor

(TF) at 287 regions on the DNA. Moreover, for each region i, motif scores x
(1)
i , . . . , x

(p)
i , p =

196 are available. A motif is a candidate for the binding site of the TF on the DNA,

typically a 5–15bp long DNA sequence. The score x
(j)
i measures how well the jth motif is

represented in the ith region. The candidate list of motifs and their corresponding scores
were created with a variant of the MDScan algorithm [15]. The main goal is here to find
the relevant covariates.

We used 5 fold cross-validation to determine the prediction optimal tuning parameters,
yielding 28 active functions. To assess the stability of the estimated model, we performed a
nonparametric bootstrap analysis. At each of the 100 bootstrap samples, we fit the model
with the fixed optimal tuning parameters from above. The two functions which appear
most often in the bootstrapped model estimates are depicted in Figure 3. While the left-
hand side plot shows an approximate linear relationship, the effect of the other motif seems
to diminish for larger values. Indeed, Motif.P1.6.26 is the true (known) binding site.
A follow-up experiment showed that the TF does not directly bind to Motif.P1.6.23.
Hence, this motif is a candidate for a binding site of a co-factor (another TF) and needs
further experimental validation.

4 Extensions

4.1 Generalized Additive Models

Conceptually, we can also apply the sparsity-smoothness penalty from Section 2 to gen-
eralized linear models (GLM) by replacing the residual sum of squares ‖Y −∑p

j=1 fj‖2
n

by the corresponding negative log-likelihood function. We illustrate the method for lo-
gistic regression where Y ∈ {0, 1}. The negative log-likelihood as a function of the linear

11
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Figure 3: Estimated functions f̂j of the two most stable motifs. Small vertical bar indicate
original data.

predictor η and the response vector Y is

`(η, Y ) = − 1

n

n
∑

i=1

[Yiηi − log{1 + exp(ηi)}],

where ηi = c+
∑p

j=1 fj(x
(j)
i ). The estimator is defined as

ĉ, f̂1, . . . , f̂p = argmin
c∈R,f1,...,fp∈F

`



c+

p
∑

j=1

fj, Y



+

p
∑

j=1

J(fj). (10)

This has a similar form as (1) with the exception that we have to explicitly include a
(non-penalized) intercept term c. Using the same arguments as in Section 2 leads to the
fact that for twice continuously differentiable functions, the solution can be represented
as a natural cubic spline and that (10) leads again to a Group Lasso problem. This can
for example be minimized with the algorithm of [16]. We illustrate the performance of
the estimator in a small simulation study.

4.1.1 Small Simulation Study

Denote by f : R
p → R the true function of Example 2 in Section 3. We simulate the the

linear predictor η as
η(X) = 1.5 · (2 + f(X)),

where X ∈ R
p has the same distribution as in Example 2. The binary response Y is

then generated according to a Bernoulli distribution with probability 1/(1+ exp(−η(X)),
which results in a Bayes risk of approximately 0.17. The sample size n is set to 100. The
results for various model sizes p are reported in Table 3 and Table 4. The performance
of the two methods is quite similar. SSP has a slightly lower prediction error. Regarding
model selection properties, SSP has fewer false positives at the cost of slightly fewer true
positives.
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p PESSP /PEboost

250 0.93 (0.06)
500 0.96 (0.07)
1000 0.98 (0.05)

Table 3: Results of different model sizes p. Reported is the mean of the ratio of the
prediction error of the two methods. SSP: Sparsity-Smoothness Penalty approach, boost:
Boosting with smoothing splines. Standard deviations are given in parentheses.

p TPSSP FPSSP TPboost FPboost

250 2.94 (0.71) 22.81 (10.56) 3.09 (0.78) 29.67 (14.91)
500 2.56 (0.82) 24.92 (12.47) 2.80 (0.82) 31.41 (17.28)
1000 2.36 (0.84) 26.45 (14.88) 2.61 (0.71) 33.69 (19.54)

Table 4: Average values of the number of true (TP) and false (FP) positives. Standard
deviations are given in parentheses.

4.2 Adaptivity

Similar to the Adaptive Lasso [28], we can also use different penalties for the different
components, i.e. use a penalty of the form

J(fj) = λ1

√

w1,j‖fj‖2
n + λ2w2,jI2(fj),

where the weights w1,j and w2,j are ideally chosen in a data-adaptive way. If an initial

estimator f̂j,init is available, a choice would be to use

w1,j =
1

‖f̂j,init‖γ
n

, w2,j =
1

I(f̂j,init)γ
.

for some γ > 0. The estimator can then be computed similarly as described in Section
2.2. This allows for different degrees of smoothness for different components.

We have applied the adaptive estimator to the simulation models of Section 3. In each
simulation run we use weights (with γ = 1) based on the ordinary sparsity-smoothness
estimator. For comparison, we compute the ratio of the prediction error of the adaptive
and the ordinary sparsity-smoothness estimator at each simulation run. The results are
summarized in Table 5. Both the prediction error and the number of false positives can
be decreased by a good margin in all examples. The number of true positives gets slightly
decreased in some examples.

5 Mathematical Theory

5.1 On the compatibility condition

We will show that if the variables in the active set A∗ in (5) are not too mutually depen-
dent, and if the canonical dependence between the active and the non-active set is not
perfect, then the compatibility condition is met.

Well-conditioned active set condition We say that the active set A∗ is well con-
ditioned if for some constant 0 < ψ∗ ≤ 1, and for all {fj}j∈A∗

,
∑

j∈A∗

‖fj‖2
n ≤ ‖

∑

j∈A∗

fj‖2
n/ψ

2
∗ .
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Model PESSP ;adapt/PESSP TP FP

Example 1 0.47 (0.13) 4.00 (0.00) 4.09 (4.63)
Example 2 0.63 (0.10) 3.31 (0.71) 6.12 (5.14)
Example 3 (t = 0) 0.53 (0.13) 4.00 (0.00) 4.64 (4.52)
Example 3 (t = 1) 0.63 (0.19) 3.81 (0.46) 5.04 (4.82)
Example 3 “high-freq” (t = 0) 0.87 (0.11) 2.28 (0.78) 2.98 (2.76)
Example 3 “high-freq” (t = 1) 0.91 (0.10) 1.69 (0.73) 2.59 (3.30)
Example 4 (t = 0) 0.77 (0.10) 11.21 (0.84) 8.18 (5.04)
Example 4 (t = 1) 0.88 (0.13) 9.73 (1.29) 7.93 (5.35)

Table 5: Results of the different simulation models. Reported is the mean of the ratio of
the prediction error of the two methods and the average values of the number of true (TP)
and false (FP) positives. SSP;adapt: Adaptive Sparsity-Smoothness Penalty approach,
SSP: Ordinary Sparsity-Smoothness Penalty approach. Standard deviations are given in
parentheses.

Writing fj as a linear function of basis functions with coefficients βj , e.g., as in Section
2.2,

fj = Bjβj ,

with Bj the B-spline matrix of the jth predictor, one sees that ψ2
∗ can be taken as the

smallest eigenvalue of the matrix
(

(BT
j Bj)

−1/2(BT
j Bk)(B

T
k Bk)

−1/2
)

j,k∈A∗

.

The inner product between functions f and f̃ is denoted by (f, f̃)n=
∑n

i=1 f(xi)f̃(xi)/n.
No perfect canonical dependence in our setup amounts to the following condition.

No perfect canonical dependence condition We say that the active and non-
active variables have no perfect canonical dependence, if for a constant 0 ≤ ρ∗ < 1, and
all {fj}p

j=1, we have for fin =
∑

j∈A∗

fj and fout =
∑

j /∈A∗

fj, that

|(fin, fout)n|
‖fin‖n‖fout‖n

≤ ρ∗.

Again, writing fj = Bjβj , one sees that ρ∗ can be taken as the canonical correlation
between the linear space spanned by {Bj}j∈A∗

and the linear space spanned by {Bj}j /∈A∗
.

Note that the condition ρ∗ < 1 allows for perfect linear dependencies between non-active
Bj.

The next Lemma makes the link between the compatibility condition and the above
two conditions.

Lemma 2. Let f = fin + fout satisfy

|(fin, fout)n|
‖fin‖n‖fout‖n

≤ ρ∗ < 1.

Then
‖fin‖2

n ≤ ‖f‖2
n/(1 − ρ2

∗).
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Proof. Clearly,
‖fin‖2

n ≤ ‖f‖2
n + 2|(fin, fout)n| − ‖fout‖2

n.

Hence,
‖fin‖2

n ≤ ‖f‖2
n + 2ρ∗‖fin‖n‖fout‖n − ‖fout‖2

n ≤ ‖f‖2
n + ρ2

∗‖fin‖2
n.

Corollary 1. A well-conditioned active set in combination with no perfect canonical de-
pendence implies the compatibility condition from Section 2.3 with φ2

∗ = ψ2
∗(1 − ρ2

∗).

Remark 5. Let us define for all (j, k) ∈ {1, . . . , p}, the canonical correlation

ρj,k = sup
fj ,fk

|(fj , fk)n|
‖fj‖n‖fk‖n

.

Let R = (ρj,k)j,k∈A∗
be the matrix of canonical correlations within the active set A∗. Then

ψ2
∗ can be taken as the smallest eigenvalue of 2Iid −R, where Iid is the pact × pact identity

matrix and pact = |A∗|.

Remark 6. Canonical dependence is about the dependence structure of variables. To
compare, let Xin and Xout be two random variables, with joint density p, and with marginal
densities pin and pout. Define for real-valued measurable functions fin and fout, of Xin

and Xout respectively, the squared norms ‖fin‖2 =
∫

f2
inpin, and ‖fout‖2 =

∫

f2
outpout, and

the inner product (fin, fout) =
∫

finfoutp. Assume the functions are centered:
∫

finpin =
∫

foutpout = 0. Suppose that for some constant ρ∗,

∫

p2

pinpout
≤ 1 + ρ2

∗.

Then one can easily verify that |(fin, fout)| ≤ ρ∗‖fin‖‖fout‖. In other words, the no perfect
canonical dependence condition is in this context the assumption that the density and the
product density are, in χ2-sense, not too far off.

Remark 7. It is clear that some condition on the dependence structure is needed. If
two variables are highly correlated, our additive Lasso (with sparsity-smoothness penalty)
should rather not include them both with opposite signs, i.e., the penalty hopefully prevents
this. One may relax the canonical dependence condition in this spirit. First, one shows
that only a subset of all possible {fj}p

j=1 needs to be considered. The relaxed condition is
then that for this subset the correlation (fin, fout)n/(‖fin‖n‖fout)‖n) stays away from −1,
i.e., that opposition does not pay off. We omit the details here to avoid digressions.

5.2 On the choice of the penalty

In this paper, we have chosen the penalty in such a way that it leads to good theoretical
behavior (namely the oracle inequality of Theorem 1), as well as to computationally fast,
and in fact already existing, algorithms. The penalty can be improved theoretically, at
the cost of computational efficiency and simplicity.

Indeed, a main ingredient from the theoretical point of view is that the randomness of
the problem (the behavior of the empirical process) should be taken care of. Let us recall
Lemma 1 which says that the set S has large probability, and on S all functions gj satisfy

(ε, gj)n ≤ ξn‖gj‖α
nI

1−α(gj).
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Our penalty was based on the inequality (which holds for any a and b positive)

aαb1−α ≤
√

a2 + b2.

More generally, it holds for any q ≥ 1 that

aαb1−α ≤ (aq + bq)1/q.

In particular, the choice q = 1 would be a natural one, and would lead to an oracle
inequality involving I(f ∗

j ) instead of the square I2(f∗j ) on the right-hand side in Theorem

1. The penalty λ
2−γ

2

∑p
j=1 ‖fj‖n + λ2−γ

∑p
j=1 I(fj), corresponding to q = 1, still involves

convex optimization but which is much more involved and hence less efficient to be solved;
see also Remark 2 in Section 2.2.

One may also use the inequality

aαb1−α ≤ a2 + bγ .

This leads to a “theoretically ideal” penalty of the from λ2−γ
∑p

j=1 I
γ(fj)+λ

∑p
j=1 ‖hj‖n,

where hj is from (6). It allows to adapt to small values of I(f ∗
j ). But clearly, as this penalty

is non-convex, it may be computationally cumbersome. On the other hand, iterative
approximations might prove to work well.

6 Conclusions

We present an estimator and algorithm for fitting sparse, high-dimensional generalized
additive models. The estimator is based on a penalized likelihood. The penalty is new,
as it allows for different regularization of the sparsity and the smoothness of the additive
functions. It is exactly this combination which allows to derive oracle results for high-
dimensional additive models. We also argue empirically that the inclusion of a smoothness-
part into the penalty function yields much better results than having the sparsity-term
only. Furthermore, we show that the optimization of the penalized likelihood can be
written as a Group Lasso problem and hence, efficient coordinate-wise algorithms can be
used which have provable numerical convergence properties.

We illustrate some empirical results for simulated and and real data. Our new approach
with the sparsity and smoothness penalty is never worse and sometimes substantially
better than L2Boosting for generalized additive model fitting [2, 3]. Furthermore, with
an adaptive sparsity-smoothness penalty method, large additional performance gains are
achieved. With the real data about motif regression for finding DNA-sequence motifs, one
among two selected “stable” variables is known to be true, i.e. it corresponds to a known
binding site of a transcription factor.

A APPENDIX: Proofs

A.1 Proof of Proposition 1

Proof. Let f̂1, . . . , f̂p be a solution of (1) and assume that some or all f̂j are not natural

cubic splines with knots at x
(j)
i , i = 1, . . . , n. By Theorem 2.2 in [10] we can construct

natural cubic splines ĝj with knots at x
(j)
i , i = 1, . . . , n such that ĝj(x

(j)
i ) = f̂j(x

(j)
i ) for

i = 1, . . . , n and j = 1, . . . , p. Hence ‖Y −∑p
j=1 ĝj‖2

n = ‖Y −∑p
j=1 f̂j‖2

n and ‖ĝj‖2
n = ‖f̂j‖2

n.

But by Theorem 2.3 in [10], I2(ĝj) ≤ I2(f̂j). Hence the minimizer of (1) can be represented
by a natural cubic spline.
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A.2 Proof of Lemma 1

The result easily follows from Lemma 8.4 in [25], which we cite here for completeness.

Lemma 3. Let G be a collection of functions g : {x1, . . . , xn} → R, endowed with a metric
induced by the norm ‖g‖n = ( 1

n

∑n
i=1 g

2(xi))
1/2. Let H(·) be the entropy of G. Suppose

that
H(δ) ≤ Aδ−2(1−α), ∀ δ > 0.

Furthermore, let ε1, . . . , εn be independent centered random variables, satisfying

max
i

E
[

exp
(

ε2i /L
)]

≤M.

Then, for a constant c0 depending on α, A, L and M , we have for all T ≥ c0,

P

(

sup
g∈G

|2(ε, g)n|
‖g‖α

n

>
T√
n

)

≤ c0 exp

(

−T
2

c20

)

.

Proof of Lemma 1. It is clear that {gj/I(gj)} = {gj : I(gj) = 1}. Hence, by rewriting
and then using Lemma 3,

sup
gj

|2(ε, gj)n|
‖gj‖α

nI
1−α(gj)

= sup
gj

|2(ε, gj/I(gj))n|
‖gj/I(gj)‖α

n

≤ T√
n
,

with probability at least 1 − c0 exp(−T 2/c20). Thus, for C2
0 ≥ 2c20 sufficiently large

P

(

max
j

sup
gj

|2(ε, gj)n|
‖gj‖α

nI
1−α(gj)

> C0

√

log p

n

)

≤ pc0 exp

(

−C
2
0 log p

c20

)

≤ c0 exp

(

−C
2
0 log p

2c20

)

.

In the same spirit, for some constant c1 depending on L and M , it holds for all T ≥ c1,
with probability at least 1 − c1 exp(−T 2d/c21),

sup
hj

|2(ε, hj)n|
‖hj‖n

≤ T

√

d

n
,

where d is the dimension occurring in (6). This result is rather standard but also follows
from the more general Corollary 8.3 in [25]. It yields that for C 2

1 ≥ 2c21, depending on d,
L and M ,

max
j

sup
hj

|2(ε, hj)n|
‖hj‖n

≤ C1

√

log p

n
,

with probability at least 1 − c1 exp(−C2
1 log p/(2c21)).

Finally, it is obvious that for all C2 and a constant c2 depending on L and M ,

P(ε̄ > C2

√

log p

n
) ≤ 2 exp(−C2

2 log p/c22).

Choosing c2 ≥ 2, the result now follows by taking C = max{C0, C1, C2} and c = c0 + c1 +
c2.
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A.3 Proof of Theorem 1

We begin with three technical Lemmas.

Lemma 4. For the decomposition in (6) it holds that

ξn‖gj − g∗j ‖α
nI

1−α(gj − g∗j ) + ξn‖hj − h∗j‖n

≤ λ
2−γ

2

2

√

λ2−γI2(fj − f∗j ) + ‖fj − f∗j ‖2
n

Proof. Note first that since ξn ≤ λ/(2
√

2),

ξn‖gj − g∗j ‖α
nI

1−α(gj − g∗j ) + ξn‖hj − h∗j‖n

≤ λ

2
√

2
‖gj − g∗j ‖α

nI
1−α(gj − g∗j ) +

λ

2
√

2
‖hj − h∗j‖n

≤ λ
2−γ

2

2
√

2

√

λ2−γI2(gj − g∗j ) + ‖gj − g∗j ‖2
n +

λ

2
√

2
‖hj − h∗j‖n

≤ λ
2−γ

2

2
√

2

√

λ2−γI2(gj − g∗j ) + ‖gj − g∗j ‖2
n +

λ
2−γ

2

2
√

2
‖hj − h∗j‖n,

since λ ≤ 1.
We have

√

λ2−γI2(gj − g∗j ) + ‖gj − g∗j ‖2
n + ‖hj − h∗j‖n

≤
√

2{λ2−γI2(gj − g∗j ) + ‖gj − g∗j ‖2
n + ‖hj − h∗j‖2

n}

=
√

2
√

λ2−γI2(gj − g∗j ) + ‖fj − f∗j ‖2
n

where we used the orthogonality of gj − g∗j and hj − h∗j . The result now follows from the
equality I(gj − g∗j ) = I(fj − f∗j ).

Lemma 5. We have

ξn‖gj‖α
nI

1−α(gj) + ξn‖hj‖n − J(fj) ≤ −J(fj)/2.

Proof. By Lemma 4,

ξn‖gj‖α
nI

1−α(gj) + ξn‖hj‖n ≤ λ
2−γ

2

2

√

‖fj‖2
n + λ2−γI2(fj).

Hence,
ξn‖gj‖α

nI
1−α(gj) + ξn‖hj‖n − J(fj)

≤ −λ
2−γ

2

√

‖fj‖2
n + λ2−γI2(fj) − λ2−γI2(fj) ≤ −J(fj)/2.

Lemma 6. We have

ξn‖gj − g∗j ‖α
nI

1−α(gj − g∗j ) + ξn‖hj − h∗j‖n + J(f∗j ) − J(fj)

≤ 3

2
λ

2−γ

2 ‖fj − f∗j ‖n + 2λ2−γ

[

I2(f∗j ) + 1

]

. (11)
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Proof. We use the bound

J(f∗j ) − J(fj) = λ
2−γ

2

√

‖f∗j ‖2
n + λ2−γI2(f∗j ) + λ2−γI2(f∗j )

−λ 2−γ
2

√

‖fj‖2
n + λ2−γI2(fj) − λ2−γI2(fj)

= λ
2−γ

2

√

‖f∗j ‖2
n + λ2−γI2(f∗j ) − λ

2−γ

2

√

‖fj‖2
n + λ2−γI2(f∗j )

+λ
2−γ
2

√

‖fj‖2
n + λ2−γI2(f∗j ) − λ

2−γ
2

√

‖fj‖2
n + λ2−γI2(fj)

+λ2−γI2(f∗j ) − λ2−γI2(fj)

≤ λ
2−γ

2 ‖fj − f∗j ‖n + λ2−γI(fj − f∗j ) + λ2−γI2(f∗j ) − λ2−γI2(fj)

≤ λ
2−γ

2 ‖fj − f∗j ‖n + λ2−γ(I(f∗j ) + I2(f∗j )) + λ2−γI(fj) − λ2−γI2(fj).

Using Lemma 4, it follows that

ξn‖gj − g∗j ‖α
nI

1−α(gj − g∗j ) + ξn‖hj − h∗j‖n + J(f∗j ) − J(fj)

≤ λ2−γ

2
I(fj − f∗j ) +

λ
2−γ
2

2
‖fj − f∗j ‖n

+λ
2−γ

2 ‖fj − f∗j ‖n + λ2−γ(I(f∗j ) + I2(f∗j )) + λ2−γI(fj) − λ2−γI2(fj)

≤ 3

2
λ

2−γ

2 ‖fj − f∗j ‖n + λ2−γ

(

3

2
I(f∗j ) + I2(f∗j )

)

+ λ2−γ

(

3

2
I(fj) − I2(fj)

)

≤ 3

2
λ

2−γ

2 ‖fj − f∗j ‖n + 2λ2−γI2(f∗j ) + 2λ2−γ ,

where we used twice the (rough) inequality (3/2)I ≤ 1 + I 2.

Proof of Theorem 1. It holds that ĉ = Ȳ (=
∑n

i=1 Yi/n) and c∗ = E
[

Ȳ
]

. Thus, on S,
|ĉ− c∗| ≤ ξn. Moreover,

‖f̂ − f0‖2
n = |ĉ− c∗|2 + ‖(f̂ − ĉ) − (f 0 − c∗)‖2

n.

To simplify the exposition (i.e., avoiding a change of notation), we may therefore assume
ĉ = c∗ for the main part of the proof and add a ξ2

n to the final result. In the same spirit,
we assume without loss of generality that f 0 = f0

add.
On the set S, it holds that

2|(ε, f̂j − f∗j )n| ≤ ξn‖ĝj − g∗j ‖α
nI

1−α(ĝj − g∗j )n + ξn‖ĥj − h∗j‖n.

Thus, using the fact that the penalized loss at f̂ is bounded by the penalized loss at f ∗,
we have

‖f̂ − f0‖2
n +

p
∑

j=1

J(f̂j) ≤ 2|
p
∑

j=1

(ε, f̂j − f∗j )n| +
p
∑

j=1

J(f∗j ) + ‖f∗ − f0‖2
n

≤ ξn

p
∑

j=1

‖ĝj − g∗j ‖α
nI

1−α(ĝj − g∗j )n + ξn

p
∑

j=1

‖ĥj − h∗j‖n +

p
∑

j=1

J(f∗j ) + ‖f∗ − f0‖2
n.
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This implies
‖f̂ − f0‖2

n − ‖f∗ − f0‖2
n ≤ iin + iiout, (12)

where
iin = ξn

∑

j∈A∗

‖ĝj − g∗j ‖α
nI

1−α(ĝj − g∗j )n + ξn
∑

j∈A∗

‖ĥj − h∗j‖n

+
∑

j∈A∗

J(f∗j ) −
∑

j∈A∗

J(f̂j),

and
iiout = ξn

∑

j /∈A∗

‖ĝj‖α
nI

1−α(ĝj) + ξn
∑

j /∈A∗

‖ĥj‖n −
∑

j /∈A∗

J(f̂j).

In view of Lemma 6,

iin ≤ 3

2
λ

2−γ

2

∑

j∈A∗

‖fj − f∗j ‖n + 2λ2−γ
∑

j∈A∗

[

I2(f∗j ) + 1

]

.

Moreover, by Lemma 5,

iiout ≤ −
∑

j /∈A∗

J(f̂j)/2.

Hence,

iin + iiout +
λ

2−γ

2

2

p
∑

j=1

‖f̂j − f∗j ‖n

≤ 2λ
2−γ

2

∑

j∈A∗

‖fj − f∗j ‖n + 2λ2−γ
∑

j∈A∗

[

I2(f∗j ) + 1

]

.

We now invoke the inequality

∑

j∈A∗

‖f̂j − f∗j ‖n ≤
√

|A∗|
(

∑

j∈A∗

‖f̂j − f∗j ‖2
n

)1/2

≤
√

|A∗|‖f̂ − f∗‖n/φ∗,

where the last inequality is simply the compatibility condition. This gives

iin + iiout +
λ

2−γ

2

2

p
∑

j=1

‖f̂j − f∗j ‖n

≤ 2

φ∗
λ

2−γ
2

√

|A∗|‖f̂ − f∗‖n + 2λ2−γ
∑

j∈A∗

[

I2(f∗j ) + 1

]

≤ 2

φ∗
λ

2−γ
2

√

|A∗|‖f̂ − f0‖n +
2

φ∗
λ

2−γ
2

√

|A∗|‖f∗ − f0‖n + 2λ2−γ
∑

j∈A∗

[

I2(f∗j ) + 1

]

≤ 1

2
‖f̂ − f0‖2

n +
1

2
‖f∗ − f0‖2

n +
4

φ2
∗

λ2−γ |A∗| + 2λ2−γ
∑

j∈A∗

[

I2(f∗j ) + 1

]

=
1

2
‖f̂ − f0‖2

n +
1

2
‖f∗ − f0‖2

n + 2λ2−γ
∑

j∈A∗

[

I2(f∗j ) + 1 +
2

φ2
∗

]
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Returning to (12), we see that

‖f̂ − f0‖2
n − ‖f∗ − f0‖2

n +
λ

2−γ

2

2

p
∑

j=1

‖f̂j − f∗j ‖n

≤ 1

2
‖f̂ − f0‖2

n +
1

2
‖f∗ − f0‖2

n + 2λ2−γ
∑

j∈A∗

[

I2(f∗j ) + 1 +
2

φ2
∗

]

or

1

2
‖f̂ − f0‖2

n +
λ

2−γ

2

2

p
∑

j=1

‖f̂j − f∗j ‖n ≤ 3

2
‖f∗ − f0‖2

n + 2λ2−γ
∑

j∈A∗

[

I2(f∗j ) + 1 +
2

φ2
∗

]

.

Because we assumed φ∗ ≤ 1, we may simplify the last term to

2λ2−γ
∑

j∈A∗

[

I2(f∗j ) +
3

φ2
∗

]

.

Finally, taking into account the rough bound ξ2
n for the estimation error for estimating

c∗, the result follows.
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