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Abstract

We propose Twin Boosting which has much better feature selection behavior than
boosting. In addition, for cases with a few important effective and many noise fea-
tures, Twin Boosting also substantially improves the predictive accuracy of boosting.
Twin Boosting is as general and generic as boosting. It can be used with general weak
learners and in a wide variety of situations, including generalized regression, classi-
fication or survival modeling. Furthermore, it is computationally feasible for large
problems with potentially many more features than observed samples. Finally, for
the special case of orthonormal linear models, we prove equivalence of Twin Boosting
to the adaptive Lasso which yields a theoretical basis for some properties of Twin
Boosting.
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1 Introduction

Twin boosting is a very generic boosting-based method which most often yields better
feature or variable selection than boosting while keeping or even increasing the prediction
accuracy. Twin boosting proceeds roughly as follows. A first round of “classical” boosting
is done (the first twin); then, in a second round, another boosting process is run (the second
twin) which is forced to resemble the one from the first round. Thus, the two rounds are
similar, like twins, and hence the name Twin Boosting. Boosting itself has attracted much
attention in the machine learning community (cf. Schapire, 2002; Meir and Rätsch, 2003,
and the references therein) as well as in related areas in statistics (Breiman, 1998, 1999;
Friedman et al., 2000), mainly because of its excellent performance and computational
attractiveness for large datasets.

There have been some attempts to make boosting or also related Lasso-methods (Tib-
shirani, 1996) more powerful, in particular in terms of feature or variable selection but
also for prediction. The potential for improvement is mainly given for cases with many
ineffective and a few effective covariates. To deal with many ineffective features, a strong
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regularization is employed in boosting or in related Lasso-methods, creating a large es-
timation bias. Proposals to effectively avoid such large biases include Sparse Boosting
(Bühlmann and Yu, 2006), conjugate direction boosting (Lutz and Bühlmann, 2006),
Lasso with relaxation (Meinshausen, 2005) or the adaptive Lasso (Zou, 2006). Our ap-
proach has some similarity to the latter as it encompasses the adaptive Lasso in the very
special case of an orthonormal linear model. An aspect of success of some of these methods
is their greater flexibility than what is possible with a single regularization parameter in
boosting (the number of iterations) or in related Lasso-methods (the penalty parameter).
Our new Twin Boosting involves two tuning parameters which can be chosen sequentially
rather than simultaneously optimizing over a two-dimensional space of regularization pa-
rameters.

All these recently proposed methods mentioned above, aiming to improve over boosting
or Lasso, are far less general and generic than our Twin Boosting approach. The latter can
be easily used with any real-valued weak learner which is a (possibly crude) estimator of
the conditional mean function. Secondly, Twin Boosting can be used for a rich class of loss
functions, including squared and absolute error for regression, logistic or exponential loss
for classification or Poisson-loss for count data. Therefore, Twin Boosting is essentially
as general and generic as boosting.

2 Boosting algorithms

Boosting is used in supervised learning from data (Xi, Yi), . . . , (Xn, Yn), where Xi ∈ X
is a p-dimensional predictor variable and Yi ∈ Y is a univariate response variable. The
space of predictor variables X is often a subset of R

p and the space of response variables
often a subspace of R, e.g. Y = {−, 1 + 1} for binary classification or Y = R for Gaussian
regression.

A boosting algorithm needs the specification of a loss function and a weak learner.
Regarding the former, consider a loss function

ρ : Y × X → R,

(or a subset of R; and we exclude here the case where the range of ρ(·, ·) is multivariate).
The loss function is assumed to be differentiable (almost everywhere) and typically convex
with respect to the second argument. Examples include squared error loss ρ(y, f) =
|y−f |2/2 with y ∈ R for regression or the logistic loss ρ(y, f) = log2(1+exp(−2yf)) with
y ∈ {−1,+1} for binary classification. The weak learner is in our setting a real-valued
function estimator:

(X1, U1), . . . , (Xn, Un)
weak learner

−→ ĝ(·),

where Xi is the p-dimensional predictor variable and Ui ∈ R a pseudo-response variable.
The notion of a pseudo-response variable will become clear in the description of the generic
boosting algorithm below. An example of a weak learner is a regression tree yielding a
regression function estimate ĝ(·).

It is instructive to look at the population minimizer of the loss function:

f∗(·) = argminf(·)IE[ρ(Y, f(X))], (1)
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It is itself a function and it is the target of the boosting algorithm. For example, the
squared error loss ρ(y, f) = |y−f |2/2 yields the well-known population minimizer f ∗(x) =
IE[Y |X = x] and boosting algorithms using the squared error loss are estimators of the
regression function f ∗(·).

2.1 The generic boosting algorithm

Boosting is based on the empirical risk n−1
∑n

i=1 ρ(Yi, f(Xi)) and pursuing iterative steep-
est descent in function space as described below for estimating the unknown function f ∗(·).
This very general and useful view of boosting has been pioneered by Breiman (1998, 1999)
and further developed by Friedman et al. (2000), Rätsch et al. (2001) and Friedman (2001).

Variable or feature selection is pursued in this paper without any statistical significance
testing. The selected features is the set of variables which enter explicitly (via the boosting
algorithm) in the final function estimate f̂(·).

Generic boosting algorithm

1. Initialize f̂ [0]: typical values are f̂ [0] ≡ Y = n−1
∑n

i=1 Yi or f̂ [0] ≡ 0. Set m = 0.

2. Increase m by 1. Compute negative gradient − ∂
∂f

ρ(Y, f) and evaluate at f̂m−1(Xi):

Ui = −
∂

∂f
ρ(Y, f)|

f=f̂m−1(Xi)
, i = 1, . . . , n.

3. Fit negative gradient vector U1, . . . , Un by the weak learner

(X1, U1), . . . , (Xn, Un)
weak learner

−→ ĝ[m](·),

Thus, ĝ[m](·) can be viewed as an approximation of the negative gradient vector.

4. Up-date f̂ [m] = f̂ [m−1](·) + ν · ĝ[m](·), where 0 < ν ≤ 1 is a step-length,
i.e. proceed along an estimate of the negative gradient vector.

5. Iterate steps 2 - 4 until m = mstop for some stopping iteration mstop.

The stopping iteration, which is the main tuning parameter, can be estimated via cross-
validation. The choice of the step-size ν in step 4. is of minor importance, as long as
it is “small” such as ν = 0.1. A smaller value of ν typically requires a larger number of
boosting iterations, and thus more computing time, while the predictive accuracy has been
found to be potentially better for ν being “sufficiently small”, e.g. ν = 0.1 (Friedman,
2001). Friedman (2001) suggests to use an additional line search between steps 3 and 4
(in case of different loss functions ρ(·, ·) than squared error): it yields a slightly different
algorithm but the additional line search seems unnecessary to pursue for achieving a good
estimator f̂ [mstop](·).
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2.2 L2Boosting

L2Boosting is the generic boosting algorithm when using the squared error loss ρ(y, f) =
|y − f |2/2. It has been proposed by Friedman (2001) and further developed and analyzed
in Bühlmann and Yu (2003).

L2Boosting algorithm

1. Initialize f̂ [0]: the default value is f̂ [0] ≡ Y = n−1
∑n

i=1 Yi. Set m = 0.

2. Increase m by 1. Compute the residuals Ui = Yi − f̂ [m−1](Xi) for i = 1, . . . , n.

3. Fit the residual vector U1, . . . , Un by the weak learner

(X1, U1), . . . , (Xn, Un)
weak learner

−→ ĝ[m](·).

4. Up-date f̂ [m](·) = f̂ [m−1](·) + ν · ĝ[m](·), where 0 < ν ≤ 1 is a step-length factor.

5. Iterate steps 2 to 4 until m = mstop for some stopping iteration mstop.

The stopping iteration mstop is the main tuning parameter which can be selected using
cross-validation.

Other loss functions, e.g. the logistic loss for classification, and corresponding boosting
algorithms are described in Section 5. For reasons of clarity, we will first describe all the
ideas and motivation for Twin Boosting for the case of the squared error loss. We will
then show in Section 5 that the concepts easily generalize to general loss functions.

3 Twin L2Boosting for linear models

For expository simplicity, we first describe Twin Boosting for linear models:

Yi =

p∑

j=1

βjX
(j)
i + εi, (2)

where ε1, . . . , εn are independent, identically distributed (i.i.d.), independent from X1, . . . , Xn,
with IE[εi] = 0. We sometimes write in short:

Y = Xβ + ε

with Yn×1 = (Y1, . . . , Yn)T , εn×1 = (ε1, . . . , εn)T and Xn×p = [X1, . . . , Xn]T .
Fitting of the linear model in (2) with boosting or Twin Boosting is based on the

squared error loss (L2Boosting) and the componentwise linear least squares weak learner,
as described in Section 3.1 below. Already L2Boosting itself has been proven to be very
useful for fitting linear models with potentially many more covariates than samples (Fried-
man, 2001; Bühlmann, 2006; Bühlmann and Yu, 2006) and we will argue here in which
circumstances Twin Boosting is even better.
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In the sequel, we will extensively use the following notation:

〈u, v〉 =

n∑

i=1

uivi for some vectors u, v ∈ R
n,

‖u‖2 = 〈u, u〉 =

n∑

i=1

u2
i for some vector u ∈ R

n.

Moreover, denote by X(j) the jth n × 1 column vector of X.

3.1 Componentwise linear least squares as weak learner

Consider the following weak learner based on data (X1, U1), . . . , (Xn, Un):

ĝ(x) = γ̂
Ŝ
x(Ŝ),

γ̂j = 〈U,X(j)〉/‖X(j)‖2, Ŝ = arg min
1≤j≤p

n∑

i=1

(Ui − γ̂(j)X
(j)
i )2. (3)

It selects and fits the best predictor variable in a simple linear model in the sense of
ordinary least squares fitting. For computational implementation as well as for the con-
struction our Twin Boosting, it is useful to represent the selected predictor variable as:

Ŝ = arg min
1≤j≤p

|〈U,X(j)〉|2/‖X(j)‖2. (4)

The derivation of (4) is straightforward.
When using L2Boosting with this base procedure, we select in every iteration one pre-

dictor variable, not necessarily a different one for each iteration, and we up-date the func-
tion f̂ [m](·) linearly as described in Section 2.2. For componentwise linear least squares,
we can simply up-date the parameter vector of a linear model.

L2Boosting with componentwise linear least squares

1. Initialize β̂[0]. Set m = 0.

2. Increase m by 1. Compute the residuals Ui = Yi − Y − (Xβ̂[m−1])i for i = 1, . . . , n.

3. Compute Ŝm as in (4) and γ̂
Ŝm

as in (3).

4. Up-date

β̂[m] = β̂[m−1] + ν · γ̂
Ŝm

.

The notation should be read that only the Ŝmth component of the coefficient esti-
mate is up-dated.

5. Iterate steps 2 to 4 until m = mstop for some stopping iteration mstop.

The selected variables are corresponding to the indices j for which β̂[m1] 6= 0.
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3.2 Twin L2Boosting with componentwise linear least squares

Twin Boosting for linear models uses the squared error loss and componentwise linear
least squares as weak learner. For expository simplicity, we consider standardized data

where n−1
∑n

i=1 Yi = 0, n−1
∑n

i=1 X
(j)
i = 0 and

∑n
i=1(X

(j)
i )2 = 1 for all j = 1, . . . , p (for

unstandardized data, the algorithm has to be slightly re-formulated). This can always be
achieved by centering with the empirical mean and scaling with the empirical standard
deviation.

Twin L2Boosting with componentwise linear least squares

1. Run a first round of L2Boosting with componentwise linear least squares, using m1

iterations. Denote the estimated parameter by β̂
[m1]
init .

2. For the second round, run L2Boosting with componentwise linear least squares but
replace formula (4) by

Ŝ = argmax1≤j≤p|〈U,X(j)〉|2|β̂
[m1]
init;j |

2. (5)

Note that ‖X(j)‖2 = 1 because of standardized data. Use m2 iterations and denote

the Twin L2Boosting estimator by β̂
[m2]
TWB .

Two tuning parameters m1 and m2 are involved. Instead of optimizing (e.g. cross-
validating) over both parameters simultaneously, we use the following, computationally
much faster sequential approach: first, an estimate m̂1 is obtained from cross-validation
for L2Boosting and then, cross-validation for Twin Boosting with fixed m̂1 in the initial
estimator yields an estimate m̂2.

3.3 Connections to the Lasso and the adaptive Lasso

There is an intriguing connection between L2Boosting with componentwise linear least
squares and the Lasso (Tibshirani, 1996). The latter is an `1-penalty method for regression
defined by

β̂(λ) = arg min
β

n−1
n∑

i=1

(Yi − β0 −

p∑

j=1

βjX
(j)
i )2 + λ

p∑

j=1

|βj |. (6)

Efron et al. (2004) consider a version of L2Boosting, called forward stagewise linear
regression (FSLR), and they show that FSLR with infinitesimally small step-sizes (i.e.
the value ν) produces a set of solutions which is approximately equivalent to the set of
Lasso solutions when varying the regularisation parameter λ in Lasso (see also (6) above).
The approximate equivalence is derived by representing FSLR and Lasso as two different
modifications of their computationally efficient least angle regression (LARS) algorithm.
In special cases where the design matrix satisfies a “positive cone condition”, FSLR, Lasso
and LARS all coincide (Efron et al., 2004, p.425).
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Despite the fact that L2Boosting and Lasso are not equivalent methods in general,
the connection between boosting (as a forward, greedy method) and the Lasso (involving
convex optimization) is interesting.

Recently, Zou (2006) has proposed the adaptive Lasso, defined as

β̂(λ) = arg min
β

n−1
n∑

i=1

(Yi − β0 −

p∑

j=1

βjX
(j)
i )2 + λ

p∑

j=1

|βj |

|βinit,j |
, (7)

where βinit is an initial estimator. Zou (2006) mainly uses ordinary least squares as initial
estimator (for cases with reasonable ratio n/p) and he mentions the Ridge estimator as
one among several possible alternatives. In addition, he proposed a more general class of
estimators, but the specific form in (7) is useful and often sufficient. The adaptive Lasso
has two advantages over the Lasso. It yields consistent variable selection without imposing
severe restriction on the design matrix, at least for the case with fixed predictor dimension
p (Zou, 2006), whereas the Lasso is inconsistent (typically yields too large models) if
the design is roughly speaking “strongly correlated” (Meinshausen and Bühlmann, 2006;
Zou, 2006; Zhao and Yu, 2006). Secondly, adaptive Lasso yields better predictions if the
true underlying model has many ineffective (noise) predictor variables. Both of these
advantages are closely related to the motivation of our Twin Boosting, see Section 1.

In case of an orthonormal linear model, i.e. the model (2) with
∑n

i=1 X
(j)
i X

(k)
i = δjk

(Kronecker δjk = 1 if j = k and 0 otherwise), explicit connections between boosting and
Lasso exist. It has been shown (constructively) that L2Boosting with componentwise
linear least squares approximates the solution from Lasso (as ν > 0 tends to zero) which
equals the soft-threshold estimator (Bühlmann and Yu, 2006). For Twin Boosting, the
following holds.

Proposition 1 In an orthonormal linear model, Twin Boosting with componentwise lin-

ear least squares approximates the adaptive Lasso described in (7) with β̂
[m1]
init as initial

estimator. In particular, when stopping the second round of Twin Boosting after m2 it-
erations, there is a corresponding λ > 0 such that the following holds: for step-size factor
ν → 0,

β̂
[m2]
TWB;j → sign(Zj)(Zj −

λ

|β̂
[m1]
init,j |

)+ (ν → 0),

where (x)+ = max(0, x) denotes the positive part and Zj = (XTY)j.

A proof is given in the Appendix. Proposition 1 illustrates that in the simple case of
an orthonormal linear model, Twin Boosting yields the adaptive Lasso which equals here
the adaptive soft-threshold estimator (as given in Proposition 1 as the limiting case for
ν → 0). The connection is interesting but the real power of Twin Boosting is its generic
applicability to very general weak learners and loss functions.

4 Twin L2Boosting with trees and general weak learners

The most popular weak learners for boosting are decision trees. Our proposal for Twin
Boosting with trees is simple, easy to implement and effective. We could represent trees
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in terms of basis functions (with indicator functions of rectangles) and then employ Twin
Boosting methodology as for linear models. However, such an approach becomes com-
putationally very impractical due to the huge number of basis functions (particularly for
larger trees) and in addition, such an approach would (adaptively) encourage sparseness
in the space of basis functions rather than sparseness in the space of predictor variables;
the latter is often much more interesting for many datasets and scientific problems.

Twin Boosting with any real-valued (regression-type) weak learner is defined as follows.

Twin L2Boosting with general weak learner

1. Run a first round of L2Boosting and denote by f̂
[m1]
init = (f̂

[m1]
init (X1), . . . , f̂

[m1]
init (Xn))

the fitted function at the data points and by V̂ [m1] ⊆ {1, . . . , p} the subset of indices
corresponding to selected predictor variables, both based on m1 boosting iterations.
(If the weak learner is not doing any variable selection, then V̂ [m1] = {1, . . . , p} is
the full set).

2. For the second round, initialize f̂ [0]: the default value is f̂ [0] ≡ Y = n−1
∑n

i=1 Yi.
Set m = 0.

3. Increase m by 1. Compute the residuals Ui = Yi − f̂ [m−1](Xi) for i = 1, . . . , n.

4. For every subset W ⊆ V̂ [m1], 1 fit the residual vector U1, . . . , Un to X1, . . . , Xn with
the weak learner. Denote this fitted function by ĥW(·) and by ĥW = (ĥW (X1), . . . , ĥW(Xn)).
Then, choose the best W according to:

Ŵ = argmaxWC2
W(2〈U, ĥW 〉 − ‖ĥW‖2),

CW = 〈f̂
[m1]
init − f̂

[m1]
init , ĥW〉/‖ĥW‖, f̂

[m1]
init = n−1

n∑

i=1

f̂
[m1]
init (Xi). (8)

Denote by ĝ[m](·) = ĥ
Ŵ

(·).

5. Up-date f̂ [m] = f̂ [m−1](·) + ν · ĝ[m](·), where 0 < ν ≤ 1 is a step-length factor.

6. Iterate steps 3 to 5 until m = m2 for some stopping iteration m2.

The stopping iteration m2 is the main tuning parameter (for a given boosting estimator
of the first round) which can be selected using cross-validation.

From a computational point of view, it seems awkward to consider all subsets W ⊆
V̂ [m1] in step 4. However, if the weak learner does variable selection, selecting at most
d predictor variables (e.g. a tree with at most d + 1 terminal nodes), we only have to
consider in step 4 all subsets W having cardinality |W| = d. For example, when using
stumps, d = 1 and step 4 becomes:

step 4 for stumps. For every j ∈ V̂ [m1], fit the residual vector with a stump and denote it
by ĥj(·). The remaining part of step 4 is then as above.

1See also the discussion after the description of the algorithm.
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The selected variables from Twin Boosting arise from the set of variables which occur
in Ŵ from step 4 for at least one iteration. For example with trees as weak learner, the
selected variables arise from variable selection of the tree-type weak learner during the
Twin Boosting iterations.

Using trees as weak learner, d = 1 (stumps) or d = 2 is often a good choice (see also
the discussion below in Section 4.1). More generally, for a tree with d + 1 terminal nodes
(d splits), the computation in step 4 is of the order O(dnp|V̂ [m1]|d). It should be noted
here that usually |V̂ [m1]| ≤ min(n, p), often even � min(n, p).

In case of large trees as weak learner, we could also take random subsets W of cardi-
nality d and proceed then as above in step 4.

We give now a motivation for the construction in step 4. Consider Twin L2Boosting
for linear models, described in Section 3.2. There, it happens automatically that the
second round of Twin Boosting considers only the set of predictor variables V̂ [m1] which
has been chosen in the first round. Next, we consider the formula (8). The residual sum
of squares is

‖U − ĥW‖2 = ‖U‖2 − 2〈U, ĥW 〉 + ‖ĥW‖2 = const. − (2〈U, ĥW 〉 − ‖ĥW‖2).

L2Boosting would proceed by choosing the best W maximizing

G(W) = 2〈U, ĥW 〉 − ‖ĥW‖2. (9)

For Twin Boosting, we want to multiply weights CW into the criterion G(W). For the
form of these weights, it is instructive to consider Twin Boosting for linear models with
normed predictor variables having ‖X(j)‖2 = 1: there, W is an element of {1, . . . , p} and

ĥj(Xi) = 〈U,X(j)〉X
(j)
i . Using this, we easily obtain for W = j,

G(W) = G(j) = |〈U,X(j)〉|2. (10)

Twin Boosting for linear models does nothing else than multiplying G(j) by the weights
β2

init,j . Therefore, we want to multiply G(W) in (9) with the square of a suitable regression
coefficient. Our CW in formula (8) is the standardized regression coefficient when regress-
ing the fitted function from the first round of Twin Boosting f̂ [m1] against the candidate
estimate ĥW ; the standardization is a multiplication by ‖ĥW‖. The standardization is
useful as it implicitly measures the regression coefficient on a scale where ĥW would have
been standardized to ‖ĥW‖ ≡ 1 for all W. We end our motivation of step 3 with the
following result.

Proposition 2 Consider the general Twin L2Boosting algorithm and choose the compo-
nentwise linear least squares weak learner. Then, this algorithm coincides exactly with
Twin L2Boosting for linear models, as described in Section 3.2, provided that the under-

lying regression model is orthonormal as specified in (2) with
∑n

i=1 X
(j)
i X

(k)
i = δjk.

A proof is given in the Appendix.
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4.1 Stumps and larger trees as weak learners

The choice of the weak learner is usually driven by optimizing the prediction performance.
In addition, some structural properties can be another useful criterion as well.

The generic boosting and Twin Boosting estimator is a linear combination of weak
learners

f̂ [m](·) = ν

m∑

k=1

ĝ[k](·).

Therefore, structural properties of the boosting function estimator are given by linear
combination of structural characteristics of the weak leaner.

Trees are among the most popular base procedures in machine learning. They have
the advantage to be invariant under monotone transformations of predictor variables, i.e.,
we do not need to search for good data transformations.

When using stumps, i.e., a tree with two terminal nodes, the boosting and Twin
Boosting estimate will be an additive model in the original predictor variables, because
every stump-estimate is a function of a single predictor variable only. Similarly, boosting
trees with (at most) d+1 terminal nodes results in a nonparametric model having at most
interactions of order d−1: e.g. for d = 2, we would pick up interaction terms between pairs
of predictor variables. Thus, if we want to constrain the degree of interactions, we can
easily do this by constraining the (maximal) number of nodes in the tree learner. For many
real datasets, it seems that low-order interaction (or even additive) models are sufficiently
rich for good prediction and interpretation. For example, the naive Bayes classifier or
linear discriminant analysis, based on an additive or linear decision function respectively,
works surprisingly well in many applications (Jamain and Hand, 2005; Hand, 2006). Also
boosting with stumps, yielding an additive model, has proven to be successful in many
areas, e.g. winning the performance prediction challenge of the IEEE World Congress on
Computational Intelligence 2006 (Lutz, 2006). Thus, we often get good performance with
trees having 2 or 3 terminal nodes (d = 1 or 2, respectively). With such small values of
d, Twin Boosting is computationally fast, as discussed after the description of the Twin
Boosting algorithm in Section 4.

5 Other loss functions and generic Twin Boosting

For other loss functions than squared error (i.e. other boosting algorithms than L2Boosting)
we can use the general functional gradient descent approach as described in Section 2.1.

Interesting examples of loss functions include the following. For binary classification
with y ∈ {−1,+1}, the logistic loss is

ρlogit(y, f) = log2(1 + exp(−2yf)), (11)

and the exponential loss is

ρexp(y, f) = exp(−yf). (12)
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Boosting with the logistic loss or exponential loss function is essentially LogitBoost (Fried-
man et al., 2000) (also called BinomialBoosting) or AdaBoost (Freund and Schapire, 1996),
respectively. For both loss function, the population minimizer is

f∗(x) =
1

2
log(

p(x)

1 − p(x)
), p(x) = IP[Y = 1|X = x].

For cases where Y ∈ {0, 1, 2, . . .}, the Poisson log-likelihood is often appropriate:

ρ(y, f) = −yf + exp(f), f = log(λ).

In survival analysis, we can derive the loss function from the partial likelihood in the Cox
model (Cox, 1975).

5.1 Generic Twin Boosting with general weak learners

If the loss function ρ(·, ·) is differentiable (almost everywhere) with respect to the second
argument, the generic boosting algorithm from Section 2.1 can be used.

Generic Twin Boosting is exactly as Twin L2Boosting from Section 3.2, except that
in step 3, instead of using residuals Ui we will use

Ui = −
∂

∂f
ρ(Y, f)|

f=f̂m−1(Xi)
, i = 1, . . . , n,

exactly as in the generic boosting algorithm from Section 2.1. Therefore, from an imple-
mentation point of view, Twin Boosting with general loss functions is as simple as Twin
L2Boosting.

6 Empirical results

We report here some results on Twin Boosting for regression and classification and we
compare them with boosting. We will demonstrate that Twin Boosting has a clear advan-
tage over boosting if the truth has many ineffective predictor variables. Given the success
of boosting algorithms in many application areas, Twin Boosting exhibits a substantial
potential for further improvements over boosting. All our results are displayed in Figures,
giving a better summary how the methods behave as a function of boosting iterations.

6.1 Regression

The response variables Yi are real-valued and the goal is estimation of the function
IE[Y |X = x] or prediction of new observations Y.

6.1.1 Simulated data

Consider the linear model:

model in (2) with p = 500, β1 = 5, βj = 0 (j = 2, . . . p),

Xi ∼ Np(0, I) and εi ∼ N (0, 1). (13)
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Sample size is chosen as n = 50 and the number of independent simulation runs is 100.
We first use L2Boosting and Twin L2Boosting for linear models, using the compo-

nentwise linear least squares weak learner. The step-length factor is chosen as ν = 0.1
and the number of boosting iterations in the first round of Twin Boosting is chosen as
m1 = 50 which is a reasonable value according to the performance of L2Boosting. Figure
1 displays the mean squared error (MSE) IE[((β̂ − β)T Xnew)2] =

∑p
j=1 IE[(β̂j − βj)

2] (i.e.
generalization error) and the number of selected and incorrectly selected predictor vari-
ables, as a function of boosting iterations. Figure 1 is an impressive demonstration how
much can be gained by using Twin Boosting instead of boosting, particularly in terms of
variable selection.

Figure 1 about here.

Next, we consider L2Boosting and Twin L2Boosting with stumps. The results are
displayed in Figure 2; for Twin Boosting, we used m1 = 50 iterations in the first round.

Figure 2 about here.

Although boosting (and Twin Boosting) with stumps yields an additive model fit, the
weak learner is “mis-specified” (as is often the case in practice). This explains why the
mean squared error is much larger than with componentwise linear least squares. Also
here, L2Boosting selects way too many predictor variables while Twin Boosting is very
effective and substantially reduces the number of selected variables.

The results here are quite representative for many other simulation settings.

6.1.2 Real data

We consider two real data sets: ozone concentration and motif regression from molecular
biology. Both data sets are available from
ftp//ftp.stat.math.ethz.ch/Research-Reports/Other-Manuscripts/buhlmann/ozone.dat

ftp//ftp.stat.math.ethz.ch/Research-Reports/Other-Manuscripts/buhlmann/motif.dat

respectively.
The ozone data is about daily ozone concentration in the Los Angeles basin as a

function of p = 8 meteorological predictor variables. Sample size is n = 330. From a
prediction point of view, the componentwise linear least squares weak learner is inferior
than stumps. Thus, Figure 3 reports only for boosting and Twin Boosting (with m1 = 100
iterations in the first round) with stumps.

Figure 3 about here.

In addition, we look at a synthetically enlarged problem. We add 500 additional,
ineffective noise predictor variables Xadd ∼ N500(0, I). The problem has then dimension
p = 508 with at most 8 effective predictors. This will enable us to see whether and how
many from the obviously ineffective variables will be selected; we do not know whether all
of the 8 original predictor variables are effective or not. We refer to an obviously incorrectly
selected predictor variable if it is one of the 500 synthetically added predictors. Figure 4
reports the results (with m1 = 100 iterations in the first round of Twin Boosting). Twin

12



L2Boosting has slightly better prediction performance than L2Boosting and is much better
with respect to obviously incorrectly selected variables.

Figure 4 about here.

The motif regression data models gene expression as a function of MDSCAN motif
scores (Conlon et al., 2003, p. 3343: Spellman et al. data, 15th time point). This data
is representative for many gene expression - motif scores data-sets, all of them being very
noisy. Our data has p = 4312 motif scores (predictor variables) and sample size (number
of genes) is n = 4443. Figure 5 displays the results for the componentwise linear least
squares weak learner.

Figure 5 about here.

Although L2Boosting is performing as well as Twin L2Boosting from a prediction
point of view, the sparsity of Twin L2Boosting in terms of selected variables is crucial
in this application. When using about 600-800 boosting iterations, L2Boosting selects
144-178 predictors while Twin Boosting uses 41-53 variables only. Biological validation
of about 50 potential motifs (cis-regulatory elements) is much more realistic than for 3
times as many candidates. L2Boosting and Twin L2Boosting with trees did not improve
prediction performance while it selected more predictor variables than what is reported
above for componentwise linear least squares.

6.2 Classification

We consider some binary classification problems and use exclusively the logistic loss in
(11) for boosting, i.e. Binomial- or LogitBoosting. The classifier is given by sign(f̂(x))
where f̂(·) is the estimated function from boosting or Twin Boosting, respectively. This
rule is equivalent to classify to the label with larger (conditional) class-probability.

6.2.1 Simulated data

We modify model (13) as follows:

p = 500, β1 = 2, βj = 0 (j = 2, . . . p),

Xi ∼ Np(0, I), log(πi/(1 − πi)) =

p∑

j=1

βjX
(j)
i , Yi ∼ Bernoulli(πi). (14)

Sample size is again chosen as n = 50 and the number of independent simulation runs is
100. We reduced the size of the coefficient β1 in comparison to model (13) to decrease the
signal to noise ratio in the problem.

Figure 6 reports the results for Binomial/LogitBoosting and its Twin Boosting ver-
sion (with m1 = 10 iterations in the first round of Twin Boosting) with componentwise
linear least squares (which yields a logistic linear model). The results are qualitatively
comparable to the case of regression in Figure 1, demonstrating a clear advantage of Twin
Boosting.

Figure 6 about here.
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6.2.2 Real data

We consider the sonar dataset (n = 208, p = 60) from the Statlog project, available from
ftp//ftp.stat.math.ethz.ch/Research-Reports/Other-Manuscripts/buhlmann/sonar.dat

and the ionosphere dataset (n = 351, p = 34) from the UCI machine learning repository
(http://www.ics.uci.edu/ mlearn/MLSummary.html). For both cases, we also consider syn-
thetically enlarged predictor spaces where we add 500 ineffective predictor variables. We
use boosting and Twin Boosting with stumps; logistic linear models, fitted by using the
componentwise linear least squares weak learner, were not competitive for both data-sets.

For the sonar data, we use m1 = 100 iterations in the first round of Twin Boosting.
The results are displayed in Figure 7. The classification accuracy is about the same for
boosting and Twin Boosting while the latter selects about 30% fewer variables (when
using reasonable stopping iterations which differ for the two methods).

Figure 7 about here.

We enlarge the number of features by adding 500 additional, ineffective noise predictor
variables Xadd ∼ N500(0, I). Then, the classification problem involves dimension p = 560
with at most 60 effective predictors. We refer to an obviously incorrectly selected predictor
variable if it belongs to one of the 500 synthetically added features. Results are given in
Figure 8.

Figure 8 about here.

The interpretation is similar (even more in favor of Twin Boosting) as for the original
sonar data. In addition, Twin Boosting is much better in terms of obviously incorrectly
selected variables.

For the ionosphere data, m1 = 500 iterations in the first round of Twin Boosting is a
reasonable value. The results are displayed in Figure 9.

Figure 9 about here.

Twin Boosting has marginally better prediction power while being more sparse in
the selected variables. When adding 500 additional, ineffective noise predictor variables
Xadd ∼ N500(0, I) the problem has dimension p = 534 with at most 34 effective predictors.
Results are displayed in Figure 10, based on m1 = 200 iterations in the first round of Twin
Boosting; as above for the sonar data, the obviously incorrectly selected variables can be
determined.

Figure 10 about here.

Interestingly, the classification performance does not degrade for both boosting and
Twin Boosting. The reason is probably due to the increased resistance of overfitting
(e.g. when selecting wrong features) when using the misclassification error (Friedman
et al., 2000, p.400-404) and having a situation with low noise (low misclassification error).
Regarding the quality of feature selection, however, Twin Boosting is much better than
boosting in terms of selecting obviously incorrect predictor variables.

14



7 Conclusions

We proposed Twin Boosting which is as general and generic as boosting. It can be used
with general weak learners and in a wide variety of situations, including regression, clas-
sification, Poisson regression or survival analysis (using the loss function from the partial
likelihood in the Cox model). Furthermore, it is easy to implement and computationally
feasible for large problems with potentially very many features (or predictors or covari-
ates) and/or large sample size. In particular, it is useful for high-dimensional situations
where the number of features is much larger than sample size.

We have empirically shown that Twin Boosting has much better feature or variable
selection behavior than boosting. For cases with a few important effective covariates and
many noise features, Twin Boosting also improves the predictive accuracy of boosting;
for other situations, we never found it worse for prediction than boosting. For the special
case of orthonormal linear models, we prove equivalence to the adaptive Lasso (Zou,
2006) which yields a theoretical basis for explaining our general empirical findings for
Twin Boosting.

8 Appendix

Proof of Proposition 1.

The proof of Theorem 2 in Bühlmann and Yu (2006) can be adapted. The main modifica-

tion is needed for formula (22) and its previous 5 lines. We denote in short by βinit = β̂
[m1]
init

and β̂[m] = β̂
[m]
TWB .

The residual sum of squares of Twin L2Boosting at iteration m, denoted by RSSm,
decreases monotonically in m. The difference in residual sum of squares is:

RSSm − RSSm+1 = |〈U,X(Sm+1)〉|2,

where U denotes the residual vector Y−Xβ̂[m] and Sm+1 the selected variable in iteration
m + 1. In every step of Twin L2Boosting, a maximal reduction of the weighted difference
in residual sum of squares is used:

Gm+1 = (RSSm − RSSm+1)|βinit,Sm+1
|2 = |〈U,X(Sm+1)〉|2|βinit,Sm+1

|2,

and the sequence Gm+1,m = 1, 2, . . . is monotonically decreasing (because of the definition
of Twin L2Boosting, the independence of fitting the ith component of β from the jth
component (i 6= j) and the form of the decay of differences of residual sum of squares).
Therefore, every stopping iteration corresponds to a tolerance δ2 as in formula (22) in
Bühlmann and Yu (2006), using here Gm+1 instead of RSSm − RSSm+1. The remaining
part of the proof is exactly as in Bühlmann and Yu (2006): the additional factor |βinit,i|

2

leads to the assertion of Proposition 1. �

Proof of Proposition 2.

By formula (10), we only have to deal with the form of the coefficient CW = Cj in (8).
Denote by γ̂j = 〈U,X(j)〉 the estimated regression coefficient of U versus X(j). Then,

Cj = 〈f̂
[m1]
init , γ̂jX

(j)〉/‖γ̂jX
(j)‖
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= 〈

p∑

k=1

β̂
[m1]
init,kX

(k), γ̂jX
(j)〉/‖γ̂jX

(j)‖ = β̂
[m1]
init,j γ̂j/|γ̂j |.

Hence,

C2
j = (β̂

[m1]
init,j)

2,

equaling the factor in formula (5). This completes the proof. �
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Figure 1: L2Boosting (solid line) and Twin Boosting (dashed line) with componentwise
linear least squares in model (13). Mean squared error (MSE) (left), average number of
selected predictor variables (middle) and number of incorrectly selected predictor variables
(right) as a function of boosting iterations (or iterations from the second round in Twin
Boosting, respectively). Simulation accuracy is indicated by dotted lines as 95% confidence
intervals.
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Figure 2: L2Boosting (solid line) and Twin L2Boosting (dashed line) with stumps for
model (13). Other specifications as in Figure 1.

18



0 100 200 300 400 500

16
17

18
19

20

squared error

boosting iteration

sq
ua

re
d 

er
ro

r

0 100 200 300 400 500

1
2

3
4

5
6

7
8

no. variables

boosting iteration

no
. o

f v
ar

ia
bl

es

Figure 3: L2Boosting (solid line) and Twin Boosting (dashed line) with stumps for ozone
data. 10-fold cross-validation of: Squared error (left) and number of selected predictor
variables (right), as a function of boosting iterations (or iterations from the second round
in Twin Boosting, respectively).
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Figure 4: L2Boosting (solid line) and Twin Boosting (dashed line) with stumps for ozone
data with synthetically enlarged predictor space (p = 508). 10-fold cross-validation of:
Squared error (left), number of selected predictor variables (middle) and number of obvi-
ously incorrectly selected variables (right), as a function of boosting iterations (or itera-
tions from the second round in Twin Boosting, respectively).
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Figure 5: L2Boosting (solid line) and Twin L2Boosting (dashed line) with componentwise
linear least squares for motif regression data. Other specifications as in Figure 3.
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Figure 6: LogitBoosting (solid line) and corresponding Twin Boosting (dashed line) with
componentwise linear least squares in model (14). Misclassification error (left), average
number of selected predictor variables (middle) and average number of incorrectly selected
predictor variables (right) as a function of boosting iterations (or iterations from the
second round in Twin Boosting, respectively). Simulation accuracy is indicated by dotted
lines as 95% confidence intervals.
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Figure 7: LogitBoosting (solid line) and corresponding Twin Boosting (dashed line) with
stumps for sonar data. 10-fold cross-validation of: Misclassification error rate (left) and
number of selected predictor variables (right, as a function of boosting iterations (or
iterations from the second round in Twin Boosting, respectively).
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Figure 8: LogitBoosting (solid line) and corresponding Twin Boosting (dashed line) with
stumps for sonar data with synthetically enlarged predictor space. 10-fold cross-validation
of: Misclassification error rate (left), number of selected predictor variables (middle) and
number of obviously incorrectly selected variables (right), as a function of boosting itera-
tions (or iterations from the second round in Twin Boosting, respectively).
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Figure 9: LogitBoosting (solid line) and corresponding Twin Boosting (dashed line) with
stumps for ionosphere data. Other specifications as in Figure 7.
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Figure 10: LogitBoosting (solid line) and corresponding Twin Boosting (dashed line) with
stumps for ionosphere data with synthetically enlarged predictor space. Other specifica-
tions as in Figure 8.
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