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Abstract

We propose Twin Boosting which has much better feature selection behavior than
boosting, particularly with respect to reducing the number of false positives (falsely
selected features). In addition, for cases with a few important effective and many
noise features, Twin Boosting also substantially improves the predictive accuracy
of boosting. Twin Boosting is as general and generic as boosting. It can be used
with general weak learners and in a wide variety of situations, including generalized
regression, classification or survival modeling. Furthermore, it is computationally
feasible for large problems with potentially many more features than observed samples.
Finally, for the special case of orthonormal linear models, we prove equivalence of Twin
Boosting to the adaptive Lasso which yields a theoretical basis for some properties of
Twin Boosting.
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1 Introduction

Boosting has attracted much attention in the machine learning community (cf. Schapire,
2002; Meir and Rätsch, 2003, and the references therein) as well as in related areas in
statistics (Breiman, 1998, 1999; Friedman et al., 2000), mainly because of its excellent
performance and computational attractiveness for large datasets. The main breakthrough
came with Freund and Schapire’s most successful AdaBoost algorithm for binary classifi-
cation (Freund and Schapire, 1996, 1997).

Twin boosting is a very generic boosting-based method which most often yields better
feature or variable selection than boosting while keeping or even increasing the prediction
accuracy. Twin boosting proceeds roughly as follows. A first round of “classical” boosting
is done (the first twin); then, in a second round, another boosting process is run (the second
twin) which is forced to resemble the one from the first round. Thus, the two rounds are
similar, like twins, and hence the name Twin Boosting.

There have been some attempts to make boosting or also related Lasso-methods (Tib-
shirani, 1996) more powerful, in particular in terms of feature or variable selection but
also for prediction. The potential for improvement is mainly given for cases with many
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ineffective and a few effective covariates. To deal with many ineffective features, a strong
regularization is employed in boosting or in related Lasso-methods, creating a large es-
timation bias. Proposals to effectively avoid such large biases include Sparse Boosting
(Bühlmann and Yu, 2006), conjugate direction boosting (Lutz and Bühlmann, 2006),
Lasso with relaxation (Meinshausen, 2007) or the adaptive Lasso (Zou, 2006). Our ap-
proach has some similarity to the latter as it encompasses the adaptive Lasso in the very
special case of an orthonormal linear model. An aspect of success of some of these methods
is their greater flexibility than what is possible with a single regularization parameter in
boosting (the number of iterations) or in related Lasso-methods (the penalty parameter).
Our new Twin Boosting involves two tuning parameters which can be chosen sequentially
rather than simultaneously optimizing over a two-dimensional space of regularization pa-
rameters.

All these recently proposed methods mentioned above, aiming to improve over boosting
or Lasso, are far less general and generic than our Twin Boosting approach. The latter can
be easily used with any real-valued weak learner which is a (possibly crude) estimator of the
conditional mean function. In particular, Twin Boosting can be easily used with trees and
hence, it can be applied to data of mixed types with continuous, ordinal and categorical
features. Secondly, Twin Boosting can be used for a rich class of loss functions, including
squared and absolute error for regression, logistic or exponential loss for classification or
Poisson-loss for count data. Therefore, Twin Boosting is essentially as general and generic
as boosting.

2 Boosting algorithms

Boosting is used in supervised learning from data (Xi, Yi), . . . , (Xn, Yn), where Xi ∈ X
is a p-dimensional predictor variable and Yi ∈ Y is a univariate response variable. The
space of predictor variables X is often a subset of Rp and the space of response variables
often a subspace of R, e.g. Y = {−, 1 + 1} for binary classification or Y = R for Gaussian
regression.

A boosting algorithm needs the specification of a loss function and a weak learner.
Regarding the former, consider a loss function

ρ : Y × X → R,

(or a subset of R; and we exclude here the case where the range of ρ(·, ·) is multivariate).
The loss function is assumed to be differentiable (almost everywhere) and typically convex
with respect to the second argument. Examples include squared error loss ρ(y, f) =
|y−f |2/2 with y ∈ R for regression or the logistic loss ρ(y, f) = log2(1 + exp(−2yf)) with
y ∈ {−1,+1} for binary classification. The weak learner is in our setting a real-valued
function estimator:

(X1, U1), . . . , (Xn, Un) weak learner−→ ĝ(·),

where Xi is the p-dimensional predictor variable and Ui ∈ R a pseudo-response variable.
The notion of a pseudo-response variable will become clear in the description of the generic
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boosting algorithm below. An example of a weak learner is a regression tree yielding a
regression function estimate ĝ(·).

It is instructive to look at the population minimizer of the loss function:

f∗(·) = argminf(·)IE[ρ(Y, f(X))], (1)

It is itself a function and it is the target of the boosting algorithm. For example, the
squared error loss ρ(y, f) = |y−f |2/2 yields the well-known population minimizer f∗(x) =
IE[Y |X = x] and boosting algorithms using the squared error loss are estimators of the
regression function f∗(·).

2.1 The generic boosting algorithm

Boosting is based on the empirical risk n−1
∑n

i=1 ρ(Yi, f(Xi)) and pursuing iterative steep-
est descent in function space as described below for estimating the unknown function f∗(·).
This very general and useful view of boosting has been pioneered by Breiman (1998, 1999)
and further developed by Friedman et al. (2000), Rätsch et al. (2001) and Friedman (2001).

Variable or feature selection is pursued in this paper without any statistical significance
testing. The selected features is the set of variables which enter explicitly (via the boosting
algorithm) in the final function estimate f̂(·).

Generic boosting algorithm

1. Initialize f̂ [0]: typical values are f̂ [0] ≡ Y = n−1
∑n

i=1 Yi or f̂ [0] ≡ 0. Set m = 0.

2. Increase m by 1. Compute negative gradient − ∂
∂f ρ(Y, f) and evaluate at f̂m−1(Xi):

Ui = − ∂

∂f
ρ(Y, f)|f=f̂m−1(Xi)

, i = 1, . . . , n.

3. Fit negative gradient vector U1, . . . , Un by the weak learner

(X1, U1), . . . , (Xn, Un) weak learner−→ ĝ[m](·),

Thus, ĝ[m](·) can be viewed as an approximation of the negative gradient vector.

4. Up-date f̂ [m] = f̂ [m−1](·) + ν · ĝ[m](·), where 0 < ν ≤ 1 is a step-length,
i.e. proceed along an estimate of the negative gradient vector.

5. Iterate steps 2 - 4 until m = mstop for some stopping iteration mstop.

The stopping iteration, which is the main tuning parameter, can be estimated via cross-
validation. The choice of the step-size ν in step 4. is of minor importance, as long as
it is “small” such as ν = 0.1. A smaller value of ν typically requires a larger number of
boosting iterations, and thus more computing time, while the predictive accuracy has been
found to be potentially better for ν being “sufficiently small”, e.g. ν = 0.1 (Friedman,
2001). Friedman (2001) suggests to use an additional line search between steps 3 and 4
(in case of different loss functions ρ(·, ·) than squared error): it yields a slightly different
algorithm but the additional line search seems unnecessary to pursue for achieving a good
estimator f̂ [mstop](·).
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2.2 L2Boosting

L2Boosting is the generic boosting algorithm when using the squared error loss ρ(y, f) =
|y− f |2/2. It has been proposed by Friedman (2001) and further developed and analyzed
in Bühlmann and Yu (2003).

L2Boosting algorithm

1. Initialize f̂ [0]: the default value is f̂ [0] ≡ Y = n−1
∑n

i=1 Yi. Set m = 0.

2. Increase m by 1. Compute the residuals Ui = Yi − f̂ [m−1](Xi) for i = 1, . . . , n.

3. Fit the residual vector U1, . . . , Un by the weak learner

(X1, U1), . . . , (Xn, Un) weak learner−→ ĝ[m](·).

4. Up-date f̂ [m](·) = f̂ [m−1](·) + ν · ĝ[m](·), where 0 < ν ≤ 1 is a step-length factor.

5. Iterate steps 2 to 4 until m = mstop for some stopping iteration mstop.

The stopping iteration mstop is the main tuning parameter which can be selected using
cross-validation.

Other loss functions, e.g. the logistic loss for classification, and corresponding boosting
algorithms are described in Section 5. For reasons of clarity, we will first describe all the
ideas and motivation for Twin Boosting for the case of the squared error loss. We will
then show in Section 5 that the concepts easily generalize to general loss functions.

3 Twin L2Boosting for linear models

For expository simplicity, we first describe Twin Boosting for linear models:

Yi =
p∑
j=1

βjX
(j)
i + εi, (2)

where ε1, . . . , εn are independent, identically distributed (i.i.d.), independent fromX1, . . . , Xn,
with IE[εi] = 0. We sometimes write in short:

Y = Xβ + ε

with Yn×1 = (Y1, . . . , Yn)T , εn×1 = (ε1, . . . , εn)T and Xn×p = [X1, . . . , Xn]T .
Fitting of the linear model in (2) with boosting or Twin Boosting is based on the

squared error loss (L2Boosting) and the componentwise linear least squares weak learner,
as described in Section 3.1 below. Already L2Boosting itself has been proven to be very
useful for fitting linear models with potentially many more covariates than samples (Fried-
man, 2001; Bühlmann, 2006; Bühlmann and Yu, 2006) and we will argue here in which
circumstances Twin Boosting is even better.
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In the sequel, we will extensively use the following notation:

〈u, v〉 =
n∑
i=1

uivi for some vectors u, v ∈ Rn,

‖u‖2 = 〈u, u〉 =
n∑
i=1

u2
i for some vector u ∈ Rn.

Moreover, denote by X(j) the jth n× 1 column vector of X.

3.1 Componentwise linear least squares as weak learner

Consider the following weak learner based on data (X1, U1), . . . , (Xn, Un):

ĝ(x) = γ̂Ŝx
(Ŝ),

γ̂j = 〈U,X(j)〉/‖X(j)‖2, Ŝ = arg min
1≤j≤p

n∑
i=1

(Ui − γ̂(j)X
(j)
i )2. (3)

It selects and fits the best predictor variable in a simple linear model in the sense of
ordinary least squares fitting. For computational implementation as well as for the con-
struction our Twin Boosting, it is useful to represent the selected predictor variable as:

Ŝ = arg max
1≤j≤p

|〈U,X(j)〉|2/‖X(j)‖2. (4)

The derivation of (4) is straightforward.
When using L2Boosting with this base procedure, we select in every iteration one pre-

dictor variable, not necessarily a different one for each iteration, and we up-date the func-
tion f̂ [m](·) linearly as described in Section 2.2. For componentwise linear least squares,
we can simply up-date the parameter vector of a linear model.

L2Boosting with componentwise linear least squares

1. Initialize β̂[0]. Set m = 0.

2. Increase m by 1. Compute the residuals Ui = Yi − Y − (Xβ̂[m−1])i for i = 1, . . . , n.

3. Compute Ŝm as in (4) and γ̂Ŝm
as in (3).

4. Up-date

β̂[m] = β̂[m−1] + ν · γ̂Ŝm
.

The notation should be read that only the Ŝmth component of the coefficient esti-
mate is up-dated.

5. Iterate steps 2 to 4 until m = mstop for some stopping iteration mstop.

The selected variables are corresponding to the indices j for which β̂[m1] 6= 0.
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3.2 Twin L2Boosting with componentwise linear least squares

Twin Boosting for linear models uses the squared error loss and componentwise linear
least squares as weak learner. For expository simplicity, we consider standardized data
where n−1

∑n
i=1 Yi = 0, n−1

∑n
i=1X

(j)
i = 0 and

∑n
i=1(X(j)

i )2 = 1 for all j = 1, . . . , p (for
unstandardized data, the algorithm has to be slightly re-formulated). This can always be
achieved by centering with the empirical mean and scaling with the empirical standard
deviation.

Twin L2Boosting with componentwise linear least squares

1. Run a first round of L2Boosting with componentwise linear least squares, using m1

iterations. Denote the estimated parameter by β̂[m1]
init .

2. For the second round, run L2Boosting with componentwise linear least squares but
replace formula (4) by

Ŝ = argmax1≤j≤p|〈U,X(j)〉|2|β̂[m1]
init;j |

2. (5)

Note that ‖X(j)‖2 = 1 because of standardized data. Use m2 iterations and denote
the Twin L2Boosting estimator by β̂[m2]

TWB.

The motivation of the multiplier |β̂[m1]
init;j |2 in formula (5) is as follows: if a prediction

variable is important, it has a larger multiplier |β̂[m1]
init;j |2 and hence, it is more likely to be

selected in the criterion (5); and vice-versa. In particular, a non-relevant variable with
β̂

[m1]
init;j = 0 will not be selected. We will describe in Proposition 1 that for special cases, the

selection with the multiplier in (5) is equivalent to the adaptive Lasso, a method which has
shown remarkable success for high-dimensional feature selection (Zou, 2006; Huang et al.,
2007; Bühlmann and Meier, 2008). Two tuning parameters m1 and m2 are involved.
Instead of optimizing (e.g. cross-validating) over both parameters simultaneously, we
use the following, computationally much faster sequential approach: first, an estimate
m̂1 is obtained from cross-validation for L2Boosting and then, cross-validation for Twin
Boosting with fixed m̂1 in the initial estimator yields an estimate m̂2.

3.3 Connections to the Lasso and the adaptive Lasso

There is an intriguing connection between L2Boosting with componentwise linear least
squares and the Lasso (Tibshirani, 1996). The latter is an `1-penalty method for regression
defined by

β̂(λ) = arg min
β

n−1
n∑
i=1

(Yi − β0 −
p∑
j=1

βjX
(j)
i )2 + λ

p∑
j=1

|βj |. (6)

Efron et al. (2004) consider a version of L2Boosting, called forward stagewise linear
regression (FSLR), and they show that FSLR with infinitesimally small step-sizes (i.e.
the value ν) produces a set of solutions which is approximately equivalent to the set of
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Lasso solutions when varying the regularisation parameter λ in Lasso (see also (6) above).
The approximate equivalence is derived by representing FSLR and Lasso as two different
modifications of their computationally efficient least angle regression (LARS) algorithm.
In special cases where the design matrix satisfies a “positive cone condition”, FSLR, Lasso
and LARS all coincide (Efron et al., 2004, p.425).

Despite the fact that L2Boosting and Lasso are not equivalent methods in general,
the connection between boosting (as a forward, greedy method) and the Lasso (involving
convex optimization) is interesting.

Recently, Zou (2006) has proposed the adaptive Lasso, defined as

β̂(λ) = arg min
β

n−1
n∑
i=1

(Yi − β0 −
p∑
j=1

βjX
(j)
i )2 + λ

p∑
j=1

|βj |
|βinit,j |

, (7)

where βinit is an initial estimator. Zou (2006) mainly uses ordinary least squares as initial
estimator (for cases with reasonable ratio n/p) and he mentions the Ridge estimator as
one among several possible alternatives. In addition, he proposed a more general class of
estimators, but the specific form in (7) is useful and often sufficient. The adaptive Lasso
has two advantages over the Lasso. It yields consistent variable selection without imposing
severe restriction on the design matrix, at least for the case with fixed predictor dimension
p (Zou, 2006), whereas the Lasso is inconsistent (typically yields too large models) if
the design is roughly speaking “strongly correlated” (Meinshausen and Bühlmann, 2006;
Zou, 2006; Zhao and Yu, 2006). Secondly, adaptive Lasso yields better predictions if the
true underlying model has many ineffective (noise) predictor variables. Both of these
advantages are closely related to the motivation of our Twin Boosting, see Section 1.

In case of an orthonormal linear model, i.e. the model (2) with
∑n

i=1X
(j)
i X

(k)
i = δjk

(Kronecker δjk = 1 if j = k and 0 otherwise), explicit connections between boosting and
Lasso exist. It has been shown (constructively) that L2Boosting with componentwise
linear least squares approximates the solution from Lasso (as ν > 0 tends to zero) which
equals the soft-threshold estimator (Bühlmann and Yu, 2006). For Twin Boosting, the
following holds.

Proposition 1 In an orthonormal linear model, Twin Boosting with componentwise lin-
ear least squares approximates the adaptive Lasso with βinit = β̂

[m1]
init , see (7). In particular,

when stopping the second round of Twin Boosting after m2 iterations, there is a corre-
sponding λ > 0 such that the following holds:

β̂
[m2]
TWB;j = β̂

[m2]
TWB;j(ν)→ sign(Zj)(|Zj | −

λ

|β̂[m1]
init,j |

)+ (ν → 0),

where ν denotes the step-size, (x)+ = max(0, x) the positive part and Zj = (XTY)j.

A proof is given in the Appendix. Proposition 1 illustrates that in the simple case
of an orthonormal linear model, Twin Boosting yields in the limiting case with ν → 0
the adaptive Lasso which equals the adaptive soft-threshold estimator. The connection is
interesting but the real power of Twin Boosting is its generic applicability to very general
weak learners and loss functions.
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4 Twin L2Boosting with trees and general weak learners

The most popular weak learners for boosting are decision trees. Our proposal for Twin
Boosting with trees is simple, easy to implement and effective. We could represent trees
in terms of basis functions (with indicator functions of rectangles) and then employ Twin
Boosting methodology as for linear models. However, such an approach becomes com-
putationally very impractical due to the huge number of basis functions (particularly for
larger trees) and in addition, such an approach would (adaptively) encourage sparseness
in the space of basis functions rather than sparseness in the space of predictor variables;
the latter is often much more interesting for many datasets and scientific problems.

Twin Boosting with any real-valued (regression-type) weak learner is defined as follows.

Twin L2Boosting with general weak learner

1. Run a first round of L2Boosting and denote by f̂ [m1]
init = (f̂ [m1]

init (X1), . . . , f̂ [m1]
init (Xn))

the fitted function at the data points and by V̂ [m1] ⊆ {1, . . . , p} the subset of indices
corresponding to selected predictor variables, both based on m1 boosting iterations.
(If the weak learner is not doing any variable selection, then V̂ [m1] = {1, . . . , p} is
the full set).

2. For the second round, initialize f̂ [0]: the default value is f̂ [0] ≡ Y = n−1
∑n

i=1 Yi.
Set m = 0.

3. Increase m by 1. Compute the residuals Ui = Yi − f̂ [m−1](Xi) for i = 1, . . . , n.

4. For every subset W ⊆ V̂ [m1], 1 fit the residual vector U1, . . . , Un to XW1 , . . . , XWn
with the weak learner; here XW denotes {X(j); j ∈ W}. Denote this fitted function
by ĥW(·) and by ĥW = (ĥW(X1), . . . , ĥW(Xn)). Then, choose the bestW according
to:

Ŵ = argmaxWC
2
W(2〈U, ĥW〉 − ‖ĥW‖2),

CW = 〈f̂ [m1]
init − f̂

[m1]
init , ĥW〉/‖ĥW‖, f̂

[m1]
init = n−1

n∑
i=1

f̂
[m1]
init (Xi). (8)

Denote by ĝ[m](·) = ĥŴ(·).

5. Up-date f̂ [m] = f̂ [m−1](·) + ν · ĝ[m](·), where 0 < ν ≤ 1 is a step-length factor.

6. Iterate steps 3 to 5 until m = m2 for some stopping iteration m2.

The stopping iteration m2 is the main tuning parameter (for a given boosting estimator
of the first round) which can be selected using cross-validation.

From a computational point of view, it seems awkward to consider all subsets W ⊆
V̂ [m1] in step 4. However, if the weak learner does variable selection, selecting at most
d predictor variables (e.g. a tree with at most d + 1 terminal nodes), we only have to
consider in step 4 all subsets W having cardinality |W| = d. For example, when using
stumps, d = 1 and step 4 becomes:

1See also below the modification with random feature subsets.
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step 4 for stumps. For every j ∈ V̂ [m1], fit the residual vector with a stump and denote it
by ĥj(·). The remaining part of step 4 is then as above.

The selected variables from Twin Boosting arise from the set of variables which occur
in Ŵ from step 4 for at least one iteration. For example with trees as weak learner, the
selected variables arise from variable selection of the tree-type weak learner during the
Twin Boosting iterations.

Using trees as weak learner, d = 1 (stumps) or d = 2 is often a good choice (see also
the discussion below in Section 4.1). More generally, for a tree with d+ 1 terminal nodes
(d splits), the computation in step 4 is of the order O(dnp|V̂ [m1]|d). It should be noted
here that usually |V̂ [m1]| ≤ min(n, p), often even � min(n, p).

In case of large trees as weak learner, we propose the following:

Twin L2Boosting with random feature subsets

step 4 with random feature subsets. Generate B independent random feature subsetsW ⊆
V̂ [m1] with cardinality |W| = sW , i.e. the elements of W are sampled i.i.d. ∼
Uniform(V̂ [m1]). Then proceed as in step 4 above.

The value sW is typically chosen to be of the magnitude of the depth of the tree learner
and we use B = 500 as default value for the number of random subsets. We also emphasize
that, unlike in Random Forests (Breiman, 2001), there is no averaging operation involved
over the weak learners (e.g. trees) resulting from the fits with the random feature subsets:
here, the best (random) weak learner is selected according to the criterion in (8).

We give now a motivation for the construction in step 4. Consider Twin L2Boosting
for linear models, as described in Section 3.2. There, it happens automatically that the
second round of Twin Boosting considers only the set of predictor variables V̂ [m1] which
has been chosen in the first round. Next, we consider the formula (8). The residual sum
of squares is

‖U− ĥW‖2 = ‖U‖2 − 2〈U, ĥW〉+ ‖ĥW‖2 = const.− (2〈U, ĥW〉 − ‖ĥW‖2).

L2Boosting would proceed by choosing the best W maximizing

G(W) = 2〈U, ĥW〉 − ‖ĥW‖2. (9)

For Twin Boosting, we want to multiply weights CW into the criterion G(W). For the
form of these weights, it is instructive to consider Twin L2Boosting for linear models with
normed predictor variables having ‖X(j)‖2 = 1: there, W is an element of {1, . . . , p} and
ĥj(Xi) = 〈U,X(j)〉X(j)

i . Using this, we easily obtain for W = j,

G(W) = G(j) = |〈U,X(j)〉|2. (10)

Twin Boosting for linear models does nothing else than multiplying G(j) by the weights
β2
init,j . Therefore, we want to multiply G(W) in (9) with the square of a suitable regression

coefficient. Our CW in formula (8) is the standardized regression coefficient when regress-
ing the fitted function from the first round of Twin Boosting f̂ [m1] against the candidate
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estimate ĥW ; the standardization is a multiplication by ‖ĥW‖. The standardization is
useful as it implicitly measures the regression coefficient on a scale where ĥW would have
been standardized to ‖ĥW‖ ≡ 1 for all W. We end our motivation of step 4 with the
following result.

Proposition 2 Consider the general Twin L2Boosting algorithm and choose the compo-
nentwise linear least squares weak learner. Then, this algorithm coincides exactly with
Twin L2Boosting for linear models, as described in Section 3.2, provided that the under-
lying regression model is orthonormal as specified in (2) with

∑n
i=1X

(j)
i X

(k)
i = δjk.

A proof is given in the Appendix.

4.1 Stumps and larger trees as weak learners

The choice of the weak learner is usually driven by optimizing the prediction performance.
In addition, some structural properties can be another useful criterion as well.

The generic boosting and Twin Boosting estimator is a linear combination of weak
learners

f̂ [m](·) = ν

m∑
k=1

ĝ[k](·).

Therefore, structural properties of the boosting function estimator are given by linear
combination of structural characteristics of the weak leaner.

Trees are among the most popular base procedures in machine learning. They have
the advantage to be invariant under monotone transformations of predictor variables, i.e.,
we do not need to search for good data transformations.

When using stumps, i.e., a tree with two terminal nodes, the boosting and Twin
Boosting estimate will be an additive model in the original predictor variables, because
every stump-estimate is a function of a single predictor variable only. Similarly, boosting
trees with (at most) d+1 terminal nodes results in a nonparametric model having at most
interactions of order d−1: e.g. for d = 2, we would pick up interaction terms between pairs
of predictor variables. Thus, if we want to constrain the degree of interactions, we can
easily do this by constraining the (maximal) number of nodes in the tree learner. For many
real datasets, it seems that low-order interaction (or even additive) models are sufficiently
rich for good prediction and interpretation. For example, the naive Bayes classifier or
linear discriminant analysis, based on an additive or linear decision function respectively,
works surprisingly well in many applications (Jamain and Hand, 2005; Hand, 2006). Also
boosting with stumps, yielding an additive model, has proven to be successful in many
areas, e.g. winning the performance prediction challenge of the IEEE World Congress on
Computational Intelligence 2006 (Lutz, 2006). Thus, we often get good performance with
trees having 2 or 3 terminal nodes (d = 1 or 2, respectively). With such small values of
d, Twin Boosting is computationally fast, as discussed after the description of the Twin
Boosting algorithm in Section 4.
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5 Other loss functions and generic Twin Boosting

For other loss functions than squared error (i.e. other boosting algorithms than L2Boosting)
we can use the general functional gradient descent approach as described in Section 2.1.

Interesting examples of loss functions include the following. For binary classification
with y ∈ {−1,+1}, the logistic loss is

ρlogit(y, f) = log2(1 + exp(−2yf)), (11)

and the exponential loss is

ρexp(y, f) = exp(−yf). (12)

Boosting with the logistic loss or exponential loss function is essentially LogitBoost (Fried-
man et al., 2000) (also called BinomialBoosting) or AdaBoost (Freund and Schapire, 1996),
respectively. For both loss function, the population minimizer is

f∗(x) =
1
2

log(
p(x)

1− p(x)
), p(x) = IP[Y = 1|X = x].

For cases where Y ∈ {0, 1, 2, . . .}, the Poisson log-likelihood is often appropriate:

ρ(y, f) = −yf + exp(f), f = log(λ).

In survival analysis, we can derive the loss function from the partial likelihood in the Cox
model (Cox, 1975).

5.1 Generic Twin Boosting with general weak learners

If the loss function ρ(·, ·) is differentiable (almost everywhere) with respect to the second
argument, the generic boosting algorithm from Section 2.1 can be used.

Generic Twin Boosting is exactly as Twin L2Boosting from Section 4, except that in
step 3, instead of using residuals Ui we will use

Ui = − ∂

∂f
ρ(Y, f)|f=f̂m−1(Xi)

, i = 1, . . . , n,

exactly as in the generic boosting algorithm from Section 2.1. In the special case of the
componentwise linear least squares learner, we would modify the residual vector U in step
2 of the algorithm in Section 3.2. From an implementation point of view, Twin Boosting
with general loss functions is as simple as Twin L2Boosting.

6 Empirical results

We report here some results on Twin Boosting for regression and classification and we
compare them with boosting. We will demonstrate that Twin Boosting has a clear ad-
vantage over boosting if the truth has many ineffective predictor variables. Given the
success of boosting algorithms in many application areas, Twin Boosting exhibits a sub-
stantial potential for further improvements over boosting. All of our results are displayed
in Figures, giving a better summary how the methods behave as a function of boosting
iterations.
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6.1 Regression

The response variables Yi are real-valued and the goal is estimation of the function
IE[Y |X = x] or prediction of new observations Y.

6.1.1 Simulated data

Consider the linear model:

model in (2) with p = 500, β1 = 5, βj = 0 (j = 2, . . . p),
Xi ∼ Np(0, I) and εi ∼ N (0, 1); (13)

model in (2) with p = 500, β1 = . . . = β5 = 1.175, βj = 0 (j = 6, . . . p),

Xi ∼ Np(0,Σ),Σij = 0.8|i−j|, and εi ∼ N (0, 1). (14)

Both models (13) and (14) have the same signal to noise ratio IE[|f(X)|2]/IE[|ε|2], where
f(x) =

∑p
j=1 βjx

(j). Sample size is chosen as n = 50 and the number of independent
simulation runs is 100.

We first use L2Boosting and Twin L2Boosting for linear models, using the compo-
nentwise linear least squares weak learner. The step-length factor is chosen as ν = 0.1
and the number of boosting iterations in the first round of Twin Boosting is chosen as
m1 = 50 which is a reasonable value according to the performance of L2Boosting. Figure
1 displays the mean squared error (MSE) IE[((β̂ − β)TXnew)2] = IE[(β̂j − βj)TΣ(β̂j − βj)],
with Σ = Cov(X), (i.e. generalization error) and the number of selected and incorrectly
selected predictor variables (false positives), as a function of boosting iterations. Figures
1 and 2 illustrate very clearly that Twin Boosting is substantially better than boosting
in terms of variable selection. For the very sparse case in (13), Figure 1 also indicates
relevant improvements in terms of prediction. In Table 1, we report some exact numbers.

Figure 1 about here.

Figure 2 about here.

Next, we consider L2Boosting and Twin L2Boosting with stumps. The results are
displayed in Figures 3 and 4; for Twin Boosting, we used m1 = 50 iterations in the first
round.

Figure 3 about here.

Figure 4 about here.

Although boosting (and Twin Boosting) with stumps yields an additive model fit,
the weak learner is “mis-specified” (as is often the case in practice). This explains why
the mean squared error is much larger than with componentwise linear least squares.
Also here, L2Boosting selects way too many predictor variables while Twin Boosting is
very effective and substantially reduces the number of selected variables. Table 1 reports
some numerical values. The results shown here are quite representative for many other
simulation settings.
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model, method MSE no. variables no. incorrect variables
(13), L2Boost comp. LS 0.22 (0.015) 5.97 (0.124) 4.97 (0.124)
(13), Twin L2Boost comp. LS 0.05 (0.005) 1.01 (0.010) 0.01 (0.010)
(14), L2Boost comp. LS 0.40 (0.020) 12.41 (0.165) 7.41 (0.165)
(14), Twin L2Boost comp. LS 0.35 (0.018) 7.39 (0.167) 2.40 (0.166)
(13), L2Boost stumps 2.91 (0.087) 10.67 (0.233) 9.67 (0.237)
(13), Twin L2Boost stumps 2.25 (0.070) 4.52 (0.173) 3.52 (0.173)
(14), L2Boost stumps 3.45 (0.080) 31.98 (0.352) 26.98 (0.352)
(14), Twin L2Boost stumps 2.84 (0.069) 11.12 (0.231) 6.13 (0.213)

Table 1: Performances of boosting with componentwise linear least squares (comp. LS) or
stumps as weak learners, for models (13) and (14), at stopping iteration which minimizes
mean squared error. Mean squared error (MSE), number of selected variables/features
and number of incorrectly selected variables/features (i.e. false positives). Standard errors
are given in parentheses.

6.1.2 Real data

We consider two real data sets: Ozone concentration and Motif regression from molecular
biology. Both data sets are available from
ftp://ftp.stat.math.ethz.ch/Research-Reports/Other-Manuscripts/buhlmann/ozone.dat

ftp://ftp.stat.math.ethz.ch/Research-Reports/Other-Manuscripts/buhlmann/motif.dat

respectively.
The Ozone data is about daily ozone concentration in the Los Angeles basin as a

function of p = 8 meteorological predictor variables. Sample size is n = 330. From a
prediction point of view, the componentwise linear least squares weak learner is inferior
than stumps. Thus, Figure 5 reports only for boosting and Twin Boosting (with m1 = 100
iterations in the first round) with stumps.

Figure 5 about here.

In addition, we look at a synthetically enlarged problem. We add 500 additional,
ineffective noise predictor variables Xadd ∼ N500(0, I). The problem has then dimension
p = 508 with at most 8 effective predictors. This will enable us to see whether and how
many from the obviously ineffective variables will be selected; we do not know whether all
of the 8 original predictor variables are effective or not. We refer to an obviously incorrectly
selected predictor variable if it is one of the 500 synthetically added predictors. Figure 6
reports the results (with m1 = 100 iterations in the first round of Twin Boosting). Twin
L2Boosting has slightly better prediction performance than L2Boosting and is much better
with respect to obviously incorrectly selected variables.

Figure 6 about here.

The Motif regression data models gene expression as a function of MDSCAN motif
scores (Conlon et al., 2003, p. 3343: Spellman et al. data, 15th time point). This data
is representative for many gene expression - motif scores data-sets, all of them being very
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noisy. Our data has p = 4312 motif scores (predictor variables) and sample size (number
of genes) is n = 4443. Figure 7 displays the results for the componentwise linear least
squares weak learner.

Figure 7 about here.

Although L2Boosting is performing as well as Twin L2Boosting from a prediction
point of view, the sparsity of Twin L2Boosting in terms of selected variables, and hence
with a lower number of false positives, is crucial in this application. When using about
600-800 boosting iterations, L2Boosting selects 144-178 predictors while Twin Boosting
uses 41-53 variables only. Biological validation of about 50 potential motifs (cis-regulatory
elements) is much more realistic than for 3 times as many candidates. L2Boosting and
Twin L2Boosting with trees did not improve prediction performance while it selected more
predictor variables than what is reported above for componentwise linear least squares.

6.2 Classification

We consider some binary classification problems and use exclusively the logistic loss in
(11) for boosting, i.e. Binomial- or LogitBoosting. The classifier is given by sign(f̂(x))
where f̂(·) is the estimated function from boosting or Twin Boosting, respectively. This
rule is equivalent to classify to the label with larger (conditional) class-probability.

6.2.1 Simulated data

We modify model (13) as follows:

p = 500, β1 = 2, βj = 0 (j = 2, . . . p),

Xi ∼ Np(0, I), log(πi/(1− πi)) =
p∑
j=1

βjX
(j)
i , Yi ∼ Bernoulli(πi). (15)

Sample size is again chosen as n = 50 and the number of independent simulation runs is
100. We reduced the size of the coefficient β1 in comparison to model (13) to decrease the
signal to noise ratio in the problem.

Figure 8 reports the results for Binomial/LogitBoosting and its Twin Boosting ver-
sion (with m1 = 10 iterations in the first round of Twin Boosting) with componentwise
linear least squares (which yields a logistic linear model). The results are qualitatively
comparable to the case of regression in Figure 1, demonstrating a clear advantage of Twin
Boosting.

Figure 8 about here.

6.2.2 Real data

We consider the Sonar dataset (n = 208, p = 60) from the Statlog project, available from
ftp//ftp.stat.math.ethz.ch/Research-Reports/Other-Manuscripts/buhlmann/sonar.dat,
the Ionosphere (n = 351, p = 34) and the monk dataset (Monk1 ) (n = 432, p = 6) from
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the UCI machine learning repository (http://www.ics.uci.edu/ mlearn/MLSummary.html),
and the three datasets Arcene, Madelon and Gisette from the NIPS 2003 feature selection
challenge (Guyon et al., 2006). We note that Monk1 is a synthetic dataset: however, it
is not generated by ourselves. For the Sonar and Ionosphere dataset, we also consider
synthetically enlarged predictor spaces where we add 500 ineffective predictor variables;
for the Monk1 data, we exclusively consider the case with an enlarged feature space. We
consider boosting and Twin Boosting with stumps for the Sonar, Ionosphere, Arcene,
Madelon and Gisette data while for Monk1, we use larger trees as weak learners and
the corresponding Twin Boosting with random feature subsets as described in Section
4. Logistic linear models, fitted by using the componentwise linear least squares weak
learner, were not competitive for all six data-sets.

For the Sonar data, we use m1 = 100 iterations in the first round of Twin Boosting.
The results are displayed in Figure 9. The classification accuracy is about the same for
boosting and Twin Boosting while the latter selects about 30% fewer variables (when
using reasonable stopping iterations which differ for the two methods).

Figure 9 about here.

We enlarge the number of features by adding 500 additional, ineffective noise predictor
variables Xadd ∼ N500(0, I). Then, the classification problem involves dimension p = 560
with at most 60 effective predictors. We refer to an obviously incorrectly selected predictor
variable if it belongs to one of the 500 synthetically added features. Results are given in
Figure 10.

Figure 10 about here.

The interpretation is similar (even more in favor of Twin Boosting) as for the original
Sonar data. In addition, Twin Boosting is much better in terms of obviously incorrectly
selected variables.

For the Ionosphere data, m1 = 500 iterations in the first round of Twin Boosting is a
reasonable value. The results are displayed in Figure 11.

Figure 11 about here.

Twin Boosting has marginally better prediction power while being more sparse in
the selected variables. When adding 500 additional, ineffective noise predictor variables
Xadd ∼ N500(0, I) the problem has dimension p = 534 with at most 34 effective predictors.
Results are displayed in Figure 12, based on m1 = 200 iterations in the first round of Twin
Boosting; as above for the Sonar data, the obviously incorrectly selected variables can be
determined.

Figure 12 about here.

Interestingly, the classification performance does not degrade for both boosting and
Twin Boosting. The reason is probably due to the increased resistance of overfitting
(e.g. when selecting wrong features) when using the misclassification error (Friedman
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et al., 2000, p.400-404) and having a situation with low noise (low misclassification error).
Regarding the quality of feature selection, however, Twin Boosting is much better than
boosting in terms of selecting obviously incorrect predictor variables.

In addition, LogitBoosting and TwinBoosting are benchmarked on three high-dimensional
problems, the Arcene, Gisette, and Madelon datasets, see also
http://www.nipsfsc.ecs.soton.ac.uk/ for a detailed description. Here, our interest is to
compare both algorithms in real high-dimensional situations with respect to their feature
selection properties for a varying number of initial boosting steps m1. The data comes with
separate learning and validation samples, and we report performance measures (balanced
misclassification error and negative binomial log-likelihood) for the validation samples.

Arcene offers a binary response and p = 10′000 features, the learning sample consists of
ntrain = 100 observations, additional nvalid = 100 observations are available for validation.
The log-likelihood (Figure 13, left panel) suggests to stop LogitBoosting after ca. 25
iterations to prevent overfitting. The balanced misclassification error attains it’s minimum
after ca. 20-30 iterations as well. Four runs of TwinBoosting (with m1 ∈ {25, 50, 75, 100})
have been performed as well. Based on the validation log-likelihood, between 15 and 20
iterations should be enough, the balanced misclassification error for all four values of m1

is practically equivalent. Note that the number of selected features is smaller compared
to LogitBoosting.

Figure 13 about here.

Roughly the same conclusions can be drawn for the Madelon problem (ntrain = 2000,
nvalid = 600, p = 500), see Figure 14). The optimal number of boosting iterations is
smaller for TwinBoosting whereas the prediction performance is slightly better for Boost-
ing. However, TwinBoosting leads to a sparser model. It should be noted that the per-
formance of TwinBoosting seems to be rather robust against different choices of m1. This
is even more pronounced for the Gisette problem (ntrain = 6000, nvalid = 1000, p = 5000),
see Figure 15, where the four different models (based on m1 = (100, 200, 300, 400)) are
practically not distinguishable. Boosting (with 400 iterations) requires more than twice as
many variables entering the model than TwinBoosting to achieve a similar performance.

Figures 14 and 15 about here.

6.2.3 Large trees and random feature subsets in Twin Boosting

For the Monk1 data, boosting and Twin Boosting with stumps has a cross-validated
misclassification error of about 0.25. Boosting with larger trees yields substantial im-
provements with a misclassification error of 0.03. Thus, for this problem, it is essential
to allow for interactions among the predictor variables (which is well known due to the
construction of the Monk1 data).

There are only little differences between boosting and Twin Boosting with larger
trees. However, when adding 500 ineffective noise variables Xadd ∈ {−1,+1}500 with
independent components and IP[X(j)

add = 1] = 0.5 for all j (the original 6 predictors are
categorical, often binary), the situation is very different. As weak learners, we use trees
whose depths are at most 4 (which allows for interactions among 4 predictor variables, at
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least). Furthermore, for Twin Boosting, we sample B = 500 random feature subsets of size
|W| = sW = 4 (per boosting iteration), see section 4. We usem1 = 10 iterations in the first
round of Twin Boosting. In addition, we add an additional iteration to Twin Boosting,
termed Triple Boosting: i.e. the Twin Boosting fit (with m2 = 50) is used as initialization
and we then proceeded exactly as with Twin Boosting. Figure 16 illustrates the results:
Twin Boosting improves upon boosting with respect to prediction and feature selection.
Furthermore, Triple Boosting yields additional improvements over Twin Boosting.

Figure 16 about here.

This example with the Monk1 data (with enlarged feature space) is demonstrating
that Twin Boosting with random feature subsets and with larger trees leads to similar
qualitative conclusions as for Twin Boosting with stumps. Moreover, we see that further
(smaller) gains can be achieved by pursuing Triple Boosting invoking one stage more than
Twin Boosting.

7 Conclusions

We proposed Twin Boosting which is as general and generic as boosting. It can be used
with general weak learners, for example with trees enabling the applicability for mixed
data types with continuous, ordinal and categorical features, and it is suitable in a wide
variety of situations, including regression, classification, Poisson regression or survival
analysis (using the loss function from the partial likelihood in the Cox model). It is easy
to implement and computationally feasible for large problems with potentially very many
features (or predictors or covariates) and/or large sample size. Furthermore, it is useful
for high-dimensional situations where the number of features is much larger than sample
size.

We have empirically shown that Twin Boosting has much better feature or variable
selection behavior than boosting. In particular, Twin Boosting leads to sparser solutions
which implies a reduction in the number of false positives (fewer falsely selected features):
a low number of false positives is sometimes highly desirable, e.g. in computational biology
where only a few features or variables (e.g. genes) will be biologically validated in follow-
up experiments. For cases with a small number of important effective covariates and many
noise features, Twin Boosting also improves the predictive accuracy of boosting; for other
situations, we never found it worse for prediction than boosting. For the special case of
orthonormal linear models, we prove equivalence to the adaptive Lasso (Zou, 2006) which
yields a theoretical basis for explaining our general empirical findings for Twin Boosting.

8 Appendix

Proof of Proposition 1.
The proof of Theorem 2 in Bühlmann and Yu (2006) can be adapted. The main modifica-
tion is needed for formula (22) and its previous 5 lines. We denote in short by βinit = β̂

[m1]
init

and β̂[m] = β̂
[m]
TWB.
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The residual sum of squares of Twin L2Boosting at iteration m, denoted by RSSm,
decreases monotonically in m. The difference in residual sum of squares is:

RSSm −RSSm+1 = |〈U,X(Sm+1)〉|2,

where U denotes the residual vector Y−Xβ̂[m] and Sm+1 the selected variable in iteration
m+ 1. In every step of Twin L2Boosting, a maximal reduction of the weighted difference
in residual sum of squares is used:

Gm+1 = (RSSm −RSSm+1)|βinit,Sm+1 |2 = |〈U,X(Sm+1)〉|2|βinit,Sm+1 |2,

and the sequence Gm+1,m = 1, 2, . . . is monotonically decreasing (because of the definition
of Twin L2Boosting, the independence of fitting the ith component of β from the jth
component (i 6= j) and the form of the decay of differences of residual sum of squares).
Therefore, every stopping iteration corresponds to a tolerance δ2 as in formula (22) in
Bühlmann and Yu (2006), using here Gm+1 instead of RSSm −RSSm+1. The remaining
part of the proof is exactly as in Bühlmann and Yu (2006): the additional factor |βinit,i|2
leads to the assertion of Proposition 1. �

Proof of Proposition 2.
By formula (10), we only have to deal with the form of the coefficient CW = Cj in (8).
Denote by γ̂j = 〈U,X(j)〉 the estimated regression coefficient of U versus X(j). Then,

Cj = 〈f̂ [m1]
init , γ̂jX

(j)〉/‖γ̂jX(j)‖

= 〈
p∑

k=1

β̂
[m1]
init,kX

(k), γ̂jX(j)〉/‖γ̂jX(j)‖ = β̂
[m1]
init,j γ̂j/|γ̂j |.

Hence,

C2
j = (β̂[m1]

init,j)
2,

equaling the factor in formula (5). This completes the proof. �
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Figure 1: L2Boosting (solid line) and Twin Boosting (dashed line) with componentwise
linear least squares for model (13). Mean squared error (MSE) (left), average number of
selected predictor variables (middle) and number of incorrectly selected predictor variables
(right) as a function of boosting iterations (or iterations from the second round in Twin
Boosting, respectively). Simulation accuracy is indicated by dotted lines as 95% confidence
intervals.
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Figure 2: L2Boosting (solid line) and Twin L2Boosting (dashed line) with componentwise
linear least squares for model (14). Other specifications as in Figure 1.
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Figure 3: L2Boosting (solid line) and Twin L2Boosting (dashed line) with stumps for
model (13). Other specifications as in Figure 1.
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Figure 4: L2Boosting (solid line) and Twin L2Boosting (dashed line) with stumps for
model (14). Other specifications as in Figure 1.
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Figure 5: L2Boosting (solid line) and Twin Boosting (dashed line) with stumps for Ozone
data. 10-fold cross-validation of: Squared error (left) and number of selected predictor
variables (right), as a function of boosting iterations (or iterations from the second round
in Twin Boosting, respectively).
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Figure 6: L2Boosting (solid line) and Twin Boosting (dashed line) with stumps for Ozone
data with synthetically enlarged predictor space (p = 508). 10-fold cross-validation of:
Squared error (left), number of selected predictor variables (middle) and number of obvi-
ously incorrectly selected variables (right), as a function of boosting iterations (or itera-
tions from the second round in Twin Boosting, respectively).
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Figure 7: L2Boosting (solid line) and Twin L2Boosting (dashed line) with componentwise
linear least squares for Motif regression data. Other specifications as in Figure 5.
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Figure 8: LogitBoosting (solid line) and corresponding Twin Boosting (dashed line) with
componentwise linear least squares in model (15). Misclassification error (left), average
number of selected predictor variables (middle) and average number of incorrectly selected
predictor variables (right) as a function of boosting iterations (or iterations from the
second round in Twin Boosting, respectively). Simulation accuracy is indicated by dotted
lines as 95% confidence intervals.
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Figure 9: LogitBoosting (solid line) and corresponding Twin Boosting (dashed line) with
stumps for Sonar data. 10-fold cross-validation of: Misclassification error rate (left) and
number of selected predictor variables (right, as a function of boosting iterations (or
iterations from the second round in Twin Boosting, respectively).
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Figure 10: LogitBoosting (solid line) and corresponding Twin Boosting (dashed line)
with stumps for Sonar data with synthetically enlarged predictor space. 10-fold cross-
validation of: Misclassification error rate (left), number of selected predictor variables
(middle) and number of obviously incorrectly selected variables (right), as a function of
boosting iterations (or iterations from the second round in Twin Boosting, respectively).
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Figure 11: LogitBoosting (solid line) and corresponding Twin Boosting (dashed line) with
stumps for Ionosphere data. Other specifications as in Figure 9.
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Figure 12: LogitBoosting (solid line) and corresponding Twin Boosting (dashed line) with
stumps for Ionosphere data with synthetically enlarged predictor space. Other specifica-
tions as in Figure 10.
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Figure 13: LogitBoosting (solid line) and corresponding Twin Boosting, using various
values of m1 (various dashed lines), with stumps for Arcene data. Validation set error of
log-likelihood (left) and misclassification rate (middle), and number of selected variables
(right), as a function of boosting iterations (or iterations from the second round in Twin
Boosting, respectively).
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Figure 14: LogitBoosting (solid line) and corresponding Twin Boosting, using various
values of m1 (various dashed lines), with stumps for Madelon data. Other specifications
as in Figure 13.
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Figure 15: LogitBoosting (solid line) and corresponding Twin Boosting, using various
values of m1 (various dashed lines), with stumps for Gisette data. Other specifications as
in Figure 13.
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Figure 16: LogitBoosting (solid line), corresponding Twin Boosting (dashed line) and
Triple Boosting (dashed-dotted line) with larger trees for Monk1 data with synthetically
enlarged predictor space. Twin and Triple Boosting with random feature subsets. Other
specifications as in Figure 10.
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