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Summary

We propose a unified and flexible framework for ensemble learning in the presence of

censoring. For right-censored data, we introduce a random forest algorithm and a generic

gradient boosting algorithm for the construction of prognostic and diagnostic models. The

methodology is utilized for predicting the survival time of patients suffering from acute myeloid

leukemia based on clinical and genetic covariates. Furthermore, we compare the diagnostic

capabilities of the proposed censored data random forest and boosting methods, applied to the

recurrence-free survival time of node positive breast cancer patients, with previously published

findings.

Keywords: Censoring; Cross-validation; Ensemble methods; IPC weights; Loss function;

Prediction; Prognostic factors; Survival analysis.

1 Introduction

In survival time studies, models regressing the time to event on a set of covariates, i.e., variables

expected to be associated with the disease the patient suffers from, are the basis of prognostic

and diagnostic modeling. The specification and estimation of such models are complicated by

the fact that often only incomplete information about the response variable is available due to

censoring. The most widely used representative of regression methods for censored data is the Cox

proportional hazards model (Cox, 1972), which addresses the censoring problem by maximizing

the partial likelihood while leaving the baseline hazard unspecified under the proportional hazards

assumption. In order to motivate the methodology proposed in this paper, it is helpful to classify

existing approaches as addressing one of the following four problems.

Connection between censored and uncensored methods. The establishment of a close connection

between regression models for uncensored continuous response variables and models designed for

censored data was motivated by the problem that the Cox model does not reduce to an ordi-

nary linear regression model in the absence of censoring. Accelerated failure time models (e.g.

James, 1998), such as the Buckley-James model (Buckley and James, 1979), do have this desirable

property.

Model assumptions. Many authors proposed flexible alternatives to the Cox model without as-

suming proportional hazards, such as (partially) non-linear accelerated failure time models (Stute,
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1999; Orbe et al., 2003), spline-based extensions (Gray, 1992; Kooperberg et al., 1996; LeBlanc

and Crowley, 1999), fractional polynomials (Sauerbrei and Royston, 1999), and neural networks

(Ripley et al., 2004).

Dimensionality. Current research efforts have focused on data analysis problems with high-

dimensional covariate spaces, mainly driven by the requirements of biological applications such

as microarray gene expression profiling. In high-dimensional situations, Hastie and Tibshirani

(2004) suggest a computationally efficient form of regularization applicable to a wide class of

linear models including the Cox model and Huang and Harrington (2005) investigate iterative

partial least squares fitting in accelerated failure time models. In contrast, dimension reduction

techniques are studied by Li and Li (2004) and Bair and Tibshirani (2004) who advocate the

application of low-dimensional compound covariates obtained from an unsupervised clustering of

the covariates.

Model selection and evaluation. The last but at least equally important research problem con-

cerns model selection and evaluation. While classical techniques like residual analysis (e.g. Ther-

neau and Grambsch, 2000) and the detection of influential observations (Bedrick et al., 2002) have

been translated into the context of survival analysis, specialized goodness of prediction measures,

such as the Brier score for censored data (Graf et al., 1999), are a matter of debate (Henderson,

1995; Altman and Royston, 2000; Schemper, 2003). Although censoring induces non-trivial prob-

lems for the comparison of observed and predicted responses, such measures are important for

cross-validation and other resampling-based model selection and evaluation techniques (Sauerbrei,

1999; van der Laan and Dudoit, 2003; Dudoit and van der Laan, 2005; Hothorn et al., 2005b).

In this paper, we address the four aforementioned problems simultaneously, by applying the

general estimation framework described in van der Laan and Robins (2003) in order to generalize

ensemble learning techniques to censored data problems. The framework allows for the spec-

ification of regression models under complete information (‘full data world’) for arbitrary loss

functions. For estimation of the models under incomplete information (‘observed data world’),

a special weighting scheme ensures that observations likely to be censored are up-weighted com-

pared to observations on patients likely to experience an event. As a consequence, in the absence

of censoring, the models reduce to their counterparts known from the uncensored situation. Most
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importantly, the goodness of prediction of such models is easily evaluated using cross-validation

techniques based on well-known loss functions such as the quadratic or absolute loss (Keleş et al.,

2004; van der Laan and Dudoit, 2003). The general estimation framework has recently been ap-

plied to longitudinal marginal structural models (Bryan et al., 2004), survival trees (Molinaro

et al., 2004), and other estimation problems (see Sinisi and van der Laan, 2004; van der Laan

et al., 2004).

Ensemble methods like bagging, random forest, and boosting yield flexible predictors for nomi-

nal and continuous responses and are known to remain stable in high-dimensional settings. Briefly,

bagging and random forest average over predictions of simple models, so called base learners, which

have been fitted to slightly perturbed instances of the original observations, whereas boosting is

a functional gradient descent algorithm with iterative fitting of appropriately defined residuals

(for a general overview we refer to Bühlmann, 2004, and references therein). Here, we extend the

area of application of ensemble methods to survival analysis. We incorporate weights into random

forest-like algorithms and extend gradient boosting in order to minimize a weighted form of the

empirical risk. The published attempts to use ensemble techniques for modeling censored data are

rather limited due to the difficulties induced by censoring. Ridgeway (1999) proposed a boosting

algorithm minimizing the partial likelihood and Benner (2002) derived a boosting algorithm from

the Brier score for censored data. A special aggregation scheme for bagging survival trees was

studied by Hothorn et al. (2004). Ishwaran et al. (2004) construct a random forest predictor of

mortality from heart disease by averaging relative risk trees. Breiman (2002) introduced a software

implementation of a random forest variant for censored data, however without a formal description

of the methodology being available.

Following the road map of van der Laan and Robins (2003) and van der Laan and Dudoit (2003),

Section 2 defines the regression models and the corresponding risk optimization problems in the full

data world and sketches the general estimating framework in the observed data world. In Section 3

we propose both a random forest and a boosting algorithm for censored data. The advantages of

our approaches are studied in Section 4 with respect to the stability and flexibility of predictions

for patients suffering from acute myeloid leukemia, based on high-dimensional covariates from

gene expression profiling experiments and clinical data. Moreover, we focus on the diagnostic

capabilities of flexible ensemble methods for data from node positive breast cancer patients.
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2 Model

The estimation problems to be solved are first defined in the full data world and are then mapped

into the observed data world, i.e., in the presence of censoring, following van der Laan and Robins

(2003).

2.1 Full Data World

In an ideal world, we are able to observe random variables Z = (Y = log(T ),X) with distribution

function FY,X, where T ∈ R+ denotes a survival time and Y its logarithm. The p-dimensional

covariate vector X = (X1, . . . , Xp) is taken from a sample space X = X1×· · ·×Xp. We assume that

the conditional distribution FY |X = FY |f(X) of the response Y given the covariates X depends

on the covariates X through a real-valued function f : X → R. The regression function f , our

parameter of interest, is an element of some parameter space Ψ and has minimal risk

EY,XL(Y, f(X)) =
∫
L(Y, f(X))dFY,X = min

ψ∈Ψ

∫
L(Y, ψ(X))dFY,X

for a suitable full data loss function L : R × R → R+. Our principle aim is to estimate the

regression function f . Usually, an estimate f̂ of f is computed via constrained minimization of

the empirical risk defined by the full data loss function L. However, this minimization problem

can only be solved when all quantities are observed. Naturally, this is not the case in the presence

of censoring.

2.2 Observed Data World

In realistic set-ups we only observe random variables O = (Ỹ = log(T̃ ),∆,X), with time to event

T̃ = min(T,C) and censoring indicator ∆ = I(T ≤ C) from some distribution FỸ ,∆,X. We

assume that the conditional censoring distribution P(C ≤ c|Z) only depends on the covariates,

that is P(C ≤ c|Z) = P(C ≤ c|X), or, equivalently, that survival time T and censoring time C

are conditionally independent given the covariates X. This assumption implies the coarsening at

random (CAR) assumption on the censoring mechanism (for details we refer to van der Laan and

Robins, 2003, Section 1.2.3). Furthermore, for the corresponding conditional censoring survivor

function G(c|X) = P(C > c|X) we assume that G(T |X) is strictly greater than zero almost
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everywhere with respect to the full data distribution FY,X. The implications of this assumption

are discussed in the last section.

The parameter space Ψ is the function space of all candidate estimators ψ : X → R for

the regression function f . For an observed learning sample of n independent and identically

distributed observations L = {Oi = (Ỹi = log(T̃i),∆i,Xi); i = 1, . . . , n}, we cannot evaluate the

full data loss function L(Y, ψ(X)) for the censored patients. Consequently, we cannot minimize

the corresponding empirical risk defined in terms of the full data loss function L(Y, ψ(X)) directly.

The methodology presented in van der Laan and Robins (2003) and van der Laan and Dudoit

(2003) solves this problem by replacing the full data loss function L(Y, ψ(X)) by an observed

data loss function L(Ỹ , ψ(X)|η) with nuisance parameter η, where the risks of both loss functions

coincide for all candidate estimators ψ ∈ Ψ:

EY,XL(Y, ψ(X)) =
∫
L(Y, ψ(X))dFY,X =

∫
L(Ỹ , ψ(X)|η)dFỸ ,∆,X = EỸ ,∆,XL(Ỹ , ψ(X)|η).

A particular example for the nuisance parameter η will be given in Section 2.3. The basic idea

is to minimize the empirical counterpart of EỸ ,∆,XL(Ỹ , ψ(X)|η) with respect to the candidate

estimators ψ ∈ Ψ, which is possible even in the imperfect observed data world.

2.3 Inverse Probability of Censoring Weights

One approach for defining the observed data loss function L(Ỹ , ψ(X)|η) is the application of

inverse probability of censoring weights (IPC weights, van der Laan and Robins, 2003), for which

the nuisance parameter η is given by the conditional censoring survivor function G:

L(Ỹ , ψ(X)|G) = L(Ỹ , ψ(X))
∆

G(T̃ |X)
.

Basically, the full data loss function is weighted by the inverse probability of being censored after

time T̃ given the covariates X. The inverse probability G(T̃ |X)−1 exists because G(T̃ |X) ≥

G(T |X) > 0 by assumption. The corresponding empirical risk is the weighted average

ÊỸ ,∆,XL(Ỹ , ψ(X)|G) = n−1
n∑
i=1

L(Ỹi, ψ(Xi)|Ĝ) = n−1
n∑
i=1

L(Ỹi, ψ(Xi))
∆i

Ĝ(T̃i|Xi)
(1)

and the regression function estimator f̂ is derived by (constrained) minimization of (1) with respect

to the candidate estimators ψ ∈ Ψ. Note that the conditional censoring survivor function G is
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typically unknown and needs to be replaced by an estimate Ĝ. A Kaplan-Meier estimate Ĝ is the

simplest choice but other procedures, based for example on a Cox model, are appropriate. For

convenience, let w = (w1, . . . , wn) with wi = ∆iĜ(T̃i|Xi)−1 denote the IPC weights. Other choices

of the observed data loss function are possible as well, such as that based on doubly robust inverse

probability of censoring weights (DR-IPC weights, van der Laan and Robins, 2003; Molinaro et al.,

2004).

3 Ensemble Learning

We present two algorithms pursuing some regularized minimization of (1): random forest and

gradient boosting for censored data. The random forest approach seeks to minimize the empirical

risk indirectly via a stabilization of randomized base learners fitted on perturbed instances of the

learning sample L. In contrast, gradient boosting employs a functional gradient descent algorithm

for minimizing the empirical risk (1).

3.1 Random Forest

From the observed learning sample L = {(Ỹi,∆i,Xi); i = 1, . . . , n}, compute the weight vector

w. Note that the learning sample can be thought to include the censored observations as well,

however with wi = 0 iff ∆i = 0. The random forest algorithm with weights w basically works by

defining the resampling probability of observation i in terms of the corresponding weight wi.

Algorithm: Random Forest for Censored Data

Step 1 (Initialization). Set m = 1 and fix M > 1.

Step 2 (Bootstrap). Draw a random vector of case counts vm = (vm1, . . . , vmn) from the multi-

nomial distribution with parameters n and (
∑n
i=1 wi)

−1 w.

Step 3 (Base Learner). Construct a partition πm = (Rm1, . . . , RmK(m)) of the sample space

X into K(m) cells via a regression tree. The tree is built using the learning sample L with

case counts vm, i.e., is based on a perturbation of the learning sample L with observation i

occurring vmi times. Computational details are given below.
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Step 4 (Iteration). Increase m by one and repeat steps 2 and 3 until m = M .

Prognostic modeling is our main concern, i.e., we are interested in estimating the (log)-survival

time f̂(x) for a patient with covariate status x. The predicted status of the response variable is

computed based on prediction weights

ai(x) =
M∑
m=1

vmi

K(m)∑
k=1

I(Xi ∈ Rmk and x ∈ Rmk); i = 1, . . . , n.

The prediction weight ai(x) measures the ‘similarity’ of x to Xi (i = 1, . . . , n) by counting how

many times the value x falls into the same cell as the ith observation in the learning sample. The

prediction f̂(x) can now be computed as the solution of

Ŷ = f̂(x) = argmin
y∈R

n∑
i=1

L(Ỹi, y)ai(x).

For quadratic loss L(Y, ψ(X)) = (Y − ψ(X))2, the prediction is simply the weighted average of

the observed (log)-survival times

Ŷ = Ê(Y |X = x) = f̂(x) =

(
n∑
i=1

ai(x)

)−1 n∑
i=1

ai(x)Ỹi.

The full data loss function can be evaluated here because, by definition, the weights wi and thus

the case counts vmi as well as the prediction weights ai(x) are zero for censored observations. The

prediction weights approach is essentially an extension of the classical (unweighted) averaging of

predictions extracted from each single partition (cf. Breiman, 1996) as used also in Hothorn et al.

(2004).

In step 3 of the algorithm the partitions are usually induced by some form of recursive parti-

tioning with additional randomization. This can be implemented by using only a small number

of randomly selected covariates for further splitting of every node of the tree. Note that the pro-

posed random forest for censored data reduces to the original random forest procedure (Amit and

Geman, 1997; Breiman, 2001a) when all events have been observed. Conceptually, the algorithm

is not restricted to (randomized) trees as base learners, any other regression model can be applied

as well. However, the prediction weights approach is only applicable when some form of recursive

partitioning is used. For all other base learners, survival times need to be estimated via unweighted

averages of the predictions similar to the original bagging approach. A practical drawback of the

random forest algorithm for censored data is that out-of-bag predictions, and thus out-of-bag error
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rate estimates, cannot be computed when some observations are given a very large weight and are

thus appearing in nearly every bootstrap sample.

3.2 Gradient Boosting – Full Data World

In the full data world, the generic boosting algorithm sketched here can be applied to pursue

minimization of
∑n
i=1 L(Yi, ψ(Xi)) via functional gradient descent (for the details we refer to

Friedman, 2001 and Bühlmann and Yu, 2003). Let U denote a pseudo response variable. A base

learner regressing the pseudo response U on the covariates X is denoted by h(·|ϑU,X), where ϑU,X

is a vector of parameters. Fitting the base learner can be performed by minimizing any loss

function, for example solving the least squares problem

ϑ̂U,X = argmin
ϑ

n∑
i=1

(Ui − h(Xi|ϑ))2. (2)

Algorithm: Generic Gradient Boosting for Uncensored Data

Step 1 (Initialization). Define Ui = Yi (i = 1, . . . , n), set m = 0, and f̂0(·) = h(·|ϑ̂U,X). Fix

M > 1.

Step 2 (Gradient). Compute the residuals

Ui = − ∂L(Yi, ψ)
∂ψ

∣∣∣∣
ψ=f̂m(Xi)

and fit the base learner h(·|ϑ̂U,X) to the new ‘responses’ Ui as in (2).

Step 3 (Update). Update f̂m+1(·) = f̂m(·) + νh(·|ϑ̂U,X) with step size 0 < ν ≤ 1, for example

ν = 0.1.

Step 4 (Iteration). Increase m by one and repeat steps 2 and 3 until m = M .

Note that, unlike the random forest algorithm, the number of iterations M is a tuning parameter

which needs to be determined via cross-validation. Internal stopping criteria are available for

special cases, which we will discuss in Section 3.4.
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3.3 Gradient Boosting – Observed Data World

In the observed data world, we cannot solve the least squares problem (2) for fitting the base

learner since we do not have access to Ui which is a function of the censored Yi. However, the

right hand side of (2) can be replaced by an empirical risk as in (1) and we then get the weighted

least squares problem

ϑ̂Ũ,X = argmin
ϑ

n∑
i=1

wi(Ũi − h(Xi|ϑ))2 with pseudo responses Ũi = − ∂L(Ỹi, ψ)
∂ψ

∣∣∣∣∣
ψ=f̂m(Xi)

.

Thus, the following algorithm can be applied to minimize the empirical risk (1).

Algorithm: Generic Gradient Boosting for Censored Data

Step 1 (Initialization). Define Ũi = Ỹi (i = 1, . . . , n), set m = 0, and f̂0(·) = h(·|ϑ̂Ũ,X). Fix

M > 1.

Step 2 (Gradient). Compute the residuals

Ũi = − ∂L(Ỹi, ψ)
∂ψ

∣∣∣∣∣
ψ=f̂m(Xi)

and fit the base learner h(·|ϑ̂Ũ,X) to the new ‘responses’ Ũi by weighted least squares.

Step 3 (Update). Update f̂m+1(·) = f̂m(·) + νh(·|ϑ̂Ũ,X) with step size 0 < ν ≤ 1.

Step 4 (Iteration). Increase m by one and repeat steps 2 and 3 until m = M .

The boosting estimator is f̂M (x) and the predicted (log)-survival time for an observation with

covariate status x is Ŷ = f̂M (x). The algorithm proposed here reduces to the original form of

gradient boosting in the absence of censoring. For quadratic loss L(Y, ψ(X)) = (Y − ψ(X))2/2,

the algorithm is obtained by residuals Ũi = Ỹi− f̂m(Xi) in the mth boosting iteration and we call

this method L2-boosting for censored data.

3.4 Gradient Boosting – Choice of Base Learners and Stop Criterion

The base learner h needs to be able to take weights w into account. Recursive partitioning

procedures are popular choices of such base learners and the methodology of Molinaro et al. (2004)

can be applied directly. Bühlmann and Yu (2003) suggested univariate smoothing splines: In each
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boosting iteration, one of the p covariates is selected and the relationship between the residuals U

and the selected covariate is modeled by a smoothing spline with low degrees of freedom.

Another possibility, which is studied here, is the application of component-wise least squares

(Bühlmann, 2005). This choice is computationally attractive and allows for the definition of an

AIC-based internal stopping criterion. Let X(j) denote the design matrix associated with the jth

covariate. In case the jth covariate is a factor, the matrix X(j) is a dummy matrix. A column

for the intercept term could be included. Let W denote the n× n diagonal matrix with diagonal

elements Wii =
√
wi, i = 1, . . . , n. Then,

H(j) = X(j)

((
WX(j)

)> (
WX(j)

))−1 (
WX(j)

)>
W

is the usual hat matrix of a simple linear model with covariate j alone. In the mth boosting

iteration, we select the covariate with minimum empirical risk, i.e.,

km = argmin
j=1,...,p

n∑
i=1

wi

(
Ũi − (H(j)Ũ)i

)2

,

where Ũ = (Ũ1, . . . , Ũn)> is the vector of pseudo responses in the mth step. The fit in the

mth step can be written in terms of the boosting hat operator
(
f̂m(X1), . . . , f̂m(Xn)

)>
= BmỸ

as introduced by Bühlmann and Yu (2003), where Ỹ = (Ỹ1, . . . , Ỹn)> denotes the n-vector of

responses extracted from L. In the first boosting iteration, the boosting hat operator is B0 =

νH(k0) and the update step 3 can be written as Bm+1 = Bm + νH(km)(In − Bm), where the

n× n matrix In denotes the identity matrix. This formulation of boosting in terms of a boosting

operator opens up the way to an AIC-based internal stopping criterion (Bühlmann, 2005). The

trace of the boosting operator Bm is interpreted as degrees of freedom and a corrected version of

AIC can be computed as

AIC(m) = log(σ̂2) +
1 + trace(Bm)/n

1− (trace(Bm) + 2)/n
, where σ̂2 = n−1

n∑
i=1

w′
i(Ỹi − (BmỸ)i)2

and the weights have been rescaled to w′
i = wi(

∑
i wi)

−1n. An estimate of the optimal number of

boosting iterations is M̂ = argmin
m=1,...,M

AIC(m).
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4 Illustrations and Applications

Predictive modeling is the primary domain of ensemble methods, especially in situations where

the number of covariates is large relative to the number of (uncensored) observations. A typical

application is the construction of novel tumor classification schemes based on gene expression

profiling data. One representative of such investigations is the recently published study of Bullinger

et al. (2004) on acute myeloid leukemia (AML) patients. The main focus of this study was on the

differentiation of previously unknown tumor subclasses by means of genetic information. Here,

we try to construct ‘black box’ predictors for the survival time of AML patients incorporating

both clinical and genetic information. Although the random forest or boosting estimate of the

regression function f may be arbitrarily complex, some insight into the nature of the regression

relationship is necessary in order to compare the fitted model with subject matter knowledge. In

our second application, random forest and boosting are applied to data of a well-analyzed study

on node positive breast cancer. The estimated flexible regression functions are compared with

previously published findings.

4.1 Acute Myeloid Leukemia

The treatment of patients suffering from acute myeloid leukemia (AML) is determined by a tumor

classification scheme taking the status of various cytogenetic aberrations into account. Bullinger

et al. (2004) investigate an extended tumor classification scheme incorporating molecular sub-

groups of the disease obtained by gene expression profiling. A combination of unsupervised and

supervised techniques is applied to define a binary outcome predictor (good vs. poor prognosis)

taking into account the expression measures of 133 selected genes which are represented by 149

cDNAs (complementary-DNAs). This binary surrogate variable is shown to discriminate between

patients with short and longer survival in an independent sample of patients.

Instead of using a binary variable summarizing expression levels of 149 cDNAs, random forest

and L2-boosting are applied to construct predictors based on both the clinical data and the

expression levels of the genes selected by Bullinger et al. (2004). The results reported here are based

on clinical and gene expression data published online at http://www.ncbi.nlm.nih.gov/geo,

accession number GSE425. The overall survival time and censoring indicator as well as the clinical

11
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variables age, sex, lactic dehydrogenase level (LDH), white blood cell count (WBC), and treatment

group are taken from Supplementary Table 1 in Bullinger et al. (2004). In addition, this table

provides two molecular markers, the fms-like tyrosine kinase 3 (FLT3) and the mixed-lineage

leukemia (MLL) gene, as well as cytogenetic information helpful to define a risk score (‘low’:

karyotype t(8;21), t(15;17) and inv(16); ‘intermediate’: normal karyotype and t(9;11); and ‘high’:

all other forms). The Supplementary Table 6 gives the list of 149 cDNAs selected by Bullinger

et al. (2004) for building a binary prognostic factor, 147 of them have corresponding expression

levels in Supplementary Table 3. Our analysis utilizes one single learning sample of n = 116

patients, 68 patients died during the study period. The IPC weights are derived from a simple

Kaplan-Meier estimate Ĝ of the censoring survivor function. For one patient a very late event was

observed and we restrict the IPC weight for this patient to a value of five. Missing values in the

expression matrix of all 6283 cDNAs and 116 patients are imputed using k = 10 nearest neighbor

averaging (Troyanskaya et al., 2001), as implemented in the R package pamr (Hastie et al., 2004).

In total, 62 patients with IPC weights greater than zero had complete observations for the clinical

variables and are used in the sequel.

[Figure 1 about here.]

Random forest for censored data (RF) with 10 covariates randomly selected in each node of

M = 250 trees and L2-boosting for censored data (L2B) with component-wise linear models and

AIC-based stopping criterion (M̂ = 350) were trained using both the eight clinical variables and

the information covered by the 147 expression levels (p = 155). The fit of both learners is depicted

in Figure 1 and indicates a reasonable agreement between observed and predicted (log)-survival

times for both algorithms.

Both candidate models are compared with the naive overall mean prediction using a benchmark

experiment following Hothorn et al. (2005b). From the learning sample L, 100 bootstrap samples

are drawn and the performance measures of all candidate models, i.e., the empirical risk defined

in terms of the IPC weights, are evaluated on the same sample of out-of-bootstrap observations

in an unreplicated complete block design. The candidate models have been fitted on the same

bootstrap samples. The benchmark experiments are performed conditional on the IPC weights

based on all observations, since we are interested in a comparison between the candidate models
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only. In order to investigate whether the molecular information of the expression levels helps to

predict the survival time we study in addition the performance of both algorithms when faced

with a learning sample consisting of the clinical variables only (cRF and cL2B with p = 8). The

joint and marginal distributions of the performance measures evaluated on the out-of-bootstrap

observations are displayed in Figure 2, with median out-of-bootstrap errors of 2.451 (mean), 2.382

(RF), and 1.769 (L2B). In general, the performance distributions of the five candidate models show

a global difference (asymptotic p-value < 0.001, Friedman test). All pair-wise multiple compar-

isons based on Friedman rank sums (Wilcoxon–Nemenyi–McDonald–Thompson, see Hollander and

Wolfe, 1999, Chapter 7.3) indicate that the naive prediction of the weighted mean is outperformed

by AIC-based L2-boosting (adjusted p-value < 0.001). There is no evidence that the performance

distributions of random forest and the weighted mean differ (adjusted p-value = 0.491).

However, the distribution of the empirical risk of both ensemble methods is lower when only

the eight clinical covariates are used (all adjusted p-values < 0.001). This supports the hypothesis

that the raw gene expression levels do not improve the prediction of survival time. Bullinger

et al. (2004) argue that the ‘likelihood and the duration of survival are likely to be fairly crude

surrogates for the underlying biologic characteristics distinguishing prognostically relevant tumor

subclasses’ and therefore propose an alternative strategy utilizing a prognostic variable obtained

from a mix of cluster analysis and binary classification.

[Figure 2 about here.]

4.2 Node Positive Breast Cancer

A prospective, controlled clinical trial on the treatment of node positive breast cancer patients was

conducted by the German Breast Cancer Study Group (GBSG-2), a detailed description of the

study is given in Schumacher et al. (1994). Patients not older than 65 years, with positive regional

lymph nodes but no distant metastases, were included in the study. Complete data on p = 7

prognostic factors for n = 686 women are used in Sauerbrei and Royston (1999) for prognostic

modeling by means of multivariate fractional polynomials, i.e., flexible linear regression models

based on transformed covariates. These findings will serve as the basis for the assessment of the

diagnostic capabilities of survival ensembles.

13



Observed hypothetical prognostic factors are age, menopausal status, tumor size, tumor grade,

number of positive lymph nodes, progesterone receptor, estrogen receptor, and the information

of whether or not a hormonal therapy was administered. The recurrence-free survival time is

the response variable of interest. The data are available in the R package ipred (Peters et al.,

2002) and the IPC weights are derived from a simple Kaplan-Meier estimate Ĝ of the censoring

survivor function. The weights are truncated to a maximal value of five for three very late events.

The performance of four candidate algorithms is investigated: an ordinary linear model, fitted via

IPC-weighted least squares (LM); regression trees based on the IPC weights (RP), as suggested by

Molinaro et al. (2004) using the implementation in the R package rpart (Therneau and Atkinson,

1997); random forest for censored data (RF, with five covariates randomly selected in each node

of 100 trees); and L2-boosting for censored data (L2B), with component-wise linear models and

AIC-based stopping criterion.

The AIC-criterion for L2-boosting suggests stopping after the 86th boosting iteration. Figure 3

depicts a mean-difference plot of observed and predicted logarithms of recurrence-free survival for

all four models. The figure leads to the impression that the relationship between the covariates

and the recurrence-free survival time is relatively weak, a finding supported by an analysis with

the Brier score in Hothorn et al. (2004).

[Figure 3 about here.]

The performance of the four candidate models is compared by means of a benchmark exper-

iment utilizing the framework given by Hothorn et al. (2005b) and described in Subsection 4.1.

In order to study the stability of the models in high-dimensional situations, we chose a strategy

in-between an analysis of the original data and a simulation experiment. We add p+ = (10, 50, 100)

uncorrelated covariates, drawn from a uniform distribution, to the observed learning sample L and

evaluate the performance using the out-of-bootstrap observations as described earlier. The results

are depicted in Figure 4. Many-to-one comparisons based on Friedman rank sums indicate that,

for the learning sample with only the original covariates (p+ = 0), the linear model, boosting, and

random forest perform better than the weighted mean (all adjusted p-values < 0.001). There is

no evidence that the performance distributions of regression trees and the weighted mean differ

(adjusted p-value = 0.965). Again, the relative improvement compared with the weighted mean
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is relatively small. For an increasing number of random covariates the linear model is heavily af-

fected by overfitting but the ensemble methods are rather stable. For p+ = 50 additional random

covariates, the bootstrap test set error of random forest and boosting is smaller than that for the

weighted mean (both adjusted p-values = 0.001). However, there is only weak evidence that ran-

dom forest for censored data performs better than the weighted mean for learning samples with

p+ = 100 additional random covariates (adjusted p-value = 0.03); boosting cannot outperform

the mean (adjusted p-value = 0.583) in this situation. The relative stability of regression trees is

caused by the fact that the trees are pruned back to stumps or the root node most of the time.

Figure 3 indeed shows (lower left panel) that only two predicted values are obtained from the tree

stumps.

[Table 1 about here.]

[Figure 4 about here.]

Sauerbrei and Royston (1999) provide an in-depth analysis of the GBSG-2 data, focusing on

fractional polynomials as interpretable but flexible regression models. They identify a non-linear

influence of the number of positive nodes, age, and progesterone receptor by visualization of the

covariates and the corresponding (partial) linear predictions. By plotting the covariates against

the predictions in Figures 5 and 6 (such strategies were also applied for classification problems by

Breiman, 2001b and Garczarek and Weihs, 2003), we compare the estimated regression function

f̂ provided by random forest and boosting with the findings reported in their paper,

[Figure 5 about here.]

[Figure 6 about here.]

The predicted log-recurrence-free survival time decreases with increasing number of positive

lymph nodes (up to about 15 positive lymph nodes) for both random forest and boosting, in a

nearly identical manner to the finding reported in Sauerbrei and Royston (1999). Both boosting

and random forest suggest a relationship between age and survival time, namely a decreasing

risk for ages of 40 to 45 and a nearly constant risk for older women, as in Sauerbrei and Royston

(1999). A strong influence of the estrogen receptor is indicated by both ensemble methods, however,
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estrogen receptor measurements were not included in any of the models studied by Sauerbrei and

Royston (1999). Progesterone receptor values (restricted to values less than 100 fmol/l) indicate a

relationship with recurrence-free survival: Very small values (less than about 10, say) are associated

with short recurrence-free survival times whereas higher values indicate longer recurrence-free

survival times. A similar finding is reported by Sauerbrei and Royston (1999).

[Figure 7 about here.]

5 Discussion

The two algorithms presented in this paper extend ensemble prediction to censored data problems.

Ensemble techniques have been developed in the past decade at the borderline between machine

learning and statistics; previous attempts to apply the main ideas to survival time data were bound

to established key ingredients such as the partial likelihood (Ridgeway, 1999), the Brier score for

censored data (Benner, 2002), or survival trees (Hothorn et al., 2004; Ishwaran et al., 2004), and,

consequently, inherited the associated difficulties.

The general estimation framework of van der Laan and Robins (2003) and van der Laan

and Dudoit (2003) allows for a sound theoretical formulation of the underlying risk optimization

problems which can be solved with the new algorithms. Moreover, the framework enables us

to apply well-known cross-validation techniques for model evaluation (Keleş et al., 2004). Both

ensemble algorithms are generic in the sense that arbitrary loss functions, e.g. absolute loss

for any monotone transformation of the survival time T (including the identity), and other base

learners can be implemented easily. For example, Henderson et al. (2001) investigate the prediction

accuracy of survival models using a very intuitive loss function, having loss zero if the predicted

survival time T̂ satisfies 1
2T ≤ T̂ ≤ 2T and loss one otherwise. On the log-scale, this loss function

reads

LHenderson et al.(Y, ψ(X)) =

 0, if |Y − ψ(X)| ≤ δ

1, if |Y − ψ(X)| > δ

here with δ = log(2). Boosting based on this loss function is not possible because of non-convexity

– the gradient would be either zero or infinity. The squared error and also the Huber loss, sug-

gested in the context of M-estimation and defined below, are convex functions with respect to
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the second argument. The Huber loss is a closer convex approximation (when properly scaled) of

LHenderson et al. than the squared error loss. Specifically,

LHuber(Y, ψ(X)) =


1
2 (Y − ψ(X))2, if |Y − ψ(X)| ≤ δ

δ(|Y − ψ(X)| − δ/2), if |Y − ψ(X)| > δ,

and the corresponding empirical risk can be minimized with respect to ψ by using pseudo responses

Ũi =

 Ỹi − f̂m(Xi), if |Ỹ − f̂m(X)| ≤ δ

δ · sign(Ỹi − f̂m(Xi)), if |Ỹ − f̂m(X)| > δ

in step 2 of the generic gradient boosting algorithm for censored data. For the GBSG-2 data, the

mean-difference plots and a comparison of observed versus predicted log-recurrence-free survival

time for L2-boosting optimizing the Huber and quadratic loss functions are shown in Figure 7. In

fact, the fit based on the Huber loss function seems to be less variable compared to the fit obtained

by optimizing quadratic loss.

It should be noted that our implementations don’t require an external choice of hyper pa-

rameters, e.g., the number of boosting iterations. Another important issue is the fact that the

random forest and the boosting algorithm reduce to their original full data form in the absence of

censoring. In the uncensored data situation, the flexibility and stability of both the random forest

and the boosting approach have been demonstrated in many benchmark experiments; we therefore

restricted ourselves to a semi-artificial benchmark experiment with varying number of covariates

based on the GBSG-2 data. The main focus of our analysis of the AML and the GBSG-2 data is on

the practical advantages of the methodology in terms of prediction accuracy and diagnostic ability.

The results of flexible diagnostic modeling with fractional polynomials published by Sauerbrei and

Royston (1999) could be reproduced for the GBSG-2 data. Thus, ensemble techniques are not just

superb ‘black boxes’ in terms of prediction accuracy but can be used to investigate the nature of

the regression relationship inherent in the data. We depicted simple partial relationships between

one covariate and the predicted survival times, more advanced approaches for the visualization of

complex regression relationships (Nason et al., 2004) are applicable as well.

In case all observations are censored after a fixed time point, such as in a clinical trial running

for a predefined period, the assumption P(C > T |X) > 0 stated in Section 2.2 is violated. Clearly,

estimating the mean of a survival time is impossible when we never observe events after the end
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of follow-up. Here, we have to restrict our models to a truncated survival time as the response

variable and we need to keep in mind that we can only derive conclusions about the part of the

survival distribution we actually gathered information for.

The definition of the observed data loss function is the basis of all subsequent calculations. For

the analysis of the AML and the GBSG-2 data we used inverse probability of censoring weights

obtained from a Kaplan-Meier estimate Ĝ of the censoring survivor function, i.e., an estimate

based on T̃i and 1 − ∆i for observations i = 1, . . . , n (it should be noted that similar weighting

schemes have been used to define measures of prediction accuracy for censored data, for example

the Brier score by Graf et al., 1999). Molinaro et al. (2004) applied a Cox model to estimate the

weights which allows for modeling the censoring survivor function based on information covered

by a subset of the covariates. Robustness properties are studied theoretically in van der Laan and

Robins (2003) and lead to double robust inverse probability of censoring weights (DR-IPC weights)

as an alternative scheme. However, the practical implications of a misspecification of the weights,

for example by omitting an important covariate when estimating the censoring distribution, and

advantages or disadvantages of parametric, semi-parametric, or non-parametric modeling strategies

need to be investigated by means of artificial simulation experiments. Another idea is to stabilize

the estimate of the censoring distribution, and thus to stabilize the weights, by some form of

ensemble technique prior to modeling or even simultaneously with the estimation of the regression

function. Those issues are to be addressed in future research.

Software

All analyses were performed within the R system for statistical computing (R Development Core

Team, 2004), version 2.0.1. A preliminary implementation of random forest for censored data is

part of the R package party (Hothorn et al., 2005a). Until published on CRAN, implementations

of the algorithms applied here are available from the authors upon request.
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Figure 1: AML data: Mean-difference plots (top) and scatterplots (bottom) of observed and
predicted log-survival time of random forest and L2-boosting for censored data. The radius of
the circles is proportional to the IPC weights. The dashed horizontal line in the lower panels is
the weighted mean (with IPC weights) of the log-survival times, i.e., the prediction without any
knowledge of the covariates.
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Figure 2: AML data: Parallel coordinate plot and boxplots of the joint and marginal distribu-
tions of the L2 risk with IPC weights evaluated on 100 out-of-bootstrap samples for the simple
weighted mean (M), random forest (RF), and L2-boosting for censored data with component-
wise least squares (L2B). In addition, the bootstrap errors for both ensemble methods based on
the learning sample of the eight clinical covariates only are given (cRF and cL2B).
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Figure 3: GBSG-2 data: Mean-difference plots of observed and predicted log-recurrence-free
survival for all four candidate methods. The radius of the circles is proportional to the IPC
weights.
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Figure 4: GBSG-2 data: Joint and marginal distributions of the L2 risk evaluated on 100 out-
of-bootstrap samples for the weighted mean (M), random forest (RF), L2-boosting for censored
data with component-wise least squares (L2B), recursive partitioning (RP), and a simple linear
model (LM), for a number of additional random covariates p+.
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Figure 5: GBSG-2 data: Scatterplots of selected covariates and predicted log-recurrence-free
survival time obtained from random forest for censored data. A smoothing spline with four
degrees of freedom is plotted. The radius of the circles is proportional to the IPC weights.
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Ŷ

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0 200 400 600 800 1000

6.
0

6.
5

7.
0

7.
5

Estrogen receptor

Ŷ
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Figure 6: GBSG-2 data: Scatterplots of selected covariates and predicted log-recurrence-free
survival time obtained from L2-boosting for censored data with component-wise least squares. A
smoothing spline with four degrees of freedom is plotted. The radius of the circles is proportional
to the IPC weights.
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Figure 7: GBSG-2 data: Mean-difference plots and scatterplots of observed and predicted log-
recurrence-free survival for L2-boosting with Huber loss function and quadratic loss. The radius
of the circles is proportional to the IPC weights.
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M RP LM RF L2B
p+ = 0 0.311 0.311 0.291 0.293 0.289
p+ = 10 0.311 0.311 0.321 0.296 0.299
p+ = 50 0.311 0.311 0.423 0.305 0.303
p+ = 100 0.311 0.311 0.647 0.308 0.310

Table 1: Benchmark experiments for the GBSG-2 data: Median performance for 100 bootstrap
samples for the weighted mean (M), recursive partitioning (RP), a linear model (LM), random
forest (RF), and L2-boosting (L2B) for censored data with component-wise least squares.
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