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Email: Daniel Schöner∗- dhs@ethz.ch; Markus Kalisch∗- kalisch@stat.math.ethz.ch; Christian Leisner∗-

christian.leisner@bc.biol.ethz.ch; Lukas Meier∗- meier@stat.math.ethz.ch; Marc Sohrmann - marc.sohrmann@bc.biol.ethz.ch;

Mahamadou Faty - mahamadou.faty@unibas.ch; Yves Barral - yves.barral@bc.biol.ethz.ch; Matthias Peter -

matthias.peter@bc.biol.ethz.ch; Wilhelm Gruissem - wgruissem@ethz.ch; Peter Bühlmann - buhlmann@stat.math.ethz.ch;
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Abstract

Background: Large scale screens for synthetic lethality are widely used in yeast genetics to systematically search

for genes that are involved in specific biological processes. Often the amounts of data resulting from single

screens far exceed the capacities of experimental characterization of every target found. Thus, computational

tools are required to select promising candidates from a screen in order to reduce the number of experiments to

a manageable size.

Results: We use an unsupervised statistical method for the analysis of yeast synthetic lethality data that

integrates information from other biological data sources, such as gene expression measurements, phenotypic

profiling, RNA degradation and sequence similarity. By virtue of a Multivariate Gaussian Mixture Model, we

determine the best combination of features that result in a grouping of the genetic interactions into two parts.

An analysis of synthetic lethality data from two screens performed with arp1 and jnm1, two genes involved in

the migration of the mitotic spindle, yields a small group of statistically significant candidate genetic interactors

that we propose as potential members in this biological process. Preliminary experimental testing of a subset of

these candidates confirms their role and yields novel genes involved in spindle migration.
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Conclusions: We demonstrate, using statistical significance and biological validation, that multivariate Gaussian

Mixture Modeling can be used to select candidate genetic interactions for experimental characterization from

synthetic lethality datasets. For the given example, integration of different data sources contributes to the

identification of genetic interactors of arp1 and jnm1 that play a role in the same biological process.

Background

One of the major challenges of computational biology is the extraction of relevant information from the

increasing amounts of data resulting from large scale experimentation. While the data quality of single

high-throughput assays has often been challenged, there is great promise that the reliability and precision

of the outcomes can be increased through integration and combination of multiple data sources.

We applied statistical modeling, based on data integration, for finding yeast genes involved in spindle

migration from two synthetic lethality screens performed with arp1 and jnm1.

Synthetic lethality data

Synthetic lethality is the phenomenon of observing a dead phenotype when two otherwise viable gene

deletions are combined in one cell [1]. Since the yeast collection of deletion mutants has been available, this

procedure can be carried out on a global scale to uncover interactions between non-essential genes. This

technology is called the Synthetic Genetic Array (SGA) [2]. By using well known genes as query genes and

crossing them into the deletion set, one can systematically search for target genes that are synthetically

lethal with the query gene. As a conclusion, these targets, together with the query gene can be placed in a

common functional context in the cell. SGA is a powerful genetics tool for studying vital biological

processes and for finding new components involved in them. However, as with large scale experimentation

in general, not all of the targets identified by such a screen are specific to the biological scenario that is

investigated [3]. For instance, a lethal phenotype can occur as a non-specific effect when both single

deletions already have reduced fitness. Also, two very distantly related genes can show synthetic lethality

because a gene deletion does not singly represent the loss of a gene, but rather a whole cellular response to

it, possibly affecting many pathways. Finally, some target genes might simply represent noise inherent to
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the experiment. Of primary interest, however, are genetic interactions that occur within the same

biological scenario because they indicate a close functional relationship between query and target gene,

that can be readily examined by additional experimental efforts.

Several approaches confronted the problem of characterizing synthetic lethality by relying on additional

biological information.

In [4] a supervised approach with decision trees was used to predict synthetic lethal interactions on the

basis of genomic and proteomic features such as localization, mRNA expression, physical interaction,

protein function, and characteristics of network topology. Instead of predicting genetic interactions, an

interesting attempt to characterize synthetic lethality was undertaken by [5]. By scrutinizing the topology

of global genetic and protein interaction networks, they found that synthetic lethality can occur either

within or between pathways with the majority occurring between pathways. Their approach was restricted

to protein interactions for the interpretation of synthetic lethality. Here, we investigate whether integrating

additional genomic information facilitates the interpretation of synthetic lethal interactions found in

high-throughput screens and serves to distill the close genetic relationships from the broad and indirect

ones.

Our Approach

Our approach is closest to the goals in [5], but we integrate multiple data sources for characterizing the

relationship that might exist between genetic interactors found by SGA. Moreover, instead of considering

the whole genetic network in a global approach, we focus on the results of two synthetic lethal screens

performed with arp1 and jnm1, two genes involved in the migration of the mitotic spindle [6, 7]. This

process is essential for high fidelity chromosome segregation and proper cell division in budding yeast and

serves as a case study because some important regulatory elements are already known and can be used for

reference (see Table 1). Both query genes used for the screens are involved in dynein-dependent spindle

positioning. Due to its importance for the cell, spindle migration is a highly buffered process. We chose

arp1 and jnm1 as query genes, because an SGA-screen will detect genes functioning in pathways that

compensate for the loss of dynein-dependent spindle positioning and thus also play a role in spindle

migration. Further and more importantly, a set of secondary assays is available that is adequate for testing

the outcomes of a computational analysis in an experimental setting.

In a statistical model that integrates synthetic lethality data with information from multiple sources, we

seek to set apart genetic interactions with genes involved in spindle migration from interactions with genes
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that are more distantly related or not related at all. Since it is much easier to characterize genetic

interactions of the first kind in a follow-up experiment, which we have pursued after statistical modeling,

we focus on finding a subset of genetic interactors that have a close relationship to arp1 and jnm1

assuming that they also have a function in spindle migration.

Our method does not require a curated data set as a gold standard, as in supervised learning approaches,

but uses the structure found in the data for grouping in an unsupervised manner, using a Gaussian Mixture

Model and the Expectation Maximization (EM) algorithm for estimating the corresponding parameters.

To our knowledge, the presented approach is novel because it uses mixture modeling as a framework for

characterizing synthetic lethal interactions and for integrating different data types. The following

paragraphs describe how measurements of mRNA expression, phenotypic profiling, mRNA decay and

sequence similarity were integrated and used for statistical modeling.

Included Datasets

When searching for target genes that are closely related to the query gene of an SGA, a direct protein

interaction between both gene products is an obvious feature to look for. However, the protein interaction

network measured on a large scale by two-hybrid or copurification techniques only features the products of

less than 10% of the genes in the datasets analyzed in this work. Hence, this incomplete information could

not be included in a reasonable way in our model. Instead, we focused on data sources with good genome

coverage to ensure that comprehensive information is incorporated.

Genes involved in the same biological process are likely to show similar mRNA-expression profiles [8]. To

include knowledge about gene co-expression we chose three gene expression data sets. In [9], 15

environmental and chemical stress conditions were tested. In [10], changes in mRNA expression in response

to 300 gene deletions and drugs were monitored. In [11], the changes in mRNA expression were measured at

80 experimental conditions related to the cell cycle. For each of these data sets, we calculated the Pearson

correlation coefficient of both query genes to all corresponding target genes. In the following, we will refer

to these variables according to their source as gasch.corr, hughes.corr and spellman.corr, respectively.

In another microarray-based study, [12], the sensitivity of the yeast gene deletion library to various growth

conditions was measured. Strains responding in the same or similar fashion to these cues are likely to carry

deletions of genes that are functionally related. We therefore calculated the Pearson correlation coefficients

of the sensitivity profiles of all target genes to their corresponding query genes. We will refer to this

variable as pheno.corr.
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To include information about posttranscriptional regulation in the analysis, we considered the degradation

rates of mRNA-transcripts. In a systematic approach, [13], the mRNA decay rates of nearly all yeast ORFs

were measured. To compare the rates of the different targets to the query genes we calculated the ratios of

decay rates of the target genes and query genes and performed a log-transformation on them. We will refer

to this variable as logRNA.ratio.

Genes carrying out similar biological or biochemical functions are likely to share common activity domains

in their protein structure, coded in their protein sequence. To include such information we determined the

sequence similarities between the query genes and the corresponding target genes using pblast [14]. The

log-transformed percentage values of sequence similarity were included in the analysis as the variable

logseq.sim.

In total, we use 6 different data sources in addition to the information from synthetic lethal screens.

Results and Discussion

The statistical analysis performed on synthetic lethality data with query genes arp1 and jnm1 and

including the 6 additional data sources resulted in a small group of 5 genes that we propose to be closely

related to arp1 and jnm1 in the sense that they have a function in the same biological process. Based on

the analysis of already known genes (see Table 1), this group is enriched for genes involved in spindle

migration. Initial experimental validation of the candidates previously uncharacterized in this context

confirmed an involvement for the majority of the statistically significant genes.

Feature selection

We computed every combination of the variables derived from the 6 datasets (26 − 1 = 63) and used the

Bayesian Information Criterion (BIC, see Methods) to evaluate the sets of features that best approximate

the data. Since the aim was to integrate information from different datasets, single-variable models were

not further considered.

The variables hughes.corr, spellman.corr and pheno.corr are part of the top-scoring combinations, whereas

combinations containing gasch.corr, logRNA.ratio and logseq.sim yielded worse results (data not shown).

We conclude from this that the former variables contribute to a structure that allows good separation of

the data into two groups whereas the latter variables do not provide additional information. In a

two-component Gaussian Mixture Model the two components are to be interpreted as either having a

direct involvement in spindle migration or no direct involvement.
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The best fit for two groups was achieved by a combination of the variables hughes.corr and spellman.corr

and thus only relies on transcriptional information. As illustrated in Figure 1, there is a small group

consisting of 7 data points (synthetic lethal interactions) that can be discerned from a bigger group

containing the rest of the data. While the values of the variable spellman.corr do not differ much between

the two groups, the variable hughes.corr is indicative of separation. All members of the small group share

intermediate to high values of correlation (0.3-0.65) in the hughes-data set as opposed to the members of

the big group that fall in a range between −0.4 and 0.3. Although, at first sight, only the information of

hughes.corr seems to be important, the more detailed statistical analysis shows that this is not the case:

The combination of hughes.corr and spellman.corr is clearly more suited with respect to the BIC score.

Statistical Assessment

Given unequal grouping, one would naturally consider the small group to comprise interesting information.

The genetic interactors in the small group differentiate themselves from the remainder of the data set and

thus represent promising candidates for thorough experimental testing. Moreover, the high positive

correlation values for the variable hughes.corr show that these target genetic interactors are

transcriptionally co-regulated with either arp1 or jnm1 and are therefore likely to be involved in the same

biological process. For the grouping illustrated in Figure 1, the default cutoff for the posterior probability

in the Gaussian Mixture Model was set to 0.5 to separate the small from the big group. Genes with a

higher posterior probability were assigned to the small group and genes with lower values comprised the

big group. Variation of this threshold shifts the quantitative proportion between the small and the big

group. To judge the enrichment of the small group with genetic interactors known to be involved in spindle

migration depending on group size, we used a reference list of 15 genes out of the 141 genes contained in

the dataset that are known to be involved in spindle migration (see Table 1). Employing a hypergeometric

test shows that the amount of known genes in the smaller group is significantly higher than would be

expected by chance. Furthermore, we analyzed the enrichment when changing the size of the small group.

First, we increased the cutoff of the posterior probabilities so that the small group contained only 5 genetic

interactions of the total of 141. Then, we reduced the cutoff so that the small group contained 50 genetic

interactions. In both cases, the small group showed a significant enrichment of known spindle migration

genes (see Table 3).

The lists of genes resulting from both small groups can be considered as candidates for further biological

experimentation. They are significantly enriched in genes known to be specific for spindle migration and
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thus it is likely that among the rest of the genes in these lists, which are unknown with respect to spindle

migration, additional members of this biological process can be found.

Experimental Validation

In order to experimentally test whether the genetic interactions in the small group consisting of 5

candidates (see Table 3) are related to spindle migration we used time-lapse microscopy (see Methods).

Proper spindle migration requires several cellular processes such as spindle integrity, spindle elongation and

localization of Kar9. Thus, the genes in the list cannot be expected to show a unique phenotype that could

be detected by a single assay. Therefore, we looked for perturbation in any of these processes. Ase1 has

already been reported to be required for spindle integrity. In a deletion strain, the spindles fail to elongate

during anaphase [15,16] and Ase1 localizes to the spindle midzone, indicating that Ase1 is required for high

fidelity chromosome segregation. Asymmetric localization of Kar9 is used as an assay to identifiy genes

with a function in spindle migration [17].

From previous experiments, it was known that tvp38∆ cells show perturbed asymmetric Kar9 localization.

Only 73% of the tvp38∆ cells have Kar9 localized in a strongly asymmetric manner as opposed to 83% in

WT cells (see Figure 2). This indicates that Tvp38 plays a role in maintaining Kar9 asymmetry. For the

reasons mentioned above, both genes were considered as required components for spindle migration and

used in the reference gene list for statistical assessment.

The additional genes found in the small group of 5 genes were analyzed by using the same experimental

methods.

For the uba4∆ mutant no effect was detected. However, it should be mentioned that Urm1, the only known

substrate of Uba4 in urmylation, has mildly perturbed Kar9 localization when deleted. This suggests a role

of Uba4 as a peripheral regulator of Kar9 asymmetry possibly through urmylation.

Deletion of the uncharacterized ORF, YHR127W, shows a Kar9 localization phenotype similar to that seen

in tvp38∆ cells, although less pronounced, 76% asymmetry vs. 83% in WT (see Figure 2).

A deletion of she1 (YBL031W), a gene coding for a cytoskeletal protein of unknown function, resulted in a

marked decrease in Kar9 asymmetry as well as a high frequency of broken spindles in anaphase cells (see

Figure 2 and suppl. Figure 1). This gene has a phenotype in both assays used for validation, which gives

strong support for an involvement in spindle migration.

These results demonstrate that all of 5 genes in the small group of our statistical model play a role in

spindle migration. For one of the genes only a vague involvement can be assumed due to indirect evidence
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(uba4 ). The phenotypes of deletions in tvp38 and YHR127W, though being relatively mild, suggest an

immediate effect of both genes on spindle migration. For the other two genes strong evidence exists that

they play a direct role in the proper functioning of spindle migration and chromosome segregation (she1

and ase1 ). Interestingly, the role of YHR127W and she1 in this context is a novel finding. In conclusion,

all 3 of the additionally found candidates merit further experimental characterization in order to more

precisely determine their mechanistic involvement in spindle migration.

Conclusions

We used and evaluated an unsupervised statistical method relying on data integration for separating

synthetic lethal interaction partners of arp1 and jnm1 into those that are specific to spindle migration and

those representing the unspecific or more distantly related remainder of interactions.

Multivariate Gaussian Mixture Modeling was applied to divide different subsets of a heterogeneous genomic

data set into two groups. A combination of the two features hughes.corr and spellman.corr derived from

two gene expression datasets resulted in the best model fit. For this combination, a small group of 5 genes

was identified that was significantly enriched in known spindle migration genes. Moreover, biological

testing of the three top scoring genes that were uncharacterized in this context (the other two genes were

characterized already) yielded experimental confirmation for being involved in spindle migration. The fact

that we obtained novel findings for two of the genes further underscores the usefulness of our method.

It is an interesting finding that a small model consisting of only two biological variables resulted in the best

separation of genetic interactions. One would expect that including as much information as possible, which

in this case would be a combination of all 6 variables, should result in the most conclusive outcome. Here,

this is not the case. Apparently, correlating mRNA-expression for the genes considered in this study is

more informative of a close relationship between them than is comparing their sequence similarity or their

rates mRNA-decay. Obviously, including the latter variables obscures relevant information. Since our

analysis is based on synthetic lethal screens, not all known spindle migration genes could be found.

Essential genes and genes from the dynein-dependent spindle positioning pathway are missing in the

analysis since they could not be detected by synthetic lethality, others, such as kar9, had to be excluded

from the analysis due to missing data. In addition, the best combination of variables used to produce the

results only relies on mRNA expression of the genes in the synthetic lethality dataset. Some genes

important for spindle migration that are also included in the dataset might have been missed, if they are

not transcriptionally co-regulated with arp1 and jnm1, but regulated differently. Hence, our data
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integration approach does not comprehensively identify all members of this biological process. Yet, based

on the features used for the model, we can assign probabilities to those interactions that have been

identified by SGA according to whether they are closely related to the biological process of interest or not.

This allows a ranking of the candidates and, based on the ranks, the construction of a list of genes that

deserve further experimental characterization. Another point is that genes showing synthetic lethality with

the two query genes arp1 and jnm1 do not necessarily have to be related to spindle migration since these

two query genes are involved in many different processes where movement of microtubules is required, such

as cell polarity, cell migration, vesicle transport, and the formation of membrane protrusions. Nevertheless,

we focused on their role in spindle migration because it is the function that is experimentally described

best, and because the experimental means for testing promising genes in that context were available.

Indeed, experimental validation of a small group of candidate genes has supported the model-based

predictions and adds initial biological evidence to the assumption that these genes are involved in the

process that was studied. However, our model and preliminary experiments do not allow any ultimate

conclusions about the exact mechanistic interplay of the validated genes in spindle migration. For this,

thorough experimental characterization is indispensable. Still, the method contributes to the study of

spindle migration by identifying primary candidates for further study.

We presume that among the 50 genetic interactions from the other statistically significant small group

whose p-value is actually smaller than for the other small group (see Table 2) many genetic interactors can

also be placed in the molecular environment of spindle migration.

The presented work shows that data-integration can be useful for analysis and characterization of synthetic

lethality data. We demonstrate an efficient way, in terms of a statistical model, to reduce the list of target

genes from a screen to a list of candidates with good prospects for further experimentation in the

laboratory. Since the amounts and the quality of high-throughput data will increase in the future, more

and better biological features can be expected to arise. Including them in our model will increase its

predictive power and accuracy.

Methods
Mixture modeling

In order to divide the genetic interactions into two groups, we assumed that each sample was drawn with a

given probability πk from a p dimensional multivariate Gaussian distribution labeled by k ∈ {1, 2}. The

goal is to recover the probabilities πk and the parameters of the two multivariate Gaussian distributions
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from the given samples in order to quantify the groups. This can be more generally cast in the framework

of Gaussian Mixture Models (GMM).

The probability density of a Gaussian Mixture Model with 2 groups can be written as

f(x |µ1,Σ1, µ2,Σ2) =
2∑

k=1

πkφk(x |µk,Σk) (1)

where φ(x |µk,Σk) is the probability density of the multivariate Gaussian distribution corresponding to

group k:

φ(x |µk,Σk) = (2π)−
p
2 det(Σk)−

1
2 exp

(
−1

2
(x− µk)T Σ−1

k (x− µk)
)

The parameters can be found by the EM algorithm. The optimal set of variables of other data sources was

found by minimizing the Bayesian Information Criterion (BIC), which is defined as:

BIC = −2 ln(L) + d ln(n),

where ln(L) is the log likelihood, d is the number of parameters and n is the sample size. We used the

R-package mclust [18] for all calculations.

All samples can then be assigned to one out of the two groups by inspecting the posterior probabilities

P [Group = k |x], k ∈ {1, 2}.

Experimental Procedures
SGA

Performed as described in [19]. In brief, query strains used were, arp1::kanMX his3 leu2 ura3 lys2

can1::MFA1pr-HIS3 and jnm1::kanMX his3 leu2 ura3 lys2 can1::MFA1pr-HIS3. Each strain was crossed

into the Yeast Knock Out Collection (Open Biosystems), and double knock-out strains were scored for

synthetic lethality. Each screen was performed once.

Yeast Strains

Deletion strains were generated for each predicted ORF in the presence of a chromosomal CFP-tub1:URA

marker in the URA3 locus and a chromosomal kar9-YFP:NAT marker in the endogenous kar9 locus.

Integration of CFP-tub1 and C-terminal tagging with YFP was done as described in (Liakopoulos et al.,

2003).
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Time-Lapse Fluorescence Microscopy

Fluorescence microscopy was performed on an Olympus BX50 fluorescence microscope equipped with a

piezo motor, Polychrom IV monochromator as light source, a high speed CCD camera (Imago,

TillPhotonics) and TILLVision software (TILLPhotonics, Martinsried, Germany). Dual color acquisitions

were performed using a Chroma CFP/YFP dual band filter.

Images were acquired as stacks of 5 focal slices, 0.4 µm between each slice. Each time-lapse series was

recorded with 10 time frames and presented as 10 maximum projections with 10 s intervals over the course

of 100 s. The time-lapse series were acquired in a YFP and a CFP channel and fused as RGB movies in

NIH Image J.

Spindle Integrity and Elongation

Cells with reduced spindle integrity may have difficulty with spindle elongation during anaphase [15,16].

We quantified the fraction of WT vs. ∆cells with compromised anaphase spindle integrity. Breaking and

bending of the spindle was scored. The experiment was performed with two independent clones per strain,

and n > 20 anaphase cells per strain. For single cell illustrations see supplement.

Kar9 Localization

Localization of spindle positioning protein Kar9 on the spindle pole body and the astral microtubules

occurs only on the bud proximal side of the spindle. This asymmetric localization of Kar9 is essential for

proper function of spindle migration. We scored for asymmetric Kar9 localization in all the predicted

mutants. We quantified the fraction of cells with Kar9 localized in a strongly asymmetric, weakly

asymmetric and symmetric manner. The experiment was performed with two independent clones per

strain, n > 100 cells per strain. For single cell illustrations see supplement.

Yeast strains used in this study:

KAR9::YFP:NAT ura3::TUB1-CFP:URA3 gpd1::kanMX

ade2-101ura3-52 lys2-801 his3-∆200 trp1-∆63 leu2

KAR9::YFP:NAT ura3::TUB1-CFP:URA3 she1::kanMX

ade2-101ura3-52 lys2-801 his3-∆200 trp1-∆63 leu2

KAR9::YFP:NAT ura3::TUB1-CFP:URA3 tvp38::kanMX

ade2-101ura3-52 lys2-801 his3-∆200 trp1-∆63 leu2
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KAR9::YFP:NAT ura3::TUB1-CFP:URA3 YHR127W::kanMX

ade2-101ura3-52 lys2-801 his3-∆200 trp1-∆63 leu2

KAR9::YFP:NAT ura3::TUB1-CFP:URA3

ade2-101ura3-52 lys2-801 his3-∆200 trp1-∆63 leu2

List of abbreviations

EM algorithm - Expectation Maximization algorithm

GMM - Gaussian Mixture Model

SGA - Synthetic Genetic Array

BIC - Bayesian Information Criterion
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Figures
Figure 1 - Best combination of data sources.

Scatterplot for the best combination of features, which consists of hughes.corr and spellman.corr. The

default separation is shown with a cutoff posterior probability of 0.5. The small group is shown in red and

the big group in black.
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Figure 2 - Experimental validation of genes predicted to be involved in spindle migration.

A) The she1∆, tvp38∆ and YHR127W∆-strains show perturbed Kar9 localization. gpd1∆, which is also

included in the synthetic lethality dataset, but not in the small group, is shown as a negative control. B)

Some she1∆ cells have broken or bent anaphase spindles suggesting compromised spindle integrity.

Tables
Table 1 - Genes in the datasets known to be related to spindle migration.

For the statistical assessment (hypergeometric test) of the Gaussian Mixture Modeling results we used a

reference set of genes involved in spindle migration.

Reference gene list
Gene name ORF Evidence

KIP3 YGL216W [20]
MON1 YGL124C unpublished data
ELP6 YMR312W unpublished data
BNI1 YNL271C [21]
YPT7 YML001W unpublished data
PAT1 YCR077C unpublished data
CCZ1 YBR131W unpublished data
UBR1 YGR184C unpublished data
CLB4 YLR210W [17]
ASE1 YOR058C [22]

TVP38 YKR088C unpublished data
For some of the genes, their involvement in spindle migration has been published. The rest is known to be

involved from the unpublished results of a previous Kar9-localisation screen (see Methods). Some key

regulatory genes, such as kar9 and bim1, though being in the original synthetic lethality dataset, are

missing in the dataset used for the analysis (see Additional Files).

Table 2 - P-values for best model

Statistical assessment of the best combination of features {hughes.corr, spellman.corr}. The p-values based

on the hypergeometric test are shown for two different group sizes.

P-values for small groups
No. of genes in small group Known genes P-value

5 2 0.04
50 7 0.021

Table 3 - Experimental Validation

Phenotypes of the 5 members of the small group.
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Experimental validation of small group members
Gene name ORF name Phenotype

ASE1 YOR058C compromised anaphase spindles
SHE1 YBL031W broken spindle; perturbed Kar9-asymmetry

TVP38 YKR088C perturbed Kar9-asymmetry
UBA4 YHR111W no direct evidence; urm1∆ (Uba4 target) shows perturbed Kar9-asymmetry

YHR127W YHR127W weakly perturbed Kar9-asymmetry

Additional Files
Additional file 1 — Synthetic lethality data

The xls-file contains the standard and systematic gene names for all synthetic lethality interactions found

in the systematic screen performed with arp1 and jnm1.

Additional file 2 — Data matrix used for mixture modeling

The xls-file contains the dataset that was used for mixture modeling. Due to missing data in the source

datasets biological variables were only calculated for genetic interactions where complete information was

available.

Additional file 3 — Movie of spindle integrity and elongation in WT cell

Avi-file showing a WT cell in anaphase. The cell is expressing CFP-Tub1, which labels the elongated

anaphase spindle. 10 images were captured every 10s revealing the relatively rigid structure of the spindle.

Additional file 4 — Movie of spindle integrity and elongation in mutant cell

Avi-file showing a she1∆ cell in anaphase. The cell is expressing CFP-Tub, which labels the elongated

anaphase spindle. 10 images were captured every 10s showing the spindle breaking due to loss of spindle

integrity in this mutant.

Additional file 5 — Movie of Kar9-localization in WT cell

Avi-file showing WT cell in metaphase. The cell is expressing CFP-Tub1 (red) and Kar9-YFP (green). 10

images were captured every 10s showing Kar9 localizing on the SPB and astral MT on bud-directed pole

only (asymmetric).
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Additional file 6 — Movie of Kar9-localization in mutant cell

Avi-file showing a she1∆ cell in metaphase. The cell is expressing CFP-Tub1 (red) and Kar9-YFP (green).

10 images were captured every 10s showing Kar9 localizing on the SPB and astral MT on both sides of the

spindle (symmetric).

16


