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Causal inference relies on the structure of a graph, often a directed acyclic
graph (DAG). Different graphs may result in different causal inference
statements and different intervention distributions. To quantify such dif-
ferences, we propose a (pre-)metric between DAGs, the structural inter-
vention distance (SID). The SID is based on a graphical criterion only and
quantifies the closeness between two DAGs in terms of their correspond-
ing causal inference statements. It is therefore well suited for evaluating
graphs that are used for computing interventions. Instead of DAGs, it is
also possible to compare CPDAGs, completed partially DAGs that rep-
resent Markov equivalence classes. The SID differs significantly from
the widely used structural Hamming distance and therefore constitutes
a valuable additional measure. We discuss properties of this distance
and provide a (reasonably) efficient implementation with software code
available on the first author’s home page.

1 Introduction

Given a true causal directed acyclic graph (DAG) G, we may want to assess
the goodness of an estimate H. The structural Hamming distance (SHD; see
definition 1) counts the number of incorrect edges. Although this provides
an intuitive distance between graphs, it does not reflect their capacity for
causal inference. Instead, we propose to count the pairs of vertices (i, j), for
which the estimate H correctly predicts intervention distributions within
the class of distributions that are Markov with respect to G. This results
in a new (pre-)metric1 between DAGs, the structural intervention distance,
which adds valuable additional information to the established SHD.

Throughout this work, we consider a vector of random variables X =
(X1, . . . , Xp) with index set V := {1, . . . , p} (we use capital letters for ran-
dom variables and bold letters for sets or vectors). We denote their joint

1We use the terms distance and metric interchangeably.
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distribution by L(X) and denote corresponding densities of L(X) with re-
spect to Lebesgue or the counting measure, by p(·) (implicitly assuming
their existence). We also denote conditional densities and the density of
L(Z) with Z ⊂ X by p(·). A graph G = (V, E ) consists of nodes V and edges
E ⊆ V × V. With a slight abuse of notation, we sometimes identify the
nodes (or vertices) j ∈ V with the variables Xj. In appendix A, we provide
further terminology regarding DAGs (Lauritzen, 1996; Spirtes, Glymour, &
Scheines, 2000; Koller & Friedman, 2009), which we require in our work.

This letter is organized as follows: Sections 1.1 and 1.2 review the struc-
tural Hamming distance and define intervention distributions (Pearl, 2009),
respectively. In section 2 we introduce the new structural intervention
distance, prove some of its properties and provide possible extensions.
Section 3 contains experiments on synthetic data, and section 4 describes
an efficient implementation of the SID.

1.1 Structural Hamming Distance. The structural Hamming distance
(Acid & de Campos, 2003; Tsamardinos, Brown, & Aliferis, 2006) considers
two partially directed acyclic graphs (PDAGs; see appendix A) and counts
how many edges do not coincide.

Definition 1 (structural Hamming distance). Let P be the space of PDAGs over
p variables. The structural Hamming distance (SHD) is defined as

SH D : P × P → N

(G,H) �→ #{ (i, j) ∈ V × V | G and H do not have the same type

of edge between i and j},

where edge types are defined in appendix A (no connection is also a type of an edge).

Equivalently, we count pairs (i, j), such that
(
(i, j) ∈ EG�EH

)
or(

( j, i) ∈ EG�EH
)
, where A�B := (A \ B) ∪ (B \ A) is the symmetric differ-

ence. Definition 1 includes a distance between two DAGs since these are
special cases of PDAGs. In this work, the SHD is primarily used as a mea-
sure of reference when comparing with our new structural intervention
distance. A comparison to other similar structural distances (e.g., count-
ing only missing edges) can be found in de Jongh and Druzdzel (2009); all
distances they consider are of similar type as SHD.

1.2 Intervention Distributions. Assume that L(X) is absolutely contin-
uous with respect to a product measure. Then L(X) is Markov with respect
to G if and only if the joint density factorizes according to

p(x1, . . . , xp) =
p∏

j=1

p(x j | xpa j
)
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(see Lauritzen, 1996, for example). The intervention distribution given
do(Xi = x̂i) is then defined as

pG (x1, . . . , xp | do(Xi = x̂i)) =
∏
j 	=i

p(x j | xpa j
)δ(xi = x̂i). (1.1)

This, again, is a probability distribution. We can therefore take expecta-
tions or marginalize over some of the variables. A total effect from X to
Y, for example,2 is often defined as a difference between the distributions
pG (y | do(X = x̂)) and p(y). One can check (see the proof of proposition 2)
that equation 1.1 implies pG (y | do(X = x̂)) = p(y) if Y is a nondescendant
of X; intervening on X does not show any effect on the distribution of Y.
If Y is not a parent of X, we can compute (marginalized) intervention dis-
tributions by taking into account only a subset of variables from the graph
(Pearl, 2009).

Proposition 1 (adjustment formula for parents). Let X 	= Y be two different nodes
in G. If Y is a parent of X, then

pG(y | do(X = x̂)) = p(y). (1.2)

If Y is not a parent of X, then

pG(y | do(X = x̂)) =
∑
paX

p(y | x̂, paX) p(paX), (1.3)

where the sum is over all possible assignments of PAG
X , the parents of

node X in graph G. Whenever we can compute the marginalized interven-
tion distribution p(y | do(X = x̂)) by a summation

∑
z p(y | x̂, z) p(z) as in

equation 1.3, we call the set Z a valid adjustment set for the intervention
Y | do(X). Proposition 1 states that Z = PAG

X is a valid adjustment set for
Y | do(X) if Y /∈ PAG

X . Section 2.2 shows that for a given graph, there may be
other valid adjustment sets too.

2 Structural Intervention Distance

2.1 Motivation and Definition. We propose a new graph-based
(pre-)metric, the structural intervention distance (SID). When comparing
graphs (or DAGs in particular), there are many (pre-)metrics, one could
consider that an appropriate choice should depend on the further use and
purpose of the graphs. Often one is interested in a causal interpretation of a

2We sometimes denote variables by different letters rather than indices in order to
avoid subscripts.
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Figure 1: Panels b and c have the same SHD to the true graph, panel a, but
differ in the SID.

graph that enables us to predict the result of interventions. We then require
a distance that takes this goal into account. From now on, we implicitly
assume that an intervention distribution is computed using adjustment for
parents as in proposition 1; we discuss other choices of adjustment sets in
section 2.4.5. Example 1 shows that the SHD (see definition 1) is not optimal
in terms of capturing aspects of the graph that are related to intervention
distributions.

Example 1. Figure 1 shows a true graph G (a) and two different graphs
(e.g., estimates) H1 (b) and H2 (c). The only difference between H1 and G
is the additional edge Y1 → Y2, and the only difference between H2 and G
is the reversed edge between X1 and X2. The SHD between the true DAG
and the others is therefore one in both cases:

SHD(G,H1) = 1 = SHD(G,H2).

We now consider a distribution p(.) that is Markov with respect to G and
compute all intervention distributions using parent adjustment, equation
1.3. We will see that these two “mistakes” have different impacts on the
correctness of those intervention distributions.

First, we consider the DAG H1. All nodes except Y2 have the same
parent sets in G and H1, and thus the parent adjustment implies exactly
the same formula for interventions on nodes other than Y2. Since X1 and
X2 are parents of Y2 in both graphs, the intervention distributions from Y2
to X1 and X2 are correct. We will now argue why G and H1 agree on the
intervention distribution from Y2 to Y3 and from Y2 to Y1. When computing
the intervention distribution from Y2 to Y3 in H1, we adjust not only for
{X1, X2} as done in G but also for the additional parent Y1. We thus have to
check whether {X1, X2,Y1} is a valid adjustment set for Y3 | do(Y2). Indeed,
since Y2 ⊥⊥ Y1 | {X1, X2} (the distribution is Markov with respect to G) we
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have:

pH1
(y3 | do(Y2 = ŷ2))

=
∑

x1,x2,y1

p(y3 | x1, x2, y1, ŷ2)p(x1, x2, y1)

=
∑

x1,x2,y1

p(x1, x2, y1, ŷ2, y3)

p(ŷ2 | x1, x2, y1)
=

∑
x1,x2,y1

p(x1, x2, y1, ŷ2, y3)

p(ŷ2 | x1, x2)

=
∑
x1,x2

p(y3 | x1, x2, ŷ2)p(x1, x2) = pG (y3 | do(Y2 = ŷ2))

It remains to show that pG (y1 | do(Y2 = ŷ2)) = p(y1) = pH1
(y1 | do(Y2 =

ŷ2)), where the last equality is given by equation 1.2. But since Y1 ⊥⊥
Y2 | X1, X2, it follows from the parent adjustment, equation 1.3, that
pG (y1 | do(Y2 = ŷ2)) = p(y1). Thus, all intervention distributions computed
in H1 agree with those computed in G. Proposition 3 shows that this is
not a coincidence. It proves that all estimates for which the true DAG is a
subgraph correctly predict the intervention distributions.

The “mistake” in graph H2, namely, the reversed edge, is more severe.
For computing the correct intervention distribution from X2 to Y1, for ex-
ample, we need to adjust for the confounder X1, as suggested by the parent
adjustment, equation 1.3, applied toG. InH2, however, X2 does not have any
parent, so there is no variable adjusted for. In general, H2 therefore leads to
a wrong intervention distribution pH2

(y1 | do(X2 = x̂2)) 	= pG (y1 | do(X2 =
x̂2)). Also, when computing the intervention distribution from X1 to Yi,
i = 1, 2, 3, we are adjusting for X2, which is now a parent of X1 in H2.
Again, this may lead to pH2

(yi | do(X1 = x̂1)) 	= pG (yi | do(X1 = x̂1)). Fur-
ther, the intervention distributions from X1 to X2 and from X2 to X1 may
not be correct either. In fact, H2 makes eight erroneous predictions for many
observational distributions p(.).

The preceding deliberations are reflected by the structural intervention
distance we propose below (see definition 3). We will see that

SID(G,H1) = 0 	= 8 = SID(G,H2).

Proposition 2 shows us how to read off the SID from the graph structures.
It may come as a surprise that in this example, the “incorrect” graph H1
still obtains a distance of zero; it is due to the fact that G is a subgraph of H1
(see proposition 3). Section 2.4.3 shows how a small modification yields a
measure that is zero only for the correct graph.



776 J. Peters and P. Bühlmann

The following argumentation motivates the formal defintion of the SID.
Given a true DAG G and an estimate H, we would like see whether an inter-
vention distribution, which is computed using the structure of H, coincides
with the “true” intervention distributions inferred from G. This depends,
however, on the observational distribution over all variables. Since we re-
gard G as the ground truth, we assume that the observational distribution
is Markov with respect to G. Consider now a specific distribution that fac-
torizes over all nodes: all variables are independent (this distribution is
certainly Markov with respect to G). Then G and H agree on all intervention
distributions, even though their structure can be arbitrarily different. We
therefore consider all distributions that are Markov with respect toG instead
of only one: we count all pairs of nodes, for which the predicted interven-
tions agree for all observational distributions that are Markov with respect
to G. Those pairs are said to “correctly infer” the intervention distribution.

Definition 2 (correctly and falsely inferred intervention distributions). Let G and
H be DAGs over variables X = (X1, . . . , Xp). For i 	= j we say that the intervention
distribution from i to j is correctly inferred by H with respect to G if

pG(xj | do(Xi = x̂i )) = pH(xj | do(Xi = x̂i ))

∀L(X) Markov with regard to G and ∀x̂i .

Otherwise, that is, if

∃L(X) Markov with regard to G and x̂i with

pG(xj | do(Xi = x̂i )) 	= pH(xj | do(Xi = x̂i )),

we call the intervention distribution from i to j falsely inferred by H with respect
to G. Here, pG and pH are computed using parent adjustment as in proposition 1
(section 2.4.5 discusses an alternative to parent adjustment).

The SID counts the number of falsely inferred intervention distributions.
The definition is independent of any distribution, which is crucial to allow
for a purely graphical characterization.

Definition 3 (Structural intervention distance). Let G be the space of DAGs over
p variables. We then define

SID : G × G → N

(G,H) �→ #{ (i, j), i 	= j | the intervention distribution from i to j
is falsely inferred by H with respect to G}

(2.1)

as the structural intervention distance (SID).



Structural Intervention Distance for Evaluating Causal Graphs 777

The SID does not satisfy all properties of a metric; in particular it is
not symmetric. However, section 2.3 shows that it is a (pre-)metric. In
section 2.4.4, we introduce a symmetrized version of the SID.

Remark 1. Definition 2 remains exactly the same if we also allow for so-
called soft interventions. For these we replace a variable Xi with another
random variable that has density p̂ and is independent of X1, . . . , Xp. We
define the corresponding intervention distribution as

pG
(
x1, . . . , xp | do(Xi ∼ p̂)

)
:=

∏
k 	=i

p(xk | xpak
)p̂(xi). (2.2)

If, for example, the intervention distribution from i to j is correctly inferred
by H with respect to G using only “hard” interventions, equation 1.1, we
can imply the same statement for soft interventions, equation 2.2, because

pG
(
x j | do(Xi ∼ p̂)

) =
∫

pG
(
x j | do(Xi = x̂i)

)
p̂(x̂i) dx̂i.

2.2 An Equivalent Formulation. The SID as defined in equation 2.1
is difficult to compute. We now provide an equivalent formulation that
is based on graphical criteria only. We will see that for each pair (i, j), the
question becomes whether PAH

Xi
is a valid adjustment set for the intervention

Xj | do(Xi) in graph G. Shpitser, der Weele, and Robins (2010) prove the
following characterization of adjustment sets (note that we use a slightly
simpler condition). The reader may think of Z = PAG

X , which is always a
valid adjustment set, as stated in proposition 1.

Lemma 1 (characterization of valid adjustment sets). Consider a DAG G = (V , E),
variables X, Y ∈ V and a subset Z ⊂ V \ {X, Y}. Consider the property of Z with
regard to (G, X, Y):

(∗)

{
In G, no Z ∈ Z is a descendant of any W 	= X which lies on a directed

path from X to Y and Z blocks all nondirected paths from X to Y.

We then have the following two statements:

(i) Let L(X) be Markov with respect to G. If Z satisfies (∗) with regard to
(G, X, Y), then Z is a valid adjustment set for Y | do(X).

(ii) If Z does not satisfy (∗) with regard to (G, X, Y), then there exists
L(X ) that is Markov with respect to G that leads to pG(y | do(X = x̂)) 	=∑

z p(y | x̂, z) p(z), meaning Z is not a valid adjustment set.
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Figure 2: The sets Z = {P, Q} and Z = {P, A} are valid adjustment sets for
Y | do(X); Z = {P} is the smallest adjustment set. Any set containing F, how-
ever, cannot be a valid adjustment set. See lemma 1.

If Y 	∈ PAG
X , then Z = PAG

X satisfies condition (∗) and statement i reduces
to proposition 1. In fact, condition (∗) is a slight extension of the backdoor
criterion (Pearl, 2009). It is not surprising that sets other than the parent set
work too. We may adjust for children of X, for example, as long as they are
not part of a directed path (see Figure 2). Similarly, we do not have to adjust
for parents of X for which all unblocked paths to Y lead through X.

Using lemma 1, we obtain the following equivalent definition of the SID,
which is entirely graph based and will later be exploited for computation:

Proposition 2. The SID has the following equivalent definition:

SID(G,H)

= #

{
(i, j), i 	= j

∣∣∣∣∣ j ∈ DEG
i if j ∈ PAH

i

PAH
i does not satisfy (∗) for (G, i, j) if j 	∈ PAH

i

}

Here, DEG
i denotes the descendants of node i in graph G (see appendix A).

The proof is provided in appendix B; it is based on lemma 1.

2.3 Properties. We first investigate metric properties of the SID. Let us
denote the number of nodes in a graph by p (this is overloading notation
but does not lead to any ambiguity). We then have that

0 ≤ SID(G,H) ≤ p · (p − 1)

and

G = H ⇒ SID(G,H) = 0.
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The SID therefore satisfies the properties of what is sometimes called a
premetric.3

The SID is not symmetric; for example, for a nonempty graph G and an
empty graph H, we have that SID(G,H) 	= 0 = SID(H,G) (if G is the empty
DAG, all sets of nodes satisfy (∗) and are therefore valid adjustment sets).

If SID(G,H) = 0, parent adjustment leads to the same intervention dis-
tributions in G and H, but it does not necessarily hold that G = H. Example 1
shows graphs G 	= H1 with SID(G,H1) = 0. We can characterize the set of
DAGs that have structural intervention distance zero to a given true DAG
G:

Proposition 3. Consider two DAGs G and H. We then have

SID(G,H) = 0 ⇔ G ≤ H.

Here, G ≤ H means that G is a subgraph of H (see appendix A). The proof
is provided in appendix C; it works for any type of adjustment set, not
just the parent set (see section 2.4.5). Proposition 3 states that H can con-
tain many more (additional) edges than G and still receive an SID of zero.
Intuitively, the SID counts the number of pairs (i, j), such that the inter-
vention distribution inferred from the graph H is wrong; the latter hap-
pens if the estimated set of parents PAH

Xi
is not a valid adjustment set in

G. If an estimate H contains strictly too many edges, that is, G ≤ H and
paGXi

⊆ paHXi
for all i, the intervention distributions are correct; this follows

from p(x j | xi, paHXi
) = p(x j | xi, paGXi

) (see also lemma 1). For computing in-
tervention distributions in practice, we have to estimate p(xj | xi, paHXi

) based
on finitely many samples. This can be seen as a regression task, a well-
understood problem in statistics. It is therefore a question of the regression
or feature selection technique, whether we see this equality (at least approx-
imately) in practice as well. Section 2.4.3 shows a simple way to combine
the SID with another measure in order to obtain zero distance if and only if
the two graphs coincide.

The following proposition relates SID to the SHD by providing sharp
bounds in some specific cases; these results underline the difference be-
tween these two measures. The proof is provided in appendix D.

Proposition 4 (relating SID and SHD). Consider two DAGs G and H.

1a. When the SHD is zero, the SID is zero too:

SHD(G,H) = 0 ⇒ SID(G,H) = 0.

3A function d : G × G → R is called a premetric if d(a, b) ≥ 0 and d(a, a) = 0.



780 J. Peters and P. Bühlmann

1b. We have

SHD(G,H) = 1 ⇒ SID(G,H) ≤ 2 · (p − 1).

This bound is sharp.
2. There exists G and H such that SID(G,H) = 0 but SHD(G,H) = p(p −

1)/2, which achieves the maximal possible value. Therefore, we cannot bound
SHD from SID.

2.4 Extensions

2.4.1 SID Between a DAG and a CPDAG. Let C denote the space of
CPDAGs (completed partially directed acyclic graphs) over p variables.
Some causal inference methods like the PC-algorithm (Spirtes et al., 2000)
or greedy equivalence search (Chickering, 2002) do not output a single
DAG, but rather a completed PDAG C ∈ C representing a Markov equiva-
lence class of DAGs. In order to compute the SID between a (true) DAG G
and an (estimated) PDAG, we can in principle enumerate all DAGs in the
Markov equivalence class and compute the SID for each single DAG. This
way, we obtain a vector of distances instead of a single number, and we can
compute lower and upper bounds for these distances.

Since the enumeration becomes computationally infeasible with growing
graph size, we propose to extend the CPDAG locally. Especially for sparse
graphs, this provides a considerable computational speed-up. We make use
of the fact that the PDAG C represents a Markov equivalence class of DAGs
only if each chain component is chordal (Andersson, Madigan, & Perlman,
1997); see appendix A for definitions. We extend each chordal chain com-
ponent c locally to all possible DAGs Cc,1, . . . , Cc,k, leaving the other chain
components undirected (Meek, 1995). For each extension Cc,h (1 ≤ h ≤ k)

and for each vertex i within the chain component c, we consider

I(G, Cc,h)i

:= #

⎧⎨
⎩ j 	= i

∣∣∣∣∣
Xj ∈ DEG

Xi
if Xj ∈ PA

Cc,h
Xi

PA
Cc,h
Xi

does not satisfy (∗) for graph G if Xj 	∈ PA
Cc,h
Xi

⎫⎬
⎭ .

For each chain component c, we thus obtain k vectors I(G, Cc,1), . . . , I(G, Cc,k),
each having #c (= number of vertices in c) entries. We then represent each
vector with its sum,

S(G, Cc,h) =
∑
i∈c

I(G, Cc,h)i, h = 1, . . . , k,
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and save the minimum and the maximum over the k values:

min
h

S(G, Cc,h), max
h

S(G, Cc,h).

These values correspond to the “best” and “worst” DAG extensions. We
then report the sum over all minima and the sum over all maxima as lower
and upper bound, respectively:

SIDlower(G, C) =
∑

c

min
h

S(G, Cc,h), SIDupper(G, C) =
∑

c

max
h

S(G, Cc,h).

This leads to the extended definition:

SID : G × C → N × N

(G, C) �→ (
SIDlower(G, C), SIDupper(G, C)

)
.

(2.3)

The definition guarantees that the neighborhood orientations of two nodes
do not contradict each other. Both the lower and upper bounds are therefore
met by a DAG member in the equivalence class of C.

The differences between lower and upper bounds can be quite large.
If the true DAG is a (Markov) chain X1 → . . . → Xp of length p, the cor-
responding equivalence class contains the correct DAG resulting in a SID
of zero (lower bound); it also includes the reversed chain X1 ← . . . ← Xp,
resulting in a maximal SID of p · (p − 1).

In order to provide a better intuition for these lower and upper bounds,
we relate them to “identifiable” and “strictly identifiable” intervention dis-
tributions in the Markov equivalence class:

Definition 4. Consider a CPDAG C and let C1, . . . , Ck be the DAGs contained
in the Markov equivalence class represented by C. We say that the intervention
distribution from i to j is

• strictly identifiable in C if pCg
(xj | do(Xi = xi )) is the same for all DAGs

Cg ∈ {C1, . . . , Ck} and for all distributions p(.).
• identifiable in C if pCg

(xj | do(Xi = xi )) is the same for all Cg ∈ {C1, . . . , Ck}
and for all distributions p(.) that are Markov with respect to C.

• identifiable in C with regard to G if pCg
(xj | do(Xi = xi )) is the same for all

DAGs Cg ∈ {C1, . . . , Ck} and for all distributions p(.) that are Markov with
regard to G.

Definition 2 further calls a (strictly) identifiable intervention distribution
from i to j correctly inferred if pG (x j | do(Xi = x̂i)) = pC (x j | do(Xi = x̂i)) for
all L(X) that are Markov with respect to G. With this notation we have the
following remark, which is visualized by Figure 3.
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Figure 3: This is a visualization of remark 2. It describes the SID between a
DAG G and a CPDAG H.

Remark 2. Given a true DAG G and an estimated CPDAG C. It then holds
(see Figure 3) that

#

{
intervention distributions that are

identifiable in C with regard to G and

inferred falsely by C with regard to G

}

= SIDlower(G, C)

#

{
intervention distributions that are

identifiable in C with regard to G and

inferred correctly by C with regard to G

}

= p · (p − 1) − SIDupper(G, C)

#

{
intervention distributions that are

strictly identifiable in C and

inferred falsely by C with regard to G

}

≤ SIDlower(G, C)

#

{
intervention distributions that are

strictly identifiable in C and

inferred correctly by C with regard to G

}

≤ p · (p − 1) − SIDupper(G, C).

As an example, consider the CPDAG C X1 − X2 → X3 ← X4. If G is such
that both ∅ and {X1} are valid adjustment sets for the effect from 2 to 3, then
this intervention distribution is identifiable in C with regard to G. That is,
all DAGs in C “agree on” the intervention distribution from 2 to 3. If this
distribution is inferred incorrectly, it contributes to SIDlower(G, C). However,
the effect from 2 to 3 is not strictly identifiable in C.

The procedure above fails if C is not a completed PDAG and therefore
does not represent a Markov equivalence class. This may happen for some
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versions of the PC algorithm if they are applied to finitely many data points
or when hidden variables are present. For each node i, we can then consider
all subsets of undirected neighbors as possible parent sets and again report
lower and upper bounds. The same is done if the chain component is too
large (with more than eight nodes). These modifications are implemented
in our R-code that is available on the first author’s home page.

2.4.2 SID Between a CPDAG and a DAG or CPDAG. If we simulate from
a linear gaussian SEM with different error variances, for example, we can-
not hope to recover the correct DAG from the joint distribution. If we
assume faithfulness, however, it is possible to identify the correct Markov
equivalence class. In such situations, one may want to compare the esti-
mated structure with the correct Markov equivalence class (represented by
a CPDAG) rather than with the correct DAG. Again, we denote the space
of CPDAGs by C. We have defined the SID on G × G (see definition 3) and
on G × C (see section 2.4.1). We now want to extend the definition to C × G

and C × C, where we compare an estimated structure with a true CPDAG
C. The CPDAG C represents a Markov equivalence class that includes many
different DAGs G1, . . . ,Gk. These different DAGs lead to different interven-
tion distributions. The main idea is therefore to consider only those (i, j) for
which the intervention distribution from i to j is identifiable in C (see defi-
nition 4). Maathuis and Colombo (2013) introduce a generalized backdoor
criterion that can be used to characterize the identifiability of intervention
distributions. Lemma 2 is a direct implication of their corollary 4.2 and
provides a graphical criterion in order to decide whether an intervention
distribution is identifiable in a CPDAG. To formulate the result, we define
that a path Xa1

, . . . , Xas
in a partially directed graph is possibly directed if

no edge between Xa f
and Xa f+1

, f ∈ {1, . . . , s − 1}, is pointing toward Xa f
.

Lemma 2. Let Xi and Xj be two nodes in a CPDAGC. The intervention distribution
from i to j is not identifiable in C if and only if there is a possibly directed path from
Xi to Xj starting with an undirected edge.

We then define

SID : C × G → N

(C,H) �→ #{ (i, j),

i 	= j |
the interv. distr. from i to j is identif. in C and

∃C1 ∈ C ∃L(X) such that L(X) is Markov with regard to C1 and

pC1
(x j | do(Xi = x̂i)) 	= pH(x j | do(Xi = x̂i))}. (2.4)

In a DAG, all effects are identifiable. The definitions then reduce to the
case of DAGs, equation 2.1. The extension to SID : C × C → N × N can be
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done completely analogous to equation 2.3 with lower and upper bounds
of the SID score, equation 2.4, between a true CPDAG and all DAGs in the
estimated Markov equivalence class.

2.4.3 Penalizing Additional Edges. The estimated DAG may have strictly
more edges than the true DAG and still receives an SID of zero (see Propo-
sition 3). We argued in section 2.3 that for computing causal effects, this fact
introduces statistical problems that can be dealt with only if the sample size
increases. In some practical situations, however, it may nevertheless be seen
as an unwanted side effect. This problem can be addressed by introducing
an additional distance measuring the difference in number of edges (DNE)
between G and H:

DNE(G,H) = |#edges in G − #edges in H|.

Here, a directed or undirected edge counts as one edge. For any DAG G and
any DAG H, it then follows directly from proposition 3 that

G = H ⇔ (
SID(G,H) = 0 and DNE(G,H) = 0

)
.

Analogously, we have for any DAG G and any CPDAG C,

G ∈ C ⇔ (
SIDlower(G, C) = 0 and DNE(G, C) = 0

)
.

2.4.4 Symmetrization. We may also want to compare two DAGs G and
H, where neither of them can be seen as an estimate of the other. For these
situations, we suggest a symmetrized version of the SID:

SIDsymm(G,H) = SID(G,H) + SID(H,G)

2
.

There are other possibilities to construct symmetric versions of SID, of
course. Instead of the weighted average, one may want to consider the
maximum of both values, for example (as suggested by an anonymous
reviewer). Modifying definition 2, we could also count all pairs (i, j), such
that the intervention distributions coincide for all distributions that are
Markov with respect to both graphs. In our opinion, this option is less
favorable since it would result in a distance that is always zero if one of its
arguments is the empty graph.

2.4.5 Alternative Adjustment Sets. In this work we use the parent set for
adjustment. Since it is easy to compute and depends only on the neigh-
borhood of the intervened nodes, it is widely used in practice. Any other
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Figure 4: The SID between two DAGs is similar when it is computed with
parent adjustment or the minimal adjustment set.

method to compute adjustment sets in graphs can be used too, of course.
Choosing an adjustment set of minimal size (see Figure 2) is more diffi-
cult to compute but has the advantage of a small conditioning set. Textor
and Liskiewicz (2011) discuss recent advances in efficient computation. In
contrast to the parent set, it depends on the whole graph. Using the experi-
mental setup from section 3.1, we compare the SID computed with parent
adjustment with the SID computed with the minimal adjustment set for
randomly generated dense graphs of size p = 5. Since the minimal adjust-
ment set need not be unique, we decided to choose the smallest set that is
found first by the algorithm. Figure 4 shows that the differences between
the two values of SID, once computed with parent sets and once computed
with minimal adjustment sets, are rather small (especially compared to the
differences between SID and SHD; see section 3.1). In about 70% of the
cases, they are exactly the same.

2.4.6 Hidden Variables (Future Work). If some of the variables are unob-
served, not all of the intervention distributions are identifiable from the
true DAG. We provide a road map on how this case can be included in
the framework of the SID. As it was done for CPDAGs (see section 2.4.2),
we can exclude the nonidentifiable pairs from the structural intervention
distance. In the presence of hidden variables, the true structure can be rep-
resented by an acyclic directed mixed graph (ADMG), for which Shpitser
& Pearl (2006) address the characterization of identifiable intervention dis-
tributions. Alternatively, we can regard a maximal ancestral graph (MAG)
(Richardson & Spirtes, 2002) as the ground truth, for which the characteriza-
tion becomes more difficult. There exists a generalized back-door criterion
for MAGs and a way to construct a set satisfying the generalized back-door
criterion; some identifiable effects, however, may not be identifiable via
the generalized backdoor criterion (Maathuis & Colombo, 2013). Further-
more, methods like FCI (Spirtes et al., 2000) and its successors (Colombo,
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Maathuis, Kalisch, & Richardson, 2012; Claassen, Mooij, & Heskes, 2013)
output an equivalence class of MAGs that are called partial ancestral graphs
(PAGs) (Richardson & Spirtes, 2002). To compare an estimated PAG to the
true MAG, we would again go through all MAGs represented by the PAG
(see section 2.4.1) and provide lower and upper bounds (as in section 2.4.1).
Future work might show that this can be done efficiently.

2.4.7 Multiple Interventions (Future Work). The structural intervention
distance compares the two graphs’ predictions of intervention distributions.
Until now, we have considered only interventions on single nodes. Instead,
one may also consider multiple interventions. A direct modification of the
adjustment idea does not work, however. The union of the parent sets,
for example, is in general not a valid adjustment set; in some situations
there might not even be a valid adjustment set (see Nandy, Maathuis, &
Richardson, 2014, for discussion and possible alternatives). Furthermore,
given a method that computes a valid adjustment set in the correct graph,
one needs to handle the computational complexity that arises from the large
number of possible interventions: for each number k of variables, there are(p

k

)
possible intervention sets and p−k possible target nodes. In total, we thus

have
∑p−1

k=1

(p
k

)
(p − k) = p(2p−1 − 1) intervention distributions. In practice,

one may first address the case of intervening on two nodes, where the
number of possible intervention distributions is p(p − 1)(p − 2)/2.

3 Simulations

3.1 SID Versus SHD. For p = 5 and for p = 20, we sample 10,000 pairs
of random DAGs and compute both the SID and the SHD between them.
We consider two probabilities for i.i.d. sampling of edges, namely, pconnect =
1.5/(p − 1) (resulting in an expected number of 0.75p edges) for a sparse
setting and pconnect = 0.3 for a dense setting. Furthermore, the order of the
variables is chosen from a uniformly distributed permutation among the
vertices. Figures 5a and 5c show two-dimensional histograms with SID and
SHD. It is apparent that the SHD and SID constitute very different distance
measures. For example, for SHD equal to a low number such as one or
two (see p = 5 in the dense case), the SID can take on very different values.
This indicates that, compared to the SHD, the SID provides additional
information that is appropriate for causal inference. The observations are
in par with the bounds provided in proposition 3.

For each pair G and H of graphs, we also generate a distribution by
defining a linear structural equation model,

Xj =
∑

k∈PAG
j

β jkXk + Nj, j = 1, . . . , p,
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Figure 5: We generate 10, 000 pairs of random small dense graphs (a) and (b)
and larger sparse graphs (c) and (d). For each pair of graphs (G,H) we also
generate a distribution that is Markov with regard to G. The two-dimensional
histograms compare SID(G,H) with SHD(G,H) (a and c) and SID(G,H) with
the number of pairs (i, j), for which the calculated causal effects differ (b and
d). The SID measures exactly the number of wrongly estimated causal effects
and thus provides additional and very different information as the SHD.

whose graph is identical to G. We sample the coefficients β jk uniformly from
[−1.0;−0.1] ∪ [0.1; 1.0]. The noise variables are normally distributed with
mean zero and variance one. Due to the assumption of equal error variances
for the error terms, the DAG is identifiable from the distribution (Peters &
Bühlmann, 2014). With the linear gaussian choice, we can characterize the
true intervention distribution pG (x j | do(Xi = x̂i)) by one number, namely,
the derivative of the expectation with respect to x̂i (which is also called
the total causal effect of Xi on Xj). Its derivation can be found in appendix
E. We can then compare the intervention distributions from G and H and
report the number of pairs (i, j), for which these two numbers differ. For
numerical reasons, we regard two numbers as different if their absolute dif-
ference is larger than 10−8. Figures 5b and 5d show the comparison to the
SID. In all 20,000 cases, the SID counts exactly the number of those “wrong”
causal effects. A priori this is not obvious since definition 3 requires only
that there exists a distribution that discriminates between the intervention
distributions. The result shown in Figure 5 suggests that the intervention
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distributions differ for most distributions. Two possible reasons for inequal-
ity have indeed small probability: a nondetectable difference that is smaller
than 10−8 and vanishing coefficients that would violate faithfulness (Spirtes
et al., 2000). We are not aware of a characterization of the distributions that
do not allow discriminating between the intervention distributions.

3.2 Comparing Causal Inference Methods. As in section 3.1 we simu-
late sparse random DAGs as ground truth (100 times for each value of p and
n). We again sample n data points from the corresponding linear gaussian
structural equation model with equal error variances (as above, coefficients
are uniformly chosen from [−1;−0.1] ∪ [0.1; 1]) and apply different infer-
ence methods. This setting allows us to use the PC algorithm (Spirtes et al.,
2000), conservative PC (Ramsey, Zhang, & Spirtes, 2006), greedy equiva-
lent search (GES) (Chickering, 2002) and greedy DAG search based on the
assumption of equal error variances (GDSEEV) (Peters & Bühlmann, 2014).
For both PC versions and the GES we use the R packages pcalg (Kalisch,
Mächler, Colombo, Maathuis, & Bühlmann, 2012) with the default choice
of parameter values. Table 1 reports the average SID between the true DAG
and the estimated ones. GDSEEV is the only method that outputs a DAG.
All other methods output a Markov equivalence class for which we apply
the extension suggested in section 2.4.1. Additionally, we report the results
for a random estimator RAND that does not take into account any of the
data: we sample a DAG as in section 3.1 but with pconnect uniformly chosen
between 0 and 1. Section 2.4.1 provides an example, for which the SID can
be very different for two DAGs within the same Markov equivalence class.
Table 1 shows that this difference can be quite significant even on average.
While the lower bound often corresponds to a reasonably good estimate,
the upper bound may not be better than random guessing for small sample
sizes. In fact, for p = 5 and n = 100, the distance to the RAND estimate
was less than the upper bound for PC in 77 of the 100 experiments (not
directly readable from the aggregated numbers in the table). For the SHD,
however, the PC algorithm outperforms random guessing; for example, for
p = 5 and n = 100, RAND is better than PC in 8 out of 100 experiments.
This supports the idea that the PC algorithm estimates the skeleton of a
DAG more reliably than the directions of its edges. The results also show
how much can be gained when additional assumptions are appropriate; all
methods exploit that the data come from a linear gaussian SEM, while only
GDSEEV makes use of the additional constraint of equal error variances,
which leads to identifiability of the DAG from the distribution (Peters &
Bühlmann, 2014). We draw different conclusions if we consider the SHD
(see Table 2). For p = 40 and n = 100, for example, PC performs best with
respect to SHD while it is worst with respect to SID.

We use the SID for comparing causal inference methods. It is not straight-
forward to tune a method such that it performs well under the SID. Propo-
sition 2 appears to suggest that removing edges can only increase the SID;
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Table 1: Average SID to True DAG for 100 Simulation Experiments with Stan-
dard Deviation, for Different n and p.

n = 100

p GDSEEV CPC PC GES RAND

5 1.7 ± 2.2 2.9 ± 3.2 4.3 ± 4.7 3.3 ± 4.2 6.1 ± 4.0
8.8 ± 5.2 7.7 ± 5.2 6.9 ± 4.6

20 14.1 ± 10.5 22.8 ± 17.1 37.0 ± 26.8 24.4 ± 17.4 47.7 ± 28.8
63.3 ± 38.0 52.8 ± 30.1 33.1 ± 19.1

40 37.2 ± 27.2 56.7 ± 36.3 91.3 ± 58.3 58.9 ± 34.6 119.1 ± 63.8
147.5 ± 78.6 124.2 ± 66.4 65.9 ± 36.2

n = 1000

p GDSEEV CPC PC GES RAND

5 0.6 ± 1.6 1.7 ± 3.4 3.0 ± 4.7 1.9 ± 3.7 6.3 ± 5.0
7.0 ± 4.8 6.7 ± 4.8 6.3 ± 4.4

20 3.0 ± 6.7 7.4 ± 10.3 26.4 ± 28.7 8.3 ± 10.2 53.1 ± 36.6
40.0 ± 28.4 40.2 ± 27.5 23.4 ± 13.1

40 7.8 ± 10.2 13.8 ± 12.6 62.1 ± 45.5 19.7 ± 18.7 132.2 ± 79.8
89.8 ± 49.5 91.9 ± 49.3 43.9 ± 22.7

Notes: For the methods that output a Markov equivalence class (CPC, PC, and GES), two
rows are shown: they represent DAGs from the equivalence class with the smallest and
with the largest distance, that is, the lower and upper bounds in equation 4. The smallest
averages are in bold.

Table 2: Same Experiment as in Table 1, This Time Reporting the Average SHD
to the True DAG.

n = 100

p GDSEEV CPC PC GES RAND

5 1.0 ± 1.1 3.1 ± 1.4 2.6 ± 1.4 2.7 ± 1.5 6.2 ± 2.2
20 11.3 ± 3.1 13.4 ± 3.7 11.3 ± 3.1 15.0 ± 3.3 96.7 ± 47.8
40 43.7 ± 6.6 27.2 ± 4.9 22.6 ± 4.6 45.4 ± 6.1 377.9 ± 195.8

n = 1000

p GDSEEV CPC PC GES RAND

5 0.3 ± 0.6 2.6 ± 1.5 2.3 ± 1.4 2.5 ± 1.5 6.0 ± 2.0
20 2.8 ± 1.9 8.6 ± 2.7 7.7 ± 2.6 7.8 ± 2.7 98.4 ± 50.7
40 10.6 ± 3.6 17.0 ± 3.5 15.3 ± 3.4 17.8 ± 4.0 393.5 ± 189.8

Note: Smallest averages are in bold.
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Figure 6: For varying p, the figure shows box plots for the processor time needed
to compute the SID for one pair of random graphs (averaged over 100 pairs).
(a) Results for sparse graphs. (b) Results for dense graphs. The line indicates
the computational complexity of O(p4).

thus, dense graph estimates would yield smaller SIDs than sparse esti-
mates. This assumes, however, that the causal ordering is correct. In gen-
eral, the benefit of estimating large graphs is either small or nonexistent.
In the experimental setting of table 1, for example, random sparse DAGs
(pconnect = 1.5/(p − 1)) yield an average SID of 7.9 ± 4.6 and 134.3 ± 65.4
for p = 5 and p = 40, respectively (100 repetitions). Random dense DAGs
(pconnect = 1) yield 5.9 ± 4.9 and 110.3 ± 61.9, respectively. For nonlinear
additive noise models, Bühlmann, Peters, and Ernest (2014) estimate the
causal ordering first and suggest pruning the graph later. Again, there is no
significant drop of SID after the pruning (Bühlmann et al., 2014). Combin-
ing the SID with a measure penalizing additional edges as in section 2.4.3
removes any (possible) advantage of estimating dense graphs.

3.3 Scalability of the SID. For different values of p, we report here the
processor time needed for computing the SID between two random graphs
with p nodes. We choose the same setting for sparse and dense graphs as
in section 3.1. Figure 6 shows box plots for 100 pairs of graphs for each
value of p ranging between 23 and 28.4 The figure does not provide a clean
picture about the scaling of time complexity. It has not reached the worst-
case analysis of O(p4 · log2(p)) (which scales even faster than the shown p4).
Computing the SID between sparse graphs of size 1000, our code requires
almost 7000 seconds (a bit less than 2 hours). The algorithm is written in R,
and we expect significant speed-ups in other programming languages.

4The experiments were performed on a 64 bit Ubuntu machine using a single core of
the Intel Core2 Duo CPU P8600 at 2.40 GHz.
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4 Implementation

We sketch here the implementation of the structural intervention distance
while details are presented in algorithms 1 and 2 in appendix F using pseu-
docode. The key idea of our algorithm is based on proposition 2. Condition
∗ contains two parts that need to be checked. Part 1 addressed the issue of
whether any node from the conditioning set is a descendant of any node on
a directed path (see line 28 in algorithm 1 in appendix F). Here, we make
use of the p × p PathMatrix: its entry (i, j) is one if and only if there is a
directed path from i to j. This can be computed efficiently by squaring the
matrix (Id + G) �log2(p)� times since G is idempotent; here we denote by
G the adjacency matrix of the DAG G. For part 2 of (∗), we check whether
the conditioning set blocks all nondirected paths from i to j (see line 31 in
algorithm 1). It is the purpose of the function rondp (line 9 in algorithm 1)
to compute all nodes that can be reached on a nondirected path.

Algorithm 2, also presented in appendix F, describes the function rondp
that computes all nodes reachable on nondirected paths. In a breadth-first
search, we go through all node-orientation combinations and compute the
2p × 2p reachabilityMatrix. Afterward we compute the corresponding Path-
Matrix (line 24 in algorithm 2). We then start with a vector reachableNodes
(consisting of parents and children of node i) and read off all reachable
nodes from the reachabilityPathMatrix. We then filter out the nodes that are
reachable on a nondirected path.

Note that in the procedure, computing the PathMatrix is computation-
ally the most expensive part. Making sure that this computation is done
only once for all j is one reason that we do not use any existing imple-
mentation (e.g., for d-separation). The worst-case computational complex-
ity for computing the SID between dense matrices is O(p · log2(p) · f (p)),
where squaring a matrix requires O( f (p)); a naive implementation yields
f (p) = p3 while Coppersmith & Winograd (1987) report f (p) = O(p2.375477),
for example. Sparse matrices lead to improved computational complexities,
of course (see also section 3.3).

We also implemented the steps required for computing the SID be-
tween a DAG and a completed PDAG (both options from section 2.4.1)
using a function that enumerates all DAGs from a partially directed graph.
Those steps, however, are not shown in the pseudocode in order to ensure
readability.

Our software code for SID is provided as R-code on the first author’s
home page. It will also be implemented in the pcalg package (Kalisch
et al., 2012).

5 Conclusion

We have proposed a new (pre-)metric, the structural intervention distance
(SID), between directed acyclic graphs and completed partially directed
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acyclic graphs. Since the SID is a one-dimensional measure of distances
between high-dimensional objects, it does not capture all aspects of the
difference. The SID measures closeness between graphs in terms of their
capacities for causal effects (intervention distributions). It is therefore well
suited for evaluating different estimates of causal graphs. The distance can
provide a useful complement to existing measures; for example, it differs
significantly from the widely used structural Hamming distance (SHD).
Based on known results for graphical characterization of adjustment sets,
we have provided a representation of the SID that enabled us to develop
an algorithm that scales up to a few thousand nodes.

In our simulation setting for causal inference, many methods outperform
random guessing on small sample sizes in terms of SHD but not in terms
of SID (e.g., some DAGs in the estimated Markov equivalence class are
worse than randomly chosen DAGs). This means that if one uses simulation
studies in order to determine how many samples are required to draw
reliable causal conclusions from an estimated DAG (i.e., to obtain a small
SID), the SHD will draw a picture that is too optimistic.

Appendix A: Terminology for Directed Acyclic Graphs

We summarize here some well-known facts about graphs, essentially taken
from Peters (2012). Let G = (V, E ) be a graph with V := {1, . . . , p}, E ⊂
V × V and corresponding random variables X = (X1, . . . , Xp). A graphG1 =
(V1, E1) is called a subgraph of G if V1 = V and E1 ⊆ E ; we then write G1 ≤ G.
If in addition, E1 	= E , we call G1 a proper subgraph of G. A node i is called
a parent of j if (i, j) ∈ E and a child if ( j, i) ∈ E . The set of parents of j is
denoted by PAG

j , and the set of its children by CHG
j . Two nodes i and j are

adjacent if either (i, j) ∈ E or ( j, i) ∈ E . We call G fully connected if all pairs
of nodes are adjacent. We say that there is an undirected edge between two
adjacent nodes i and j if (i, j) ∈ E and ( j, i) ∈ E ; we denote this edge by i − j.
An edge between two adjacent nodes is directed if it is not undirected; if
(i, j) ∈ E , we denote it by i → j. In the graphs we consider, there are four
different types of edges between i and j: i − j, i → j, j → i, or i and j are not
adjacent. The skeleton of G is the set of all edges without taking the direction
into account; that is all (i, j), such that (i, j) ∈ E or ( j, i) ∈ E . The number of
edges in a graph is the size of the skeleton; that is, undirected edges count
as one.

A path 〈i1, . . . , in〉 in G is a sequence of (at least two) distinct vertices
i1, . . . , in, such that there is an edge between ik and ik+1 for all k = 1, . . . , n −
1. If (ik, ik+1) ∈ E and (ik+1, ik) /∈ E for all k, we speak of a directed path between
i1 and in and call in a descendant of i1. We denote all descendants of i by
DEG

i and all nondescendants of i by NDG
i . We call a node j such that i

is a descendant of j an ancestor of i and denote the set by ANG
i . A path

〈i1, . . . , in〉 is called a semidirected cycle if (i j, i j+1) ∈ E for j = 1, . . . , n with
in+1 = i1 and at least one of the edges is oriented as i j → i j+1. If (ik−1, ik) ∈ E
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and (ik+1, ik) ∈ E , as well as (ik, ik−1) /∈ E and (ik, ik+1) /∈ E , ik is called a collider
on this path. G is called a partially directed acyclic graph (PDAG) if there is no
directed cycle, that is, no pair (j, k), such that there are directed paths from j
to k and from k to j. G is called a chain graph if there is no semidirected cycle
between any pair of nodes. Two nodes j and k in a chain graph are called
equivalent if there exists a path between j and k consisting only of undirected
edges. A corresponding equivalence class of nodes (i.e., a (maximal) set of
nodes that is connected by undirected edges) is called a chain component.
We call an undirected graph (or a chain component) chordal if each of its
cycles of four or more nodes has a chord; a chord is an edge that is not a
part of the cycle and connects two nodes of the cycle. G is called a directed
acyclic graph (DAG) if it is a PDAG and all edges are directed. A path in a
DAG between i1 and in is blocked by a set S (with neither i1 nor in in this set)
whenever there is a node ik, such that one of the following two possibilities
hold: (1) ik ∈ S and ik−1 → ik → ik+1 or ik−1 ← ik ← ik+1 or ik−1 ← ik → ik+1
or (2) ik−1 → ik ← ik+1 and neither ik nor any of its descendants is in S. We
say that two disjoint subsets of vertices A and B are d-separated by a third
(also disjoint) subset S if every path between nodes in A and B is blocked
by S. The joint distribution L(X) is said to be Markov with respect to the DAG
G if

A, B d-sep. by C ⇒ XA ⊥⊥ XB | XC

for all disjoint sets A, B, C. L(X) is said to be faithful to the DAG G if

A, B d-sep. by C ⇐ XA ⊥⊥ XB | XC

for all disjoint sets A, B, C. Throughout this work, ⊥⊥ denotes (conditional)
independence.

We denote by M(G) the set of distributions that are Markov with respect
to G:

M(G) := {L(X) : L(X) is Markov with regard to G}.

Two DAGs G1 and G2 are Markov equivalent if M(G1) = M(G2). This is the
case if and only if G1 and G2 satisfy the same set of d-separations, which
means the Markov-condition entails the same set of (conditional) indepen-
dence conditions. A set of Markov equivalent DAGs (so-called Markov
equivalence class) can be represented by a completed PDAG, which can be
characterized in terms of a chain graph with undirected and directed edges
(Andersson et al., 1997): this graph has a directed edge if all members of the
Markov equivalence class have such a directed edge; it has an undirected
edge if some members of the Markov equivalence class have an edge in
the same direction and some members have an edge in the other direction,
and it has no edge if all members in the Markov equivalence class have no
corresponding edge.
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Appendix B: Proof of Proposition 2

Let us denote by A the set of pairs (i, j) appearing in definition 3 and by B
the corresponding set of pairs in proposition 2. We will show that A = B.

A ⊆ B: Consider (i, j) ∈ A. For case 1, if Xj ∈ PAH
Xi

, then pH(x j | do(Xi =
x̂i)) = p(x j). We will now prove that Xi not being an ancestor of Xj in G
implies pG (x j | do(Xi = x̂i)) = p(x j) (the latter statement contradicts (i, j) ∈
A and therefore, Xi must be an ancestor of Xj in G);

pG (x j | do(Xi = x̂i))

=
∫

anc( j)

∫
non-anc( j)

∏
k∈ anc( j)∪{ j}∪

non-anc( j)\{i}

p(xk | xpa(k))δ(xi − x̂i) dxnon-anc( j) dxanc( j)

(†)=
∫

anc( j)

∏
k∈anc( j)∪{ j}

p(xk | xpa(k)) dxanc( j)

=
∫

anc( j)

∫
non-anc( j)

p(x1, . . . , xp) dxnon-anc( j) dxanc( j) = p(x j)

Equation (†) holds because we can integrate out all nonancestors of j (j is
neither an ancestor nor a nonancestor of j): any sink node among nonances-
tors appears only as a left argument of p(xk | xpa(k)) and can be integrated
out. We then disregard that sink node from the graph and integrate out a
new sink node among the nonancestors. Since a nonancestor of j cannot be
a parent of an ancestor of j, we can integrate out all nonancestors and are
left with the right-hand side of (†).

In case 2, if Xj 	∈ PAH
Xi

, then it follows by lemma 1i that PAH
Xi

does not
satisfy (∗). In both cases we have (i, j) ∈ B.

A ⊇ B. Now consider (i, j) ∈ B. In case 1, if Xj ∈ PAH
Xi

, then, again,
pH(x j | do(Xi = x̂i)) = p(x j) and Xj ∈ DEG

Xi
. Consider a linear gaussian

structural equation model with error variances being one and equations
Xk = ∑

�∈paGk
1 · X� + Nk, corresponding to the graph structure G. It then fol-

lows that pG (x j | do(Xi = x̂i)) 	= p(x j). In case 2, if Xj 	∈ PAH
Xi

, then PAH
Xi

does
not satisfy (∗) and lemma 1ii implies pG (x j | do(Xi = x̂i)) 	= pH(x j | do(Xi =
x̂i)). In both cases we have (i, j) ∈ A.

Appendix C: Proof of Proposition 3

Assume that G ≤ H. We will use proposition 2 to show that the SID is zero.
If j ∈ DEG

i , then j ∈ DEH
i , which implies that j /∈ PAH

i . It therefore remains
to show that any set Z that satisfies (∗) in lemma 1 for (H, i, j) satisfies (∗)

for (G, i, j) too. The first part of the condition is satisfied since any node
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that lies on a directed path in G lies on a directed path in H. The second
part holds because any nondirected path in G is also a path in H and must
therefore be blocked by Z. If a path is blocked in a DAG, it is always blocked
in the smaller DAG too.

Suppose now that G contains an edge i → j and that i /∈ PAH
j . We now

construct an observational distribution p(.) according to Xk = Nk for all
k 	= j, Xj = Xi + Nj and Nk

iid∼ N (0, 1) for all k. This distribution is certainly
Markov with respect to G. We find for any x̂ j that pG (xi | do(Xj = x̂ j)) =
p(xi) and at the same time pH(xi | do(Xj = x̂ j)) = p(xi | x̂ j) 	= p(xi). There-
fore, the SID is different from zero.

Appendix D: Proof of Proposition 4

The different statements can be proved as follows:

1a. When the SHD is zero, each node has the same set of parents in G and
H. Therefore, all adjustment sets are valid and the SID is zero too.

1b. The bound clearly holds since an SHD of one can change the set
of parents of at most two nodes. Extending the example shown in
Figure 1 from example 3 to p − 2, different Y nodes proves that the
bound is sharp.

2. Choosing G the empty graph and H (any) fully connected graph
yields the result.

Appendix E: Computing Causal Effects for Linear Gaussian
Structural Equation Models

Consider a linear gaussian structural equation model with known parame-
ters. The covariance matrix �X of the p random variables can then be com-
puted from the structural coefficients and the noise variances. For a given
graph, we are also able to compute the causal effects analytically. Since the
intervention distribution L(Xj | do(Xi = x̂i)) is again gaussian with mean
depending linearly on x̂i and variance not depending on x̂i, we can sum-
marize it by the so-called causal effect:

Ci j := ∂

∂ x̂i
E[Xj | do(Xi = x̂i)].

Let us denote by �2 the submatrix of �X with rows and columns correspond-
ing to Xi, PAXi

, and by �1 the (1 × (#PAXi
+ 1))-vector corresponding to the

row from Xj and columns from Xi, PAXi
of �X. Then,

Ci j = �1 · �−1
2 · (1, 0 . . . , 0)T .
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Appendix F: Algorithms

Here, we present pseudocode for computing the SID.
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