The Statistics-"Machine" in Data Science

Peter Bühlmann
ETH Zürich

Acknowledgments

main collaborators:

Nicolai Meinshausen ETH Zurich

Sara van de Geer ETH Zurich
fathers:

Hansruedi Künsch my doctoral father

Hans Bühlmann my "true" father
my wife and my family

Data Science

lots and lots of data
how certain are we that conclusions inferred from data "hold"?
often heard nowadays:
"... and we then apply (interpretable) machine learning" to

- predict
- classify
- gain understanding of the system
- infer the causes

\leadsto it's a collection of tools/methods/algorithms!

Why not a Statistics-"Machine"?'

a collection of tools and methods for inferential and "confirmatory" statements
perhaps it's nothing new: except the issue of dealing with more complex data
and perhaps a bit a marketing slogan that
"statistics" is also a key player in Data Science

An example: Behavioral economics and genetics

 joint project with Ernst Fehr, Univ. Zurich- $n=1^{\prime} 525$ persons
- genetic information (SNPs): $p \approx 10^{6}$
- 79 response variables, measuring "behavior"

$p>n$
goal: find significant associations between behavioral responses and genetic markers

... and let's have a look at Nature 496, 398 (25 April 2013)
Challenges in irreproducible research
"the complexity of the system and of the techniques ... do not stand the test of further studies"

Challenges in irreproducible research
"the complexity of the system and of the techniques ... do not stand the test of further studies"

- "We will examine statistics more closely and encourage authors to be transparent, for example by including their raw data."
- "We will also demand more precise descriptions of statistics, and we will commission statisticians as consultants on certain papers, at the editors discretion and at the referees suggestion."
- "Too few budding scientists receive adequate training in statistics and other quantitative aspects of their subject."
what we aim for:
- assessment of uncertainty, replicability and generalizability
- meaningful statements towards "causality" does the value of a biomarker "causally influence" e.g. risk aversion?
regarding the example on "behavioral economics and genetics": inferential statements are difficult, due to the very high-dimensional nature of the problem not yet "Big Data" (only a million variables, thousands of sample points) in fact, so far: GWAS (genome-wide association study) are usually based on marginal correlations between a response and genetic variables
regarding the example on "behavioral economics and genetics":
inferential statements are difficult, due to the very high-dimensional nature of the problem
not yet "Big Data" (only a million variables, thousands of sample points)
in fact, so far: GWAS (genome-wide association study) are usually based on marginal correlations between a response and genetic variables only correlation \leadsto can be very spurious!
only correlation \sim can be very spurious! (Messerli, 2012)

X: chocolate consumption per capita (per yr.)
Y : number of Nobel Laureates per 10 million popul.

Linear model: the statistical workhorse for getting beyond correlations
$\underbrace{Y_{i}}_{\text {response } \text { ith obs. }}=\sum_{j=1}^{p} \beta_{j}^{0} \underbrace{X_{i}^{(j)}}_{j \text { th covariate } i \text { th. obs. }}+\underbrace{\varepsilon_{i}}_{i \text { th error term }}, i=1, \ldots, n$
standard vector- and matrix-notation:

$$
\begin{array}{ll}
& Y_{n \times 1}=X_{n \times p} \beta_{p \times 1}^{0}+\varepsilon_{n \times 1} \\
\text { in short : } & Y=X \beta^{0}+\varepsilon
\end{array}
$$

- design matrix X : either deterministic or stochastic
- error/noise ε :
$\varepsilon_{1}, \ldots, \varepsilon_{n}$ independent, $\mathbb{E}\left[\varepsilon_{i}\right]=0, \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma_{i}^{2} \leq \sigma^{2}$ ε_{i} uncorrelated from X_{i} (when X is stochastic)
interpretation:
β_{j}^{0} measures the effect of $X^{(j)}$ on Y when
"conditioning on" the other covariables $\left\{X^{(k)} ; k \neq j\right\}$
that is: it measures the effect of $X^{(j)}$ on Y which is not explained by the other covariables
\sim much more a "causal" interpretation
equivalent to partial correlation and very different from (marginal) correlation between $X^{(j)}$ and Y

Regularized parameter estimation

$$
Y=X \beta^{0}+\varepsilon, \quad p \gg n
$$

ℓ_{1}-norm regularization
(Tibshirani, 1996; Chen, Donoho and Saunders, 1998) also called Lasso (Tibshirani, 1996):

$$
\hat{\beta}(\lambda)=\operatorname{argmin}_{\beta}(n^{-1}\|Y-X \beta\|_{2}^{2}+\lambda \underbrace{\|\beta\|_{1}}_{\sum_{j=1}^{p}\left|\beta_{j}\right|})
$$

convex optimization problem

- sparse solution (because of " ℓ_{1}-geometry") that is: many $\hat{\beta}_{j}(\lambda)=0$
- not unique in general... but unique with high probability under some assumptions (which we make "anyway")

LASSO = Least Absolute Shrinkage and Selection Operator

Near-optimal statistical properties of Lasso (for fixed design X)
assumptions:

- identifiability:
note $X \beta^{0}=X \theta$ for any $\theta=\beta^{0}+\xi, \xi$ in the null-space of X
\leadsto restricted eigenvalue or compatibility condition
van de Geer (2007); Bickel, Ritov \& Tsybakov (2009); van de Geer \& PB (2009);...
weaker than RIP (Candes \& Tao, 2006)
- sparsity: let $S_{0}=\operatorname{supp}\left(\beta^{0}\right)=\left\{j ; \beta_{j}^{0} \neq 0\right\}$ and assume

$$
s_{0}=\left|S_{0}\right|=o(n / \log (p)) \quad(\text { or } o(\sqrt{n / \log (p)}))
$$

- sub-Gaussian error distribution
\leadsto with high probability, and choosing $\lambda \asymp \sqrt{\log (p) / n}$

$$
\begin{aligned}
& \left\|\hat{\beta}-\beta^{0}\right\|_{2}^{2}=O\left(s_{0} \log (p) / n\right),\left\|\hat{\beta}-\beta^{0}\right\|_{1}=O\left(s_{0} \sqrt{\log (p) / n}\right) \\
& \left\|X\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2} / n=O\left(s_{0} \log (p) / n\right)
\end{aligned}
$$

(PB \& van de Geer (2011), Hastie, Tibshirani \& Wainwright (2015),...)

Near-optimal statistical properties of Lasso (for fixed design X)
assumptions:

- identifiability:
note $X \beta^{0}=X \theta$ for any $\theta=\beta^{0}+\xi, \xi$ in the null-space of X
\leadsto restricted eigenvalue or compatibility condition
van de Geer (2007); Bickel, Ritov \& Tsybakov (2009); van de Geer \& PB (2009);...
weaker than RIP (Candes \& Tao, 2006)
- sparsity: let $S_{0}=\operatorname{supp}\left(\beta^{0}\right)=\left\{j ; \beta_{j}^{0} \neq 0\right\}$ and assume

$$
s_{0}=\left|S_{0}\right|=o(n / \log (p)) \quad(\text { or } o(\sqrt{n / \log (p)}))
$$

- sub-Gaussian error distribution
\leadsto with high probability, and choosing $\lambda \asymp \sqrt{\log (p) / n}$

$$
\begin{aligned}
& \left\|\hat{\beta}-\beta^{0}\right\|_{2}^{2}=O\left(s_{0} \log (p) / n\right),\left\|\hat{\beta}-\beta^{0}\right\|_{1}=O\left(s_{0} \sqrt{\log (p) / n}\right) \\
& \left\|X\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2} / n=O\left(s_{0} \log (p) / n\right)
\end{aligned}
$$

(PB \& van de Geer (2011), Hastie, Tibshirani \& Wainwright (2015),...)
\leadsto Lasso: a most popular method in high-dimensional statistics

Uncertainty quantification:

 p -values and confidence intervals
frequentist uncertainty quantification
(in contrast to Bayesian inference)

- use classical concepts but in high-dimensional non-classical settings
- develop less classical things \leadsto hierarchical inference

Toy example: Motif regression ($p=195, n=143$)

Lasso estimated coefficients $\widehat{\beta}\left(\hat{\lambda}_{\mathrm{CV}}\right)$

p-values/quantifying uncertainty would be very useful!

$$
Y=X \beta^{0}+\varepsilon(p \gg n)
$$

classical goal: statistical hypothesis testing
or $H_{0, G}: \beta_{j}^{0}=0 \forall j \in \underbrace{G}_{\subseteq\{1, \ldots, p\}}$ versus $H_{A, G}: \exists j \in G$ with $\beta_{j}^{0} \neq 0$
background: if we could handle the asymptotic distribution of the Lasso $\hat{\beta}(\lambda)$ under the null-hypothesis
\leadsto could construct p-values
this is very difficult! asymptotic distribution of $\hat{\beta}$ has some point mass at zero,... Knight and Fu (2000) for $p<\infty$ and $n \rightarrow \infty$
because of "non-regularity" of sparse estimators "point mass at zero" phenomenon \sim "super-efficiency"

$~$ standard bootstrapping and subsampling should not be used

Low-dimensional projections and bias correction (Zhang \& Zhang, 2014) Or de-sparsifying the Lasso estimator (van de Geer, PB, Ritov \& Dezeure, 2014)
motivation (for $p<n$):
$\hat{\beta}_{\mathrm{LS}, j}$ from projection of Y onto residuals $\left(X_{j}-X_{-j} \hat{\gamma}_{\mathrm{LS}}^{(j)}\right)$
projection not well defined if $p>n$
\leadsto use "regularized" residuals from Lasso on X-variables

$$
Z_{j}=X_{j}-X_{-j} \hat{\gamma}_{\text {Lasso }}^{(j)}
$$

using $Y=X \beta^{0}+\varepsilon \leadsto$

$$
Z_{j}^{T} Y=Z_{j}^{T} X_{j} \beta_{j}^{0}+\sum_{k \neq j} Z_{j}^{T} X_{k} \beta_{k}^{0}+Z_{j}^{T} \varepsilon
$$

and hence

$$
\frac{Z_{j}^{\top} Y}{Z_{j}^{\top} X_{j}}=\beta_{j}^{0}+\underbrace{\sum_{k \neq j} \frac{Z_{j}^{T} X_{k}}{Z_{j}^{T} X_{j}} \beta_{k}^{0}}_{\text {bias }}+\underbrace{\frac{Z_{j}^{T} \varepsilon}{Z_{j}^{T} X_{j}}}_{\text {noise component }}
$$

$~$ de-sparsified Lasso:

$$
\hat{b}_{j}=\frac{Z_{j}^{T} Y}{Z_{j}^{T} X_{j}}-\underbrace{\sum_{k \neq j} \frac{Z_{j}^{T} X_{k}}{Z_{j}^{T} X_{j}} \hat{\beta}_{\text {Lasso } ; k}}_{\text {Lasso-estim. bias corr. }}
$$

$\left\{\hat{b}_{j}\right\}_{j=1}^{p}$ is not sparse!... and this is crucial for Gaussian limit and it is "optimal" (see next)

- target: low-dimensional component β_{j}^{0}
- $\eta:=\left\{\beta_{k}^{0} ; k \neq j\right\}$ is a high-dimensional nuisance parameter
\leadsto exactly as in semiparametric modeling! and sparsely estimated (e.g. with Lasso)

Asymptotic pivot and optimality
Theorem (van de Geer, PB, Ritov \& Dezeure, 2014)

$$
\frac{\sqrt{n}\left(\hat{b}_{j}-\beta_{j}^{0}\right)}{\sigma_{\varepsilon} \sqrt{\Omega_{j j}}} \Rightarrow \mathcal{N}(0,1) \text { as } p \geq n \rightarrow \infty
$$

$\Omega_{j j}$ explicit expression $\sim\left(\Sigma^{-1}\right)_{j j}$ optimal!
reaching semiparametric information bound
\leadsto asympt. optimal p-values and confidence intervals if we assume:

- population $\operatorname{Cov}(X)=\Sigma$ has minimal eigenvalue $\geq M>0 \sqrt{ }$
- sparsity for regr. Y vs. $X: s_{0}=o(\sqrt{n} / \log (p))$ "quite sparse"
- sparsity of design: Σ^{-1} sparse
i.e. sparse regressions X_{j} vs. $X_{-j}: s_{j} \leq o(\sqrt{n / \log (p)})$
may not be realistic

Asymptotic pivot and optimality
Theorem (van de Geer, PB, Ritov \& Dezeure, 2014)

$$
\frac{\sqrt{n}\left(\hat{b}_{j}-\beta_{j}^{0}\right)}{\sigma_{\varepsilon} \sqrt{\Omega_{j j}}} \Rightarrow \mathcal{N}(0,1) \text { as } p \geq n \rightarrow \infty
$$

$\Omega_{j j}$ explicit expression $\sim\left(\Sigma^{-1}\right)_{j j}$ optimal!
reaching semiparametric information bound
\leadsto asympt. optimal p-values and confidence intervals if we assume:

- population $\operatorname{Cov}(X)=\Sigma$ has minimal eigenvalue $\geq M>0 \sqrt{ }$
- sparsity for regr. Y vs. $X: s_{0}=o(\sqrt{n} / \log (p))$ "quite sparse"
- sparsity of design: Σ^{-1} sparse
i.e. sparse regressions X_{j} vs. $X_{-j}: s_{j} \leq o(\sqrt{n / \log (p)})$
may not be realistic
- no beta-min assumption !
$\min _{j \in s_{0}}\left|\beta_{j}^{0}\right| \gg s_{0} \sqrt{\log (p) / n}\left(\right.$ or $\left.s_{0} \log (p) / n\right)$

It is optimal!
Cramer-Rao

for data-sets with $p \approx 4^{\prime} 000-10^{\prime} 000$ and $n \approx 100$
\leadsto often no significant variable
because
" β_{j}^{0} is the effect when conditioning on all other variables..."
for example:
cannot distinguish between highly correlated variables $X^{(j)}, X^{(k)}$ but can find them as a significant group of variables where
at least one among $\left\{\beta_{j}^{0}, \beta_{k}^{0}\right\}$ is $\neq 0$
but unable to tell which of the two is different from zero

Behavioral economics and genomewide association

 with Ernst Fehr, University of Zurich- $n=1525$ probands (all students!)
- $m=79$ response variables measuring various behavioral characteristics (e.g. risk aversion) from well-designed experiments
- biomarkers: $\approx 10^{6}$ SNPs
model: multivariate linear model

$$
\underbrace{\mathbf{Y}_{n \times m}}_{\text {responses }}=\underbrace{X_{n \times p}}_{\text {SNP data }} \beta_{p \times m}^{0}+\underbrace{\varepsilon_{n \times m}}_{\text {error }}
$$

$$
\mathbf{Y}_{n \times m}=X_{n \times p} \boldsymbol{\beta}_{p \times m}^{0}+\varepsilon_{n \times m}
$$

interested in p -values for

$$
\begin{aligned}
& H_{0, j k}: \beta_{j k}^{0}=0 \text { versus } H_{A, j k}: \boldsymbol{\beta}_{j k}^{0} \neq 0, \\
& H_{0, G}: \boldsymbol{\beta}_{j k}^{0}=0 \text { for all } j, k \in G \text { versus } H_{A, G}=H_{0, G}^{c}
\end{aligned}
$$

adjusted for multiple testing (among $\ell=O\left(10^{6}\right)$ hypotheses)

- standard: Bonferroni-Holm adjustment $\leadsto \mathrm{p}$-value $P_{G} \rightarrow P_{G ; a d j}=P_{G} \cdot \ell=P_{G} \cdot O\left(10^{6}\right)!!!$
- we want to do something much more efficient (statistically and computationally)
there is structure!
- 79 response experiments
- 23 chromosomes per response experiment
- groups of highly correlated SNPs per chromosome

do hierarchical FWER adjustment (Meinshausen, 2008)

1. test global hypothesis
2. if significant: test all single response hypotheses
3. for the significant responses: test all single chromosome hyp.
4. for the significant chromosomes: test all groups of SNPs
\sim powerful multiple testing with data dependent adaptation of the resolution level
cf. general sequential testing principle (Goeman \& Solari, 2010)

Mandozzi \& PB $(2015,2016):$
single variable method

hierarchical method

a hierarchical inference method is able to find additional groups of (highly correlated) variables

Sequential rejective testing: an old principle

(Marcus, Peritz \& Gabriel, 1976)
ℓ hypothesis tests, ordered sequentially with hypotheses:

$$
H_{1} \prec H_{2} \prec \ldots \prec H_{\ell}
$$

the rule:

- hypotheses are always tested on significance level α (no adjustment!)
- if H_{r} not rejected: stop considering further tests ($H_{r+1}, \ldots, H_{\ell}$ will not be considered)
easy to prove that
FWER $=\mathbb{P}$ [at least one false rejection] $\leq \alpha$
in the context of hierarchical (e.g. binary) tree:

"essentially":
- $H_{1} \leftrightarrow$ top node of the tree \sim level α
- $\mathrm{H}_{2} \leftrightarrow$ the 2 nodes of the second level of the tree \leadsto do Bonferroni adjustment over 2 nodes
\sim level $\alpha / 2$
- at a any level of depth in the tree: the sum of the levels $=\alpha$ on each level of depth: Bonferroni correction
input:
- a hierarchy of groups/clusters $G \subseteq\{1, \ldots, p\}$
- valid p-values P_{G} for group testing use de-sparsified Lasso with test-statistics $\max _{j \in G} \frac{\left|\hat{b}_{j}\right|}{\text { s.e. } j}$

$$
H_{0, G}: \beta_{j}^{0}=0 \forall j \in G \text { vs. } H_{A, G}: \beta_{j}^{0} \neq 0 \text { for some } j \in G
$$

the essential operation is very simple:

$$
\begin{aligned}
& P_{G ; \text { adj }}=P_{G} \cdot \frac{p}{|G|}, \quad P_{G}=p \text {-value for } H_{0, G} \\
& P_{G ; \text { hier-adj }}=\max _{D \in \mathcal{T} ; G \subseteq D} P_{G ; \text { adj }} \text { ("stop when not rejecting at a node") }
\end{aligned}
$$

\leadsto the FWER is controlled (Meinshausen, 2008)
\mathbb{P} [at least one false rejection] $\leq \alpha$
the main benefit is not primarily the "efficient" multiple testing adjustment
it is the fact that we automatically (data/machine-driven) adapt to an appropriate resolution level of the groups

Behavioral economics example: number of significant SNP parameters per response

Number of significant target SNPs per phenotype

response 40 (?): most significant groups of SNPs

Genomewide association studies in medicine

 a case for hierarchical inference!where the ground truth is much better known
(Buzdugan, Kalisch, Navarro, Schunk, Fehr \& PB, 2016)
The Wellcome Trust Case Control Consortium (2007)

- 7 major diseases
- after missing data handling: 2934 control cases about $1700-1800$ diseased cases (depend. on disease) approx. $p=380^{\prime} 000$ SNPs per individual
coronary artery disease (CAD); Crohn's disease (CD); rheumatoid arthritis (RA); type 1 diabetes (T1D); type 2 diabetes (T2D)
significant small groups and single! SNPs

Dis ${ }^{\text {a }}$	$\begin{aligned} & \hline \begin{array}{l} \text { Significant } \\ \text { group of } \\ \text { SNPs }^{\text {b }} \end{array} \\ & \hline \end{aligned}$	Chr ${ }^{\text {c }}$	Gene ${ }^{\text {d }}$	P-value ${ }^{\text {c }}$	R^{21}
CAD	rs1333049	9	intergenic	$1.7 * 10^{-3}$	0.013
CD	$\begin{aligned} & \text { rs11805303, } \\ & \text { rs2201841, } \\ & \text { rs11209033, } \\ & \text { rs12141431, } \\ & \text { rs12119179 } \end{aligned}$	1	IL23R	$4.5 * 10^{-2}$	0.014
CD	rs10210302	2	ATG16L1	$4.6 * 10^{-5}$	0.014
CD	rs6871834, rs4957295, rs11957215, rs10213846, rs4957297, rs4957300, rs9292777, rs10512734, rs16869934,	5	intergenic	$2.7 * 10^{-3}$	0.016
CD	rs10883371	10	LINC01475, NKX2-3	$2.4 * 10^{-2}$	0.004
CD	rs10761659	10	ZNF365	$1.5 * 10^{-2}$	0.007
CD	rs2076756	16	NOD2	$1.3 * 10^{-3}$	0.017
CD	rs2542151	18	intergenic	$1.5 * 10^{-2}$	0.005
RA	rs6679677	1	PHTF1	$5.9 * 10^{-11}$	0.031
RA	rs9272346	6	$\begin{aligned} & \hline \text { HLA- } \\ & \text { DQA1 } \\ & \hline \end{aligned}$	$1.4 * 10^{-6}$	0.017

Dis ${ }^{\text {a }}$	Significant group $^{\text {SNPs }}$	Chr ${ }^{\text {c }}$	Gene ${ }^{\text {d }}$	P -value ${ }^{\text {e }}$	R^{21}
T1D	rs6679677	1	PHTF1	$3.6 * 10^{-11}$	0.03
T1D	rs17388568	4	ADAD1	$2.7 * 10^{-2}$	0.006
T1D	rs9272346	6	$\begin{array}{\|l} \hline \text { HLA- } \\ \text { DQAI } \\ \hline \end{array}$	$2.4 * 10^{-3}$	0.17
T1D	rs9272723	6	$\begin{array}{\|l} \hline \text { HLA- } \\ \text { DQAI } \\ \hline \end{array}$	$2.2 * 10^{-4}$	0.17
T1D	rs2523691	6	intergenic	$\begin{aligned} & \hline 6.04 \\ & 10^{-5} \end{aligned} \quad *$	0.004
T1D	rs11171739	12	intergenic	$1.3 * 10^{-2}$	0.01
T1D	rs17696736	12	NAA25	$6.5 * 10^{-4}$	0.018
T1D	rs12924729	16	CLEC16A	$3.4 * 10^{-2}$	0.007
T2D	rs4074720, rs10787472, rs7077039, rs11196208, rs11196205, rs10885409, rs12243326, rs4132670, rs7901695, rs4506565	10	TCF7L2	$1.7 * 10^{-5}$	0.015
T2D	$\begin{aligned} & \hline \text { rs9926289, } \\ & \text { rs7193144, } \\ & \text { rs8050136, } \\ & \text { rs } 9939609 \\ & \hline \end{aligned}$	16	FTO	$4.7 * 10^{-2}$	0.007

for bipolar disorder (BD) and hypertension (HT): only large significant groups (containing between 1'000-20'000 SNPs)
findings:

- recover some "established" associations:
- single "established" SNPs
- small groups containing an "established" SNP
"established": SNP is found by WTCCC or by WTCCC replication studies
- infer some significant non-reported groups
- automatically infer whether a disease exhibits high or low resolution associations to
- high resolution: single or a small groups of SNPs (CAD, CD, RA, T1D, T2D)
- low resolution: large groups of SNPs only (вD, нT)

Inspect the Statistics-"Machine"!

An experimental validation: Genomewide association study in plant biology
collaboration with Max Planck Institute for Plant Breeding Research (Köln):
Klasen, Barbez, Meier, Meinshausen, PB, Koornneef, Busch \& Schneeberger (2016)
root development in Arabidopsis Thaliana response Y : root size (root meristem zone-length) $n=201, p=214^{\prime} 051$
hierarchical inference: 4 new significant small groups

3 new associations are within and neighboring to PEPR2 gene \leadsto validation: wild-type versus pepr2-1 loss-of-function mutant which indeed resulted to impact root size (p-value 0.0007) p-value $=0.0007$ in Gaussian ANOVA model with 4 replicates

Towards Causality - which is a very ambitious word

we should think about (external) interventions
\leadsto more mechanistsic and less "philosophical" approach
causality - an answer to a "what if I do" question:
if we would intervene on a gene, would this have an effect on a response of interest?
want to predict the outcome Y of such an intervention experiment withoug having data from such interventions

Towards Causality - which is a very ambitious word

we should think about (external) interventions
\leadsto more mechanistsic and less "philosophical" approach
causality - an answer to a "what if I do" question:
if we would intervene on a gene, would this have an effect on a response of interest?
want to predict the outcome Y of such an intervention experiment withoug having data from such interventions
... can be formalized with Pearl's do(•) operator

Judea Pearl, Turing Award 2011

Causal effect $=$ effect of an outside intervention/manipulation
$=$ effect seen in a randomized trial
we want to infer/predict causal effects from non-interventional (= observational) data?
\sim it's extrapolation!
for example in Policy making

James Heckman, Nobel Prize Economics 2000

technically:

- regression effects are undirected associations

$$
\begin{aligned}
& \text { undirected edge } X^{(j)}-Y \Leftrightarrow \underbrace{\beta_{j}^{0}}_{j \text { th regr. coeff. }} \neq 0 \\
& \Leftrightarrow Y, X^{(j)} \text { conditionally dependent given all other } \\
& \quad\left\{X^{(k)} ; k \neq j\right\}
\end{aligned}
$$

- causal effects are based on directed associations

directed edges describe the causal influence diagram
we simply postulate that effects (undirected edges) must point from genetic variables to disease status (and not vice-versa) "everybody" would agree with this postulate

we simply postulate that effects (undirected edges) must point from genetic variables to disease status (and not vice-versa)
"everybody" would agree with this postulate

Proposition (nothing new at all)
Assume linear structural equation model where Y has no descendants (no children, no outgoing edges). Then:

$$
X^{(j)} \rightarrow Y \Leftrightarrow \underbrace{\beta_{j}^{0}}_{j \text { th regr. coeff. }} \neq 0
$$

regression (almost) does the job!

regression (almost) does the job!

indeed: our significance in regression leads to an experimentally validated intervention effect

PEPR2 gene intervention leads to effect on root size \sim "causal" effect of PEPR2 gene
"almost": beware of hidden confounders.

regression (almost) does the job!

indeed: our significance in regression leads to an experimentally validated intervention effect

PEPR2 gene intervention leads to effect on root size \sim "causal" effect of PEPR2 gene
"almost": beware of hidden confounders...

I am running out of time and cannot explain the details

Conclusions

The Statistics-"Machine" in Data Science:

- has deep historical roots, is very broad

many contributed!
- it enables uncertainty quantification, even in complex high-dimensional settings
- it contributes towards obtaining new scientific insights and "causal mechanisms"
- it benefits from other disciplines

in particular from Optimization and Comp. Sci.

THANK you! ©

Crohn's disease

large groups			
SNP group size	chrom.	p-value	
3622	1	0.036	
7571	2	0.003	
18161	3	0.001	
6948	4	0.028	most chromosomes
16144	5	0.007	exhibit
8077	6	0.005	signific. associations
12624	6	0.019	
13899	7	0.027	
15434	8	0.031	no further resolution
18238	9	0.003	to finer groups
4972	10	0.036	
14419	11	0.013	
11900	14	0.006	
2965	19	0.037	
9852	20	0.032	
4879	21	0.009	

Toy example (Messerli, 2012): two variables

$X=$ annual chocolate consumption per capita in a country
$Y=$ number of Nobel Prizes in a country

(empirical) correlation $=0.791$!

Franz H. Messerli
Swiss cardiologist specializing in treatment of hypertension honorary doctorate from Jagiellonian University Krakow (2013)

- if we intervene on chocolate consumption
 (and force everybody to eat the double amount of chocolate in Switzerland, on average: $24.7 \rightarrow 49.4$ grams per day...)
\Rightarrow would the number of Nobel prizes go up?
- if we intervene on the number of Nobel prizes (hard to do - suppose we could manipulate award committee) \Rightarrow would the amount of chocolate consumption go up?
probably: both interventions would exhibit no effect
\sim no "causal"/intervention relation between X and Y but there might be a hidden confounding variable H such as "social welfare/richness" which induces correlation

GWAS is a lucky situation! regression will (almost) do the job except when:

- model is incorrect (e.g. interaction effects) can deal with model misspecification to a certain extent
(PB \& van de Geer, 2015)
- hidden confounder between SNPs and response

\leadsto still an open problem in the context of GWAS but see Peters, PB \& Meinshausen (2016)

we also have gene deletion validations in yeast-biology

Meinshausen, Hauser, Mooij, Peters, Versteeg \& PB, (2016)

ROC-type plot: "the steeper up the curve the better"

I: causal invariant prediction method
H : ... including hidden variables

