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Data Science

lots and lots of data

how certain are we that conclusions inferred from data “hold”?



often heard nowadays:
“... and we then apply (interpretable) machine learning” to

I predict
I classify
I gain understanding of the system
I infer the causes

; it’s a collection of tools/methods/algorithms!



Why not a Statistics-“Machine”?’

a collection of tools and methods
for inferential and “confirmatory” statements

perhaps it’s nothing new:
except the issue of dealing with more complex data

and perhaps a bit a marketing slogan that
“statistics” is also a key player in Data Science



An example: Behavioral economics and genetics
joint project with Ernst Fehr, Univ. Zurich

I n = 1′525 persons
I genetic information (SNPs): p ≈ 106

I 79 response variables, measuring “behavior”

p � n

goal: find significant associations
between behavioral responses
and genetic markers
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... and let’s have a look at Nature 496, 398 (25 April 2013)

Challenges in irreproducible research
...
“the complexity of the system and of the tech-
niques ... do not stand the test of further stud-
ies”

I “We will examine statistics more closely and encourage
authors to be transparent, for example by including their
raw data.”

I “We will also demand more precise descriptions of
statistics, and we will commission statisticians as
consultants on certain papers, at the editors discretion and
at the referees suggestion.”

I “Too few budding scientists receive adequate training in
statistics and other quantitative aspects of their subject.”
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what we aim for:
I assessment of uncertainty, replicability and generalizability
I meaningful statements towards “causality”

does the value of a biomarker “causally influence” e.g. risk aversion?



regarding the example on “behavioral economics and genetics”:

inferential statements are difficult, due to the
very high-dimensional nature of the problem

not yet “Big Data” (only a million variables, thousands of sample points)

in fact, so far: GWAS (genome-wide association study) are
usually based on marginal correlations between a response
and genetic variables
only correlation ; can be very spurious!
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only correlation ; can be very spurious! (Messerli, 2012)

X: chocolate consumption per capita (per yr.)
Y: number of Nobel Laureates per 10 million popul.

(empirical)
correlation = 0.791 !



Linear model: the statistical workhorse for getting beyond correlations

Yi︸︷︷︸
response i th obs.

=

p∑
j=1

β0
j X (j)

i︸︷︷︸
j th covariate i th. obs.

+ εi︸︷︷︸
i th error term

, i = 1, . . . ,n

standard vector- and matrix-notation:

Yn×1 = Xn×pβ
0
p×1 + εn×1

in short : Y = Xβ0 + ε

I design matrix X : either deterministic or stochastic
I error/noise ε:
ε1, . . . , εn independent, E[εi ] = 0, Var(εi) = σ2

i ≤ σ
2

εi uncorrelated from Xi (when X is stochastic)



interpretation:

β0
j measures the effect of X (j) on Y when

“conditioning on” the other covariables {X (k); k 6= j}

that is: it measures the effect of X (j) on Y which is not
explained by the other covariables
; much more a “causal” interpretation

equivalent to partial correlation and
very different from (marginal) correlation between X (j) and Y



Regularized parameter estimation

Y = Xβ0 + ε, p � n

`1-norm regularization
(Tibshirani, 1996; Chen, Donoho and Saunders, 1998)

also called Lasso (Tibshirani, 1996):

β̂(λ) = argminβ(n−1‖Y − Xβ‖22 + λ ‖β‖1︸ ︷︷ ︸∑p
j=1 |βj |

)

convex optimization problem

I sparse solution (because of “`1-geometry”)
that is: many β̂j(λ) = 0

I not unique in general... but unique with high probability
under some assumptions (which we make “anyway”)

LASSO = Least Absolute Shrinkage and Selection Operator



Near-optimal statistical properties of Lasso (for fixed design X )

assumptions:
I identifiability:

note Xβ0 = Xθ for any θ = β0 + ξ, ξ in the null-space of X
; restricted eigenvalue or compatibility condition

van de Geer (2007); Bickel, Ritov & Tsybakov (2009); van de Geer & PB (2009);...

weaker than RIP (Candes & Tao, 2006)
I sparsity: let S0 = supp(β0) = {j ; β0

j 6= 0} and assume
s0 = |S0| = o(n/ log(p)) (or o(

√
n/ log(p)))

I sub-Gaussian error distribution
; with high probability, and choosing λ �

√
log(p)/n

‖β̂ − β0‖22 = O(s0 log(p)/n), ‖β̂ − β0‖1 = O(s0
√

log(p)/n),

‖X (β̂ − β0)‖22/n = O(s0 log(p)/n)

(PB & van de Geer (2011), Hastie, Tibshirani & Wainwright (2015),...)
; Lasso: a most popular method in high-dimensional statistics
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Uncertainty quantification:
p-values and confidence intervals

frequentist
uncertainty quantification

(in contrast to Bayesian inference)

I use classical concepts but in high-dimensional
non-classical settings

I develop less classical things ; hierarchical inference
I ...



Toy example: Motif regression (p = 195,n = 143)

Lasso estimated coefficients β̂(λ̂CV)
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p-values/quantifying uncertainty would be very useful!



Y = Xβ0 + ε (p � n)

classical goal: statistical hypothesis testing

H0,j : β0
j = 0 versus HA,j : β0

j 6= 0

or H0,G : β0
j = 0 ∀ j ∈ G︸︷︷︸

⊆{1,...,p}

versus HA,G : ∃j ∈ G with β0
j 6= 0

background: if we could handle the asymptotic distribution of
the Lasso β̂(λ) under the null-hypothesis

; could construct p-values

this is very difficult!
asymptotic distribution of β̂ has some point mass at zero,...
Knight and Fu (2000) for p <∞ and n→∞



because of “non-regularity” of sparse estimators
“point mass at zero” phenomenon ; “super-efficiency”

(Hodges, 1951)

; standard bootstrapping and subsampling should not be used



Low-dimensional projections and bias correction (Zhang & Zhang, 2014)
Or de-sparsifying the Lasso estimator (van de Geer, PB, Ritov & Dezeure, 2014)

motivation (for p < n):

β̂LS,j from projection of Y onto residuals (Xj − X−j γ̂
(j)
LS)

projection not well defined if p > n
; use “regularized” residuals from Lasso on X -variables

Zj = Xj − X−j γ̂
(j)
Lasso



using Y = Xβ0 + ε ;

Z T
j Y = Z T

j Xjβ
0
j +

∑
k 6=j

Z T
j Xkβ

0
k + Z T

j ε

and hence

Z T
j Y

Z T
j Xj

= β0
j +

∑
k 6=j

Z T
j Xk

Z T
j Xj

β0
k︸ ︷︷ ︸

bias

+
Z T

j ε

Z T
j Xj︸ ︷︷ ︸

noise component

; de-sparsified Lasso:

b̂j =
Z T

j Y

Z T
j Xj
−

∑
k 6=j

Z T
j Xk

Z T
j Xj

β̂Lasso;k︸ ︷︷ ︸
Lasso-estim. bias corr.



{b̂j}pj=1 is not sparse!... and this is crucial for Gaussian limit

and it is “optimal” (see next)

I target: low-dimensional component β0
j

I η := {β0
k ; k 6= j} is a high-dimensional nuisance parameter

; exactly as in semiparametric modeling!
and sparsely estimated (e.g. with Lasso)



Asymptotic pivot and optimality
Theorem (van de Geer, PB, Ritov & Dezeure, 2014)

√
n(b̂j − β0

j )

σε
√

Ωjj
⇒ N (0,1) as p ≥ n→∞

Ωjj explicit expression ∼ (Σ−1)jj optimal!
reaching semiparametric information bound

; asympt. optimal p-values and confidence intervals
if we assume:

I population Cov(X ) = Σ has minimal eigenvalue ≥ M > 0
√

I sparsity for regr. Y vs. X : s0 = o(
√

n/ log(p))“quite sparse”
I sparsity of design: Σ−1 sparse

i.e. sparse regressions Xj vs. X−j : sj ≤ o(
√

n/ log(p))
may not be realistic

I no beta-min assumption !
minj∈S0 |β

0
j | � s0

√
log(p)/n (or s0 log(p)/n)
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It is optimal!
Cramer-Rao



for data-sets with p ≈ 4′000− 10′000 and n ≈ 100
; often no significant variable

because
“β0

j is the effect when conditioning on all other variables...”

for example:
cannot distinguish between highly correlated variables X (j),X (k)

but can find them as a significant group of variables where

at least one among {β0
j , β

0
k} is 6= 0

but unable to tell which of the two is different from zero



Behavioral economics and genomewide association
with Ernst Fehr, University of Zurich

I n = 1525 probands (all students!)
I m = 79 response variables measuring various behavioral

characteristics (e.g. risk aversion) from well-designed
experiments

I biomarkers: ≈ 106 SNPs

model: multivariate linear model

Yn×m︸ ︷︷ ︸
responses

= Xn×p︸ ︷︷ ︸
SNP data

β0
p×m + εn×m︸ ︷︷ ︸

error



Yn×m = Xn×pβ
0
p×m + εn×m

interested in p-values for

H0,jk : β0
jk = 0 versus HA,jk : β0

jk 6= 0,

H0,G : β0
jk = 0 for all j , k ∈ G versus HA,G = Hc

0,G

adjusted for multiple testing (among ` = O(106) hypotheses)
I standard: Bonferroni-Holm adjustment ; p-value

PG → PG;adj = PG · ` = PG ·O(106) !!!
I we want to do something much more efficient

(statistically and computationally)



there is structure!

I 79 response experiments
I 23 chromosomes per response experiment
I groups of highly correlated SNPs per chromosome

.  .  .

.. . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

1 2

1

23 1 23

1 2 20

global

79



do hierarchical FWER adjustment (Meinshausen, 2008)

.  .  .

.. . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

1 2

1

23 1 23

1 2 20

global

79

significant not significant

1. test global hypothesis
2. if significant: test all single response hypotheses
3. for the significant responses: test all single chromosome hyp.
4. for the significant chromosomes: test all groups of SNPs

; powerful multiple testing with
data dependent adaptation of the resolution level

cf. general sequential testing principle (Goeman & Solari, 2010)



Mandozzi & PB (2015, 2016):

single variable method
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hierarchical method
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a hierarchical inference method is able to find
additional groups of (highly correlated) variables



Sequential rejective testing: an old principle
(Marcus, Peritz & Gabriel, 1976)

` hypothesis tests, ordered sequentially with hypotheses:

H1 ≺ H2 ≺ . . . ≺ H`

the rule:
I hypotheses are always tested on significance level α

(no adjustment!)
I if Hr not rejected: stop considering further tests

(Hr+1, . . . ,H` will not be considered)

easy to prove that

FWER = P[at least one false rejection] ≤ α



in the context of hierarchical (e.g. binary) tree:

“essentially”:
I H1 ↔ top node of the tree ; level α
I H2 ↔ the 2 nodes of the second level of the tree

; do Bonferroni adjustment over 2 nodes
; level α/2

I at a any level of depth in the tree: the sum of the levels = α
on each level of depth: Bonferroni correction



input:
I a hierarchy of groups/clusters G ⊆ {1, . . . ,p}
I valid p-values PG for group testing

use de-sparsified Lasso with test-statistics maxj∈G
|b̂j |
ŝ.e.j

H0,G : β0
j = 0 ∀j ∈ G vs. HA,G : β0

j 6= 0 for some j ∈ G

the essential operation is very simple:

PG;adj = PG ·
p
|G|

, PG = p-value for H0,G

PG;hier−adj = max
D∈T ;G⊆D

PG;adj (“stop when not rejecting at a node”)

; the FWER is controlled (Meinshausen, 2008)
P[at least one false rejection] ≤ α



the main benefit is not primarily the “efficient” multiple testing
adjustment

it is the fact that we automatically (data/machine-driven) adapt
to an appropriate resolution level of the groups

single variable method
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Behavioral economics example:
number of significant SNP parameters per response
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response 40 (?): most significant groups of SNPs



Genomewide association studies in medicine
a case for hierarchical inference!

where the ground truth is much better known
(Buzdugan, Kalisch, Navarro, Schunk, Fehr & PB, 2016)

The Wellcome Trust Case Control Consortium (2007)
I 7 major diseases
I after missing data handling:

2934 control cases
about 1700− 1800 diseased cases (depend. on disease)
approx. p = 380′000 SNPs per individual



coronary artery disease (CAD); Crohn’s disease (CD);
rheumatoid arthritis (RA); type 1 diabetes (T1D); type 2 diabetes (T2D)

significant small groups and single ! SNPs

for bipolar disorder (BD) and hypertension (HT): only large
significant groups (containing between 1’000 - 20’000 SNPs)



findings:
I recover some “established” associations:
• single “established” SNPs
• small groups containing an “established” SNP

“established”: SNP is found by WTCCC or by WTCCC
replication studies

I infer some significant non-reported groups
I automatically infer whether a disease exhibits high or low

resolution associations to
• high resolution: single or a small groups of SNPs (CAD, CD, RA, T1D, T2D)

• low resolution: large groups of SNPs only (BD, HT)



Inspect the Statistics-“Machine”!



An experimental validation: Genomewide association study in plant biology

collaboration with Max Planck Institute for Plant Breeding Research (Köln):
Klasen, Barbez, Meier, Meinshausen, PB, Koornneef, Busch & Schneeberger (2016)

root development in Arabidopsis Thaliana
response Y : root size (root meristem zone-length)
n = 201, p = 214′051

hierarchical inference: 4 new significant small groups
.  .  .

.. . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

1 2

1

23 1 23

1 2 20

global

79

3 new associations are within and neighboring to PEPR2 gene
; validation: wild-type versus pepr2-1 loss-of-function mutant
which indeed resulted to impact root size (p-value 0.0007)
p-value = 0.0007 in Gaussian ANOVA model with 4 replicates



Towards Causality – which is a very ambitious word

we should think about (external) interventions
; more mechanistsic and less “philosophical” approach

causality – an answer to a “what if I do” question:

if we would intervene on a gene, would this have an effect on a
response of interest?

want to predict the outcome Y of such an intervention
experiment withoug having data from such interventions

... can be formalized with Pearl’s do(·) operator

Judea Pearl, Turing Award 2011
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Causal effect = effect of an outside intervention/manipulation
= effect seen in a randomized trial

we want to infer/predict causal effects from non-interventional
(= observational) data? ; it’s extrapolation!

for example in Policy making

James Heckman, Nobel Prize Economics 2000



technically:
I regression effects are undirected associations

X1

X2

X3

Xp

Y

undirected edge X (j)−Y ⇔ β
0
j︸︷︷︸

j th regr. coeff.

6= 0

⇔ Y , X (j) conditionally dependent given all other

{X (k); k 6= j}

I causal effects are based on directed associations

directed edges describe
the causal influence diagram



we simply postulate that effects (undirected edges) must point
from genetic variables to disease status (and not vice-versa)

“everybody” would agree with this postulate

X (1)

X (2)

X (3)

X (p)

Y

Proposition (nothing new at all)
Assume linear structural equation model where Y has no
descendants (no children, no outgoing edges). Then:

X (j) → Y ⇔ β0
j︸︷︷︸

j th regr. coeff.

6= 0.
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regression (almost) does the job!

indeed: our significance in regression leads to an
experimentally validated intervention effect

PEPR2 gene intervention leads to effect on root size
; “causal” effect of PEPR2 gene

“almost”: beware of hidden confounders...
but see Peters, PB & Meinshausen (2016)
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I am running out of time and cannot explain the details



Conclusions

The Statistics-“Machine” in Data Science:
I has deep historical roots, is very broad

many contributed!
I it enables uncertainty quantification, even in complex

high-dimensional settings
I it contributes towards obtaining new scientific insights and

“causal mechanisms”
I it benefits from other disciplines

in particular from Optimization and Comp. Sci.





Crohn’s disease

large groups

SNP group size chrom. p-value
3622 1 0.036
7571 2 0.003

18161 3 0.001
6948 4 0.028

16144 5 0.007
8077 6 0.005

12624 6 0.019
13899 7 0.027
15434 8 0.031
18238 9 0.003

4972 10 0.036
14419 11 0.013
11900 14 0.006

2965 19 0.037
9852 20 0.032
4879 21 0.009

most chromosomes
exhibit
signific. associations

no further resolution
to finer groups



Toy example (Messerli, 2012): two variables

X = annual chocolate consumption per capita in a country
Y = number of Nobel Prizes in a country

(empirical)
correlation = 0.791 !

Franz H. Messerli
Swiss cardiologist specializing in treatment of hypertension

honorary doctorate from Jagiellonian University Krakow (2013)



• if we intervene on chocolate consumption
(and force everybody to eat the double amount of chocolate
in Switzerland, on average: 24.7→ 49.4 grams per day...)
⇒ would the number of Nobel prizes go up?

• if we intervene on the number of Nobel prizes
(hard to do – suppose we could manipulate award committee)
⇒ would the amount of chocolate consumption go up?

probably: both interventions would exhibit no effect
; no “causal”/intervention relation between X and Y
but there might be a hidden confounding variable H such as
“social welfare/richness” which induces correlation

X Y

H



GWAS is a lucky situation! regression will (almost) do the job

except when:
I model is incorrect (e.g. interaction effects)

can deal with model misspecification to a certain extent
(PB & van de Geer, 2015)

I hidden confounder between SNPs and response

X1

H

X2

X3

Xp

Y

; still an open problem in the context of GWAS
but see Peters, PB & Meinshausen (2016)



we also have gene deletion validations in yeast-biology
Meinshausen, Hauser, Mooij, Peters, Versteeg & PB, (2016)

ROC-type plot: “the steeper up the curve the better”
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RANDOM (99% prediction−
 interval)

I : causal invariant prediction method

H: ... including hidden variables


