The Statistics-"Machine" in Data Science

Peter Bühlmann ETH Zürich

Acknowledgments

main collaborators:

Nicolai Meinshausen ETH Zurich

Sara van de Geer ETH Zurich

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

fathers:

Hansruedi Künsch my doctoral father

Hans Bühlmann my "true" father

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

my wife and my family

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Data Science

ヘロト 人間 とくほとくほとう

э

lots and lots of data

how certain are we that conclusions inferred from data "hold"?

often heard nowadays:

"... and we then apply (interpretable) machine learning" to

- predict
- classify
- gain understanding of the system
- infer the causes

→ it's a collection of tools/methods/algorithms!

Why not a Statistics-"Machine"?'

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

a collection of tools and methods

for inferential and "confirmatory" statements

perhaps it's nothing new:

except the issue of dealing with more complex data

and perhaps a bit a marketing slogan that "statistics" is also a key player in Data Science

An example: Behavioral economics and genetics joint project with Ernst Fehr, Univ. Zurich

- n = 1'525 persons
- genetic information (SNPs): $p \approx 10^6$
- 79 response variables, measuring "behavior"

p ≫ n

goal: find significant associations between behavioral responses and genetic markers

- na (?

... and let's have a look at Nature 496, 398 (25 April 2013)

Challenges in irreproducible research

. . .

"the complexity of the system and of the techniques ... do not stand the test of further studies"

- "We will examine statistics more closely and encourage authors to be transparent, for example by including their raw data."
- "We will also demand more precise descriptions of statistics, and we will commission statisticians as consultants on certain papers, at the editors discretion and at the referees suggestion."
- "Too few budding scientists receive adequate training in statistics and other quantitative aspects of their subject."

... and let's have a look at Nature 496, 398 (25 April 2013)

Challenges in irreproducible research

. . .

"the complexity of the system and of the techniques ... do not stand the test of further studies"

- "We will examine statistics more closely and encourage authors to be transparent, for example by including their raw data."
- "We will also demand more precise descriptions of statistics, and we will commission statisticians as consultants on certain papers, at the editors discretion and at the referees suggestion."
- "Too few budding scientists receive adequate training in statistics and other quantitative aspects of their subject."

what we aim for:

- assessment of uncertainty, replicability and generalizability
- meaningful statements towards "causality" does the value of a biomarker "causally influence" e.g. risk aversion?

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

regarding the example on "behavioral economics and genetics": inferential statements are difficult, due to the very high-dimensional nature of the problem not yet "Big Data" (only a million variables, thousands of sample points)

in fact, so far: GWAS (genome-wide association study) are usually based on marginal correlations between a response and genetic variables only correlation ~> can be very spurious!

(ロ) (同) (三) (三) (三) (○) (○)

regarding the example on "behavioral economics and genetics": inferential statements are difficult, due to the very high-dimensional nature of the problem not yet "Big Data" (only a million variables, thousands of sample points)

in fact, so far: GWAS (genome-wide association study) are usually based on marginal correlations between a response and genetic variables only correlation ~ can be very spurious!

(ロ) (同) (三) (三) (三) (○) (○)

only correlation ~> can be very spurious! (Messerli, 2012)

(empirical) correlation = 0.791 !

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

X: chocolate consumption per capita (per yr.) Y: number of Nobel Laureates per 10 million popul.

Linear model: the statistical workhorse for getting beyond correlations

standard vector- and matrix-notation:

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1}^{0} + \varepsilon_{n\times 1}$$

in short : $Y = X\beta^{0} + \varepsilon$

- design matrix X: either deterministic or stochastic
- error/noise ε:

 $\varepsilon_1, \ldots, \varepsilon_n$ independent, $\mathbb{E}[\varepsilon_i] = 0$, $\operatorname{Var}(\varepsilon_i) = \sigma_i^2 \le \sigma^2$ ε_i uncorrelated from X_i (when X is stochastic) interpretation:

 β_j^0 measures the effect of $X^{(j)}$ on Y when "conditioning on" the other covariables { $X^{(k)}$; $k \neq j$ }

that is: it measures the effect of $X^{(j)}$ on Y which is not explained by the other covariables \rightarrow much more a "causal" interpretation

equivalent to partial correlation and very different from (marginal) correlation between $X^{(j)}$ and Y

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Regularized parameter estimation

$$Y = X\beta^0 + \varepsilon$$
, $p \gg n$

 ℓ_1 -norm regularization

(Tibshirani, 1996; Chen, Donoho and Saunders, 1998) also called Lasso (Tibshirani, 1996):

$$\hat{\beta}(\lambda) = \operatorname{argmin}_{\beta}(n^{-1} \| Y - X\beta \|_{2}^{2} + \lambda \underbrace{\|\beta\|_{1}}_{\sum_{j=1}^{p} |\beta_{j}|})$$

convex optimization problem

(日) (日) (日) (日) (日) (日) (日)

- sparse solution (because of "ℓ₁-geometry") that is: many β̂_j(λ) = 0
- not unique in general... but unique with high probability under some assumptions (which we make "anyway")

LASSO = Least Absolute Shrinkage and Selection Operator

Near-optimal statistical properties of Lasso (for fixed design X)

assumptions:

identifiability:

note $X\beta^0 = X\theta$ for any $\theta = \beta^0 + \xi$, ξ in the null-space of $X \rightarrow$ restricted eigenvalue or compatibility condition van de Geer (2007); Bickel, Ritov & Tsybakov (2009); van de Geer & PB (2009);...

weaker than RIP (Candes & Tao, 2006)

- ► sparsity: let $S_0 = \operatorname{supp}(\beta^0) = \{j; \beta_j^0 \neq 0\}$ and assume $s_0 = |S_0| = o(n/\log(p))$ (or $o(\sqrt{n/\log(p)})$)
- sub-Gaussian error distribution

 \sim with high probability, and choosing $\lambda \asymp \sqrt{\log(p)/n}$

$$\begin{split} \|\hat{\beta} - \beta^0\|_2^2 &= O(s_0 \log(p)/n), \ \|\hat{\beta} - \beta^0\|_1 = O(s_0 \sqrt{\log(p)/n}), \\ \|X(\hat{\beta} - \beta^0)\|_2^2/n &= O(s_0 \log(p)/n) \end{split}$$

(PB & van de Geer (2011), Hastie, Tibshirani & Wainwright (2015),...) ~ Lasso: a most popular method in high-dimensional statistics Near-optimal statistical properties of Lasso (for fixed design X)

assumptions:

identifiability:

note $X\beta^0 = X\theta$ for any $\theta = \beta^0 + \xi$, ξ in the null-space of $X \rightarrow$ restricted eigenvalue or compatibility condition van de Geer (2007); Bickel, Ritov & Tsybakov (2009); van de Geer & PB (2009);...

weaker than RIP (Candes & Tao, 2006)

- ► sparsity: let $S_0 = \operatorname{supp}(\beta^0) = \{j; \beta_j^0 \neq 0\}$ and assume $s_0 = |S_0| = o(n/\log(p))$ (or $o(\sqrt{n/\log(p)})$)
- sub-Gaussian error distribution

 \sim with high probability, and choosing $\lambda \asymp \sqrt{\log(p)/n}$

$$\begin{split} \|\hat{\beta} - \beta^0\|_2^2 &= O(s_0 \log(p)/n), \ \|\hat{\beta} - \beta^0\|_1 = O(s_0 \sqrt{\log(p)/n}), \\ \|X(\hat{\beta} - \beta^0)\|_2^2/n &= O(s_0 \log(p)/n) \end{split}$$

(PB & van de Geer (2011), Hastie, Tibshirani & Wainwright (2015),...) \sim Lasso: a most popular method in high-dimensional statistics

Uncertainty quantification: p-values and confidence intervals

- use classical concepts but in high-dimensional non-classical settings
- develop less classical things \rightsquigarrow hierarchical inference
- ...

Toy example: Motif regression (p = 195, n = 143)

p-values/quantifying uncertainty would be very useful!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ●

$$Y = X\beta^0 + \varepsilon \ (p \gg n)$$

classical goal: statistical hypothesis testing

$$\begin{array}{l} H_{0,j}:\beta_j^0=0 \text{ versus } H_{A,j}:\beta_j^0\neq 0\\ \text{or} \qquad H_{0,G}:\beta_j^0=0 \ \forall \ j\in \underbrace{G}_{\subseteq\{1,\ldots,p\}} \text{ versus } H_{A,G}:\exists j\in G \text{ with } \beta_j^0\neq 0 \end{array}$$

background: if we could handle the asymptotic distribution of the Lasso $\hat{\beta}(\lambda)$ under the null-hypothesis

→ could construct p-values

this is very difficult! asymptotic distribution of $\hat{\beta}$ has some point mass at zero,... Knight and Fu (2000) for $p < \infty$ and $n \to \infty$

(日) (日) (日) (日) (日) (日) (日)

because of "non-regularity" of sparse estimators "point mass at zero" phenomenon \rightsquigarrow "super-efficiency"

(Hodges, 1951)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

\rightsquigarrow standard bootstrapping and subsampling should not be used

Low-dimensional projections and bias correction (Zhang & Zhang, 2014) Or de-sparsifying the Lasso estimator (van de Geer, PB, Ritov & Dezeure, 2014)

motivation (for p < n):

 $\hat{\beta}_{\text{LS},j}$ from projection of *Y* onto residuals $(X_j - X_{-j}\hat{\gamma}_{\text{LS}}^{(j)})$

projection not well defined if p > n \rightarrow use "regularized" residuals from Lasso on X-variables

$$Z_j = X_j - X_{-j} \hat{\gamma}_{\text{Lasso}}^{(j)}$$

using $Y = X\beta^0 + \varepsilon \rightsquigarrow$ $Z_j^T Y = Z_j^T X_j \beta_j^0 + \sum_{k \neq j} Z_j^T X_k \beta_k^0 + Z_j^T \varepsilon$

and hence

 \sim de-sparsified Lasso:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\{\hat{b}_j\}_{j=1}^p$ is not sparse!... and this is crucial for Gaussian limit and it is "optimal" (see next)

- target: low-dimensional component β_i^0
- η := {β_k⁰; k ≠ j} is a high-dimensional nuisance parameter
 → exactly as in semiparametric modeling! and sparsely estimated (e.g. with Lasso)

Asymptotic pivot and optimality

Theorem (van de Geer, PB, Ritov & Dezeure, 2014)

$$rac{\sqrt{n}(\hat{b}_j - eta_j^0)}{\sigma_arepsilon \sqrt{\Omega_{jj}}} \Rightarrow \mathcal{N}(0, 1) \; ext{ as } p \geq n o \infty$$

 Ω_{jj} explicit expression $\sim (\Sigma^{-1})_{jj}$ optimal!

reaching semiparametric information bound

 \rightsquigarrow asympt. optimal p-values and confidence intervals if we assume:

- ▶ population $Cov(X) = \Sigma$ has minimal eigenvalue $\geq M > 0\sqrt{}$
- ▶ sparsity for regr. Y vs. X: $s_0 = o(\sqrt{n}/\log(p))$ "quite sparse"
- sparsity of design: Σ⁻¹ sparse i.e. sparse regressions X_j vs. X_{-j}: s_j ≤ o(√n/log(p))

may not be realistic

▶ no beta-min assumption ! min_{ics} $|\beta^0| \gg s_0 \sqrt{\log(p)/p}$ (or $s_0 \log(p)$

Asymptotic pivot and optimality

Theorem (van de Geer, PB, Ritov & Dezeure, 2014)

$$rac{\sqrt{n}(\hat{b}_j - eta_j^0)}{\sigma_arepsilon \sqrt{\Omega_{jj}}} \Rightarrow \mathcal{N}(0, 1) \; ext{ as } p \geq n o \infty$$

 Ω_{jj} explicit expression $\sim (\Sigma^{-1})_{jj}$ optimal!

reaching semiparametric information bound

 \rightsquigarrow asympt. optimal p-values and confidence intervals if we assume:

- ▶ population $Cov(X) = \Sigma$ has minimal eigenvalue $\geq M > 0\sqrt{}$
- ▶ sparsity for regr. Y vs. X: $s_0 = o(\sqrt{n}/\log(p))$ "quite sparse"
- sparsity of design: Σ⁻¹ sparse
 i.e. sparse regressions X_j vs. X_{-j}: s_j ≤ o(√n/log(p))

may not be realistic

- ロ ト - (同 ト - 三 ト - 三 - - - の へ ()

no beta-min assumption !

 $\min_{j \in S_0} |\beta_j^0| \gg s_0 \sqrt{\log(p)/n} \text{ (or } s_0 \log(p)/n)$

It is optimal! Cramer-Rao

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

for data-sets with $p \approx 4'000 - 10'000$ and $n \approx 100$ \rightsquigarrow often no significant variable

because

" β_i^0 is the effect when conditioning on all other variables..."

for example:

cannot distinguish between highly correlated variables $X^{(j)}, X^{(k)}$ but can find them as a significant group of variables where

at least one among $\{\beta_i^0, \beta_k^0\}$ is $\neq 0$

but unable to tell which of the two is different from zero

Behavioral economics and genomewide association with Ernst Fehr, University of Zurich

- n = 1525 probands (all students!)
- m = 79 response variables measuring various behavioral characteristics (e.g. risk aversion) from well-designed experiments
- biomarkers: $\approx 10^6$ SNPs

model: multivariate linear model

・ロト・日本・日本・日本・日本

$$\mathbf{Y}_{n \times m} = X_{n \times p} \beta_{p \times m}^0 + \varepsilon_{n \times m}$$

interested in p-values for

$$\begin{aligned} &H_{0,jk}: \ \beta_{jk}^0 = 0 \text{ versus } H_{A,jk}: \ \beta_{jk}^0 \neq 0, \\ &H_{0,G}: \ \beta_{jk}^0 = 0 \text{ for all } j,k \in G \text{ versus } H_{A,G} = H_{0,G}^c \end{aligned}$$

adjusted for multiple testing (among $\ell = O(10^6)$ hypotheses)

- ▶ standard: Bonferroni-Holm adjustment \sim p-value $P_G \rightarrow P_{G;adj} = P_G \cdot \ell = P_G \cdot O(10^6)$!!!
- we want to do something much more efficient (statistically and computationally)

there is structure!

- 79 response experiments
- 23 chromosomes per response experiment
- groups of highly correlated SNPs per chromosome

do hierarchical FWER adjustment (Meinshausen, 2008)

- 1. test global hypothesis
- 2. if significant: test all single response hypotheses
- 3. for the significant responses: test all single chromosome hyp.
- 4. for the significant chromosomes: test all groups of SNPs
- → powerful multiple testing with data dependent adaptation of the resolution level
- cf. general sequential testing principle (Goeman & Solari, 2010)

Mandozzi & PB (2015, 2016):

a hierarchical inference method is able to find additional groups of (highly correlated) variables Sequential rejective testing: an old principle (Marcus, Peritz & Gabriel, 1976)

 ℓ hypothesis tests, ordered sequentially with hypotheses:

$$H_1 \prec H_2 \prec \ldots \prec H_\ell$$

the rule:

• hypotheses are always tested on significance level α

(no adjustment!)

► if H_r not rejected: stop considering further tests $(H_{r+1}, \ldots, H_\ell \text{ will not be considered})$

easy to prove that

FWER = $\mathbb{P}[\text{at least one false rejection}] \leq \alpha$

in the context of hierarchical (e.g. binary) tree:

"essentially":

- $H_1 \leftrightarrow$ top node of the tree \rightsquigarrow level α
- *H*₂ ↔ the 2 nodes of the second level of the tree
 → do Bonferroni adjustment over 2 nodes
 → level α/2
- at a any level of depth in the tree: the sum of the levels = α on each level of depth: Bonferroni correction

input:

- a hierarchy of groups/clusters $G \subseteq \{1, \ldots, p\}$
- ► valid p-values P_G for group testing use de-sparsified Lasso with test-statistics max_{j∈G} (|b_j|)/(S,e_i)

$$H_{0,G}: \ \beta_j^0 = 0 \ \forall j \in G \ \text{vs.} \ H_{A,G}: \ \beta_j^0 \neq 0 \ \text{for some} \ j \in G$$

the essential operation is very simple:

$$P_{G;adj} = P_G \cdot \frac{p}{|G|}, \quad P_G = p$$
-value for $H_{0,G}$
 $P_{G;hier-adj} = \max_{D \in \mathcal{T}; G \subseteq D} P_{G;adj}$ ("stop when not rejecting at a node")

 \sim → the FWER is controlled (Meinshausen, 2008) $\mathbb{P}[$ at least one false rejection $] \le \alpha$ the main benefit is not primarily the "efficient" multiple testing adjustment

it is the fact that we automatically (data/machine-driven) adapt to an appropriate resolution level of the groups

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

Behavioral economics example: number of significant SNP parameters per response

Number of significant target SNPs per phenotype

response 40 (?): most significant groups of SNPs

Genomewide association studies in medicine a case for hierarchical inference!

where the ground truth is much better known (Buzdugan, Kalisch, Navarro, Schunk, Fehr & PB, 2016)

The Wellcome Trust Case Control Consortium (2007)

- 7 major diseases
- after missing data handling:
 2934 control cases
 about 1700 1800 diseased cases (depend. on disease)
 approx. p = 380'000 SNPs per individual

(日) (日) (日) (日) (日) (日) (日)

coronary artery disease (CAD); Crohn's disease (CD);

rheumatoid arthritis (RA); type 1 diabetes (T1D); type 2 diabetes (T2D)

Dis ^a	Significant	Chr ^c	Gened	P-value ^e	R ^{2f}
	group of				
	SNPs ^b				
CAD	rs1333049	9	intergenic	$1.7 * 10^{-3}$	0.013
CD	rs11805303,	1	IL23R	$4.5 * 10^{-2}$	0.014
	rs2201841,				
	rs11209033,				
	rs12141431,				
	rs12119179				
CD	rs10210302	2	ATG16L1	$4.6 * 10^{-5}$	0.014
CD	rs6871834,	5	intergenic	$2.7 * 10^{-3}$	0.016
	rs4957295,				
	rs11957215,				
	rs10213846,				
	rs4957297,				
	rs4957300,				
	rs9292777,				
	rs10512734,				
	rs16869934				
CD	rs10883371	10	LINC01475,	$2.4 * 10^{-2}$	0.004
			NKX2-3		
CD	rs10761659	10	ZNF365	$1.5 * 10^{-2}$	0.007
CD	rs2076756	16	NOD2	1.3×10^{-3}	0.017
CD	rs2542151	18	intergenic	$1.5 * 10^{-2}$	0.005
RA	rs6679677	1	PHTF1	$5.9*10^{-11}$	0.031
RA	rs9272346	6	HLA-	$1.4 * 10^{-6}$	0.017
			DOA1		

significant small groups and single ! SNPs

Disa	Significant	Chr ^c	Gened	P-value ^e	R ^{2f}
	group of				
	SNPs ^b				
TID	rs6679677	1	PHTF1	$3.6*10^{-11}$	0.03
TID	rs17388568	4	ADAD1	$2.7 * 10^{-2}$	0.006
TID	rs9272346	6	HLA-	$2.4 * 10^{-3}$	0.17
			DQA1		
TID	rs9272723	6	HLA-	$2.2 * 10^{-4}$	0.17
			DQA1		
TID	rs2523691	6	intergenic	6.04 *	0.004
				10^{-5}	
TID	rs11171739	12	intergenic	$1.3 * 10^{-2}$	0.01
TID	rs17696736	12	NAA25	$6.5 * 10^{-4}$	0.018
TID	rs12924729	16	CLEC16A	$3.4 * 10^{-2}$	0.007
T2D	rs4074720,	10	TCF7L2	$1.7 * 10^{-5}$	0.015
	rs10787472,				
	rs7077039,				
	rs11196208,				
	rs11196205,				
	rs10885409,				
	rs12243326,				
	rs4132670,				
	rs7901695,				
	rs4506565				
T2D	rs9926289,	16	FTO	$4.7 * 10^{-2}$	0.007
	rs7193144,				
	rs8050136,				
	rs9939609				

for bipolar disorder (BD) and hypertension (HT): only large significant groups (containing between 1'000 - 20'000 SNPs)

findings:

- recover some "established" associations:
 - single "established" SNPs
 - small groups containing an "established" SNP

"established": SNP is found by WTCCC or by WTCCC replication studies

- infer some significant non-reported groups
- automatically infer whether a disease exhibits high or low resolution associations to
 - high resolution: single or a small groups of SNPs (CAD, CD, RA, T1D, T2D)

(ロ) (同) (三) (三) (三) (○) (○)

• low resolution: large groups of SNPs only (BD, HT)

Inspect the Statistics-"Machine"!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

An experimental validation: Genomewide association study in plant biology

collaboration with Max Planck Institute for Plant Breeding Research (Köln):

Klasen, Barbez, Meier, Meinshausen, PB, Koornneef, Busch & Schneeberger (2016)

root development in Arabidopsis Thaliana response Y: root size (root meristem zone-length) n = 201, p = 214'051

hierarchical inference: 4 new significant small groups

3 new associations are within and neighboring to PEPR2 gene \rightarrow validation: wild-type versus pepr2-1 loss-of-function mutant which indeed resulted to impact root size (p-value 0.0007) p-value = 0.0007 in Gaussian ANOVA model with 4 replicates

Towards Causality - which is a very ambitious word

we should think about (external) interventions \rightsquigarrow more mechanistsic and less "philosophical" approach

causality – an answer to a "what if I do" question: if we would intervene on a gene, would this have an effect on a response of interest?

・ロト・日本・日本・日本・日本

want to predict the outcome *Y* of such an intervention experiment withoug having data from such interventions

Towards Causality - which is a very ambitious word

we should think about (external) interventions \rightsquigarrow more mechanistsic and less "philosophical" approach

causality – an answer to a "what if I do" question: if we would intervene on a gene, would this have an effect on a response of interest?

want to predict the outcome Y of such an intervention experiment withoug having data from such interventions

... can be formalized with Pearl's $do(\cdot)$ operator

(ロ) (同) (三) (三) (三) (○) (○)

Judea Pearl, Turing Award 2011

Causal effect = effect of an outside intervention/manipulation

= effect seen in a randomized trial

we want to infer/predict causal effects from non-interventional (= observational) data? ~ it's extrapolation!

for example in Policy making

James Heckman, Nobel Prize Economics 2000

technically:

regression effects are undirected associations

causal effects are based on directed associations

directed edges describe the causal influence diagram

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

we simply postulate that effects (undirected edges) must point from genetic variables to disease status (and not vice-versa) "everybody" would agree with this postulate

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

we simply **postulate** that effects (undirected edges) must point from genetic variables to disease status (and not vice-versa)

"everybody" would agree with this postulate

Proposition (nothing new at all)

Assume linear structural equation model where Y has no descendants (no children, no outgoing edges). Then:

$$X^{(j)} \to Y \Leftrightarrow \underbrace{\beta_j^0}_{j \text{ th regr. coeff.}} \neq 0.$$

(日) (日) (日) (日) (日) (日) (日)

regression (almost) does the job!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

regression (almost) does the job!

indeed: our significance in regression leads to an experimentally validated intervention effect

PEPR2 gene intervention leads to effect on root size \rightsquigarrow "causal" effect of PEPR2 gene

"almost": beware of hidden confounders...

but see Peters, PB & Meinshausen (2016)

(日) (日) (日) (日) (日) (日) (日)

regression (almost) does the job!

indeed: our significance in regression leads to an experimentally validated intervention effect

PEPR2 gene intervention leads to effect on root size \sim "causal" effect of PEPR2 gene

"almost": beware of hidden confounders...

but see Peters, PB & Meinshausen (2016)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

I am running out of time and cannot explain the details

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusions

The Statistics-"Machine" in Data Science:

has deep historical roots, is very broad

many contributed!

- it enables uncertainty quantification, even in complex high-dimensional settings
- it contributes towards obtaining new scientific insights and "causal mechanisms"
- it benefits from other disciplines

in particular from Optimization and Comp. Sci.

Crohn's disease

larga graupa

large	groups					
SNP group size	chrom.	p-value				
3622	1	0.036				
7571	2	0.003				
18161	3	0.001				
6948	4	0.028	most chromosomes			
16144	5	0.007	exhibit			
8077	6	0.005				
12624	6	0.019	signific. associations			
13899	7	0.027				
15434	8	0.031	no further resolution to finer groups			
18238	9	0.003				
4972	10	0.036	to mor groupe			
14419	11	0.013				
11900	14	0.006				
2965	19	0.037				
9852	20	0.032				
4879	21	0.009				

Toy example (Messerli, 2012): two variables

- X = annual chocolate consumption per capita in a country
- Y = number of Nobel Prizes in a country

Swiss cardiologist specializing in treatment of hypertension

・ロト ・ 同 ト ・ 回 ト ・ 回 ト

honorary doctorate from Jagiellonian University Krakow (2013)

白人 化氟人 化医人 化医人二苯

• if we intervene on chocolate consumption (and force everybody to eat the double amount of chocolate in Switzerland, on average: $24.7 \rightarrow 49.4$ grams per day...) \Rightarrow would the number of Nobel prizes go up?

 if we intervene on the number of Nobel prizes (hard to do – suppose we could manipulate award committee)
 ⇒ would the amount of chocolate consumption go up?

probably: both interventions would exhibit no effect \rightsquigarrow no "causal"/intervention relation between *X* and *Y* but there might be a hidden confounding variable *H* such as "social welfare/richness" which induces correlation

GWAS is a lucky situation! regression will (almost) do the job

except when:

 model is incorrect (e.g. interaction effects) can deal with model misspecification to a certain extent

```
(PB & van de Geer, 2015)
```

hidden confounder between SNPs and response

 \rightsquigarrow still an open problem in the context of GWAS

but see Peters, PB & Meinshausen (2016)

(ロ) (同) (三) (三) (三) (○) (○)

we also have gene deletion validations in yeast-biology Meinshausen, Hauser, Mooij, Peters, Versteeg & PB, (2016)

ROC-type plot: "the steeper up the curve the better"

I : causal invariant prediction method

H: ... including hidden variables

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 釣�()~.