# High-dimensional Data: <br> Prediction, Variable Selection and Applications in Computational Biology 

Peter Bühlmann

Seminar für Statistik, ETH Zürich

May 2006

## High-dimensional data

$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. or stationary
$X_{i} p$-dimensional predictor variable
$Y_{i}$ univariate response variable, e.g. $Y_{i} \in \mathbb{R}$ or $Y_{i} \in\{0,1\}$
areas of application:
astronomy, imaging, malketing research, text classification,...

## High-dimensional data

$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. or stationary
$X_{i} p$-dimensional predictor variable
$Y_{i}$ univariate response variable, e.g. $Y_{i} \in \mathbb{R}$ or $Y_{i} \in\{0,1\}$
high-dimensional: $p \gg n$
areas of application:
astronomy, imaging, marketing research, text classification,... biology, e.g. gene expressions with $p \approx 10^{\prime} 000 ; n \approx 10-100$

## Two examples from computational biology

Splice site detection in DNA sequences

- predictor variables: 7 DNA bases with values in $\{A, C, G, T\}^{7}$
dimension: $4^{7}=16^{\prime} 384$
- response variable which encodes whether a site (position in DNA ) is a splice site or not
- sample size is $n \approx 11^{\prime} 000$ but could be much lower (for other organisms than humans)


## Two examples from computational biology

Splice site detection in DNA sequences

- predictor variables: 7 DNA bases with values in $\{A, C, G, T\}^{7}$
dimension: $4^{7}=16^{\prime} 384$
- response variable which encodes whether a site (position in DNA ) is a splice site or not
- sample size is $n \approx 11^{\prime} 000$ but could be much lower (for other organisms than humans)

Alternative splicing in genes

- 5 (or 9) exons and knowledge whether they have spliced or not
$\rightsquigarrow$ contingency table with 5 (or 9) factors
each having two levels
dimensionality: $2^{5}=32$ (but with empty cells already) or

$$
2^{9}=512
$$

- sample size: $n \approx 170$


## High-dimensional linear models

$$
\begin{aligned}
& Y_{i}=\left(\beta_{0}+\right) \sum_{j=1}^{p} \beta_{j} X_{i}^{(j)}+\epsilon_{i}, i=1, \ldots, n \\
& p \gg n \\
& \text { in short: } Y=X \beta+\epsilon
\end{aligned}
$$

goals:

- prediction, e.g. squared prediction error
estimating the effective variables
(having corresponding coefficient $\neq 0$ )


## High-dimensional linear models

$$
\begin{aligned}
& Y_{i}=\left(\beta_{0}+\right) \sum_{j=1}^{p} \beta_{j} X_{i}^{(j)}+\epsilon_{i}, i=1, \ldots, n \\
& p \gg n \\
& \text { in short: } Y=X \beta+\epsilon
\end{aligned}
$$

goals:

- prediction, e.g. squared prediction error
- variable selection estimating the effective variables (having corresponding coefficient $\neq 0$ )

Approaches include:
Variable selection via AIC, BIC, (g)MDL (in a forward manner) Bayesian methods for regularization
for example with AIC (and known error variance $\sigma^{2}=1$ ): for every sub-model $\mathcal{M}$

$$
\begin{aligned}
& \operatorname{AIC}(\mathcal{M})=\sum_{i=1}^{n}(Y_{i}-\underbrace{X_{\mathcal{M}} \hat{\beta} O L s ; \mathcal{M}}_{\begin{array}{c}
\text { in model } \mathcal{M}
\end{array}})^{2}+2(\text { no. of parameters }(\mathcal{M})) \\
& \text { best model }=\text { minimizer of } \operatorname{AIC}(\mathcal{M})
\end{aligned}
$$

but:
there are $2^{p}$ sub-models and
we "cannot easily" explore the space of possible sub-models (this also applies to MCMC techniques in Bayesian statistics)
computational feasibility for high-dimensional problems $\rightsquigarrow$

## (quasi-) convex optimization <br> $\Leftrightarrow \quad($ relaxed $) \quad \underbrace{\text { Lasso }}$ <br> Tibshirani (1996)

Lasso for linear models

$$
\hat{\beta}(\lambda)=\operatorname{argmin}_{\beta}(n^{-1}\|Y-X \beta\|^{2}+\underbrace{\lambda}_{\geq 0} \underbrace{\|\beta\|_{1}}_{\sum_{j=1}^{p}\left|\beta_{j}\right|})
$$

Tibshirani (1996)

- convex optimization problem $\rightsquigarrow$ feasible to compute
- does variable selection, i.e.
$\hat{\beta}_{j}(\lambda)=0$ for some $j$ 's, depending on $\lambda$
(because of $\ell^{1}$-norm geometry)

Lasso $=$ convexization of computationally hard problem for variable selection
more on computation:
LARS algorithm (Efron, Hastie, Johnstone, Tibshirani (2004))
Lasso solutions for all $\lambda$ 's can be computed in
$O(n p \min (n, p))$ essential operations
linear in dimensionality $p$ if $p \gg n$
instead of looking at all $2^{p}$ sub-models...!
why solutions for all $\lambda$ 's?
$\rightsquigarrow$ cross-validation to pick a good $\lambda$
(and we consider all possible candidate values of $\lambda$ )
in summary:

- Lasso is computationally great
- statistical properties and justification...? $\rightsquigarrow$ next minutes


## The prediction problem

statistical notion of
high-dimensionality is relative to sample size $n$
mathematical formulation and conceptually useful: dimension $p=p_{n}$
if $p_{n}$ is fast growing function in $n \Leftrightarrow$ "high-dimensional"

## Theorem (Greenshtein \& Ritov, 2004)

- linear model with $p=p_{n}=O\left(n^{\alpha}\right)$ for some $\alpha<\infty$ (high-dimensional)
e.g. $n=100, p=p_{n}=10^{\prime} 000$
- $\|\beta\|_{1}=\left\|\beta_{n}\right\|_{1}=\sum_{j=1}^{p_{n}}\left|\beta_{j, n}\right|=O\left((n / \log (n))^{1 / 4}\right)$ (sparse) e.g. number of effective variables not growing too fast
- other minor conditions

Then, for suitable $\lambda=\lambda_{n}$,

$$
\mathbb{E}_{X}[(\underbrace{\hat{f}(X)}_{\hat{\beta}(\lambda)^{\top} X}-\underbrace{f(X)}_{\beta^{\top} X})^{2}] \longrightarrow 0 \text { in probability }(n \rightarrow \infty)
$$

Choice of $\lambda$ in practice for prediction: use cross-validation
and Lasso performs "quite well" for prediction
binary lymph node classification using gene expressions:
a high noise problem
$n=49$ samples, $p=7130$ gene expressions
cross-validated misclassification error (2/3 training; $1 / 3$ test)

| Lasso | $L_{2}$ Boosting | FPLR | Pelora | 1-NN | DLDA | SVM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $21.1 \%$ | $17.7 \%$ | $35.25 \%$ | $27.8 \%$ | $43.25 \%$ | $36.12 \%$ | $36.88 \%$ |

multivariate gene selection
best 200 genes (Wilcoxon test) no additional gene selection

Lasso selected on CV-average 13.12 out of $p=7129$ genes

## The variable selection problem

$$
Y_{i}=\left(\beta_{0}+\right) \sum_{j=1}^{p} \beta_{j} X_{i}^{(j)}+\epsilon_{i}, i=1, \ldots, n
$$

goal: find the effective predictor variables
i.e. the set $\mathcal{E}_{\text {true }}=\left\{j ; \beta_{j} \neq 0\right\}$
use the Lasso: $\hat{\mathcal{E}}(\lambda)=\left\{j ; \hat{\beta}_{j}(\lambda) \neq 0\right\}$
as mentioned before: computationally very efficient for binary lymph node classification with $n=49, p=7130$ computation of Lasso solutions for all $\lambda$ 's:

CPU time: 2.609 seconds using lars in $R$

## Properties of $\hat{\mathcal{E}}(\lambda)$

Theorem (Meinshausen \& PB, 2004)

- $Y, X^{(j)}$ 's Gaussian (not crucial)
- LfV condition (LfV = Lasso for Variable selection) see also Zhao \& Yu (2006)
- $p(n)=O\left(n^{\alpha}\right)$ for some $0<\alpha<\infty$ (high-dimensionality)
- $\left|\mathcal{E}_{\text {true }, n}\right|=O\left(n^{\kappa}\right)$ for some $0<\kappa<1$ (sparsity)
- other minor conditions

Then: for suitable $\lambda=\lambda_{n}$,

$$
\mathbb{P}\left[\hat{\mathcal{E}}(\lambda)=\mathcal{E}_{\text {true }}\right]=1-O\left(\exp \left(-C n^{1-\delta}\right)\right) \longrightarrow 1(n \rightarrow \infty)
$$

statistical (asymptotic) justification of convexization of

## Properties of $\hat{\mathcal{E}}(\lambda)$

Theorem (Meinshausen \& PB, 2004)

- $Y, X^{(j)}$ 's Gaussian (not crucial)
- LfV condition (LfV = Lasso for Variable selection) see also Zhao \& Yu (2006)
- $p(n)=O\left(n^{\alpha}\right)$ for some $0<\alpha<\infty$ (high-dimensionality)
- $\left|\mathcal{E}_{\text {true }, n}\right|=O\left(n^{\kappa}\right)$ for some $0<\kappa<1$ (sparsity)
- other minor conditions

Then: for suitable $\lambda=\lambda_{n}$,

$$
\mathbb{P}\left[\hat{\mathcal{E}}(\lambda)=\mathcal{E}_{\text {true }}\right]=1-O\left(\exp \left(-C n^{1-\delta}\right)\right) \longrightarrow 1(n \rightarrow \infty)
$$

statistical (asymptotic) justification of convexization of computationally hard problem for variable selection

# the method and theory immediately generalizes to Gaussian Graphical Modeling 

i.e. the Lasso can be used to estimate high-dimensional Gaussian graphical models

## LfV condition is restrictive

sufficient and necessary for consistent model selection with Lasso
it fails to hold if design matrix is "too correlated"
$\Rightarrow$ Lasso is not consistent anymore for selecting the true model

## The LfV condition: a condition on the covariance of $X$


$" \Leftrightarrow$ " Lasso is consistent for variable selection

Irrepresentable condition $\Leftrightarrow\left|\hat{\Sigma}_{\text {noise;eff }} \hat{\Sigma}_{\text {eff; eff }}^{-1} \operatorname{sign}\left(\beta_{\text {eff }}\right)\right| \leq 1-\eta$
it holds for

- $\hat{\Sigma}_{i j} \leq \rho^{|i-j|}(0 \leq \rho<1)$ power decay correlations
- dictionaries with $\underbrace{\text { coherence }}<\left(2 p_{\text {eff }}-1\right)^{-1}$
max. correlation
(notion of coherence: Donoho, Elad \& Temlyakov (2004))
- easy to construct examples where condition fails to hold


## Choice of $\lambda$

first (not so good) idea: choose $\lambda$ to optimize prediction e.g. via some cross-validation scheme
but: for prediction oracle solution

$$
\left.\lambda^{*}=\operatorname{argmin}_{\lambda} \mathbb{E}\left[\left(Y-\sum_{j=1}^{p} \hat{\beta}_{j}^{( } \lambda\right) X^{(j)}\right)^{2}\right]
$$

$\mathbb{P}\left[\hat{\mathcal{E}}\left(\lambda^{*}\right)=\mathcal{E}_{\text {true }}\right]<1(n \rightarrow \infty) \quad\left(\right.$ or $=0$ if $\left.p_{n} \rightarrow \infty(n \rightarrow \infty)\right)$
asymptotically: prediction optimality yields too large models (Meinshausen \& PB, 2004; related example by Leng et al., 2004)
in summary:

- prediction optimal solution yields asymptotically too large models
- if LfV condition fails to hold (and assuming weaker conditions)
Lasso yields models which contain the true model
$\rightsquigarrow$ Lasso can be used as
a "filter for variable selection" i.e. true model is contained in selected models from Lasso

Binary lymph node classification in breast cancer: $n=49 p=7130$

5-fold CV tuned Lasso selects 23 genes (on whole data set)
note (in practice): identifiability problem among highly correlated predictor variables
$\rightsquigarrow$ an ad-hoc approach:
keep the 23 plus all its highly correlated genes for further modeling, interpretation etc...

## From filtering to selection of variables

with Lasso, we obtain sequence of sub-models

$$
\widehat{\mathcal{S U B}}=\{\hat{\mathcal{E}}\left(\lambda_{r}\right) ; 1 \leq r \leq \underbrace{r_{\max }}_{=O(\min (n, p))}\}, \lambda_{1}=0<\lambda_{2}<\ldots<\lambda_{\max }
$$

i.e. not very many sub-models anymore
typically

$$
\hat{\mathcal{E}}\left(\lambda_{\max }\right) \subset \ldots \subset \hat{\mathcal{E}}\left(\lambda_{2}\right) \subset \hat{\mathcal{E}}\left(\lambda_{1}\right)
$$

assuming the LfV and other conditions: with high probability,

$$
\begin{aligned}
& \mathcal{E}_{\text {true }} \in \widehat{\mathcal{S U B}}, \\
& \left(\text { and } \mathcal{E}_{\text {true }} \subseteq \hat{\mathcal{E}}\left(\lambda^{*}\right)\right)
\end{aligned}
$$

$\rightsquigarrow$ we only need a good selector within $\widehat{\mathcal{S U B}}$
first (empirically not so good idea): choose best model in $\widehat{\mathcal{S U B}}$ using BIC or related method
first (empirically not so good idea): choose best model in $\widehat{\mathcal{S U B}}$ using BIC or related method
better:
use the Lasso again for the models in $\widehat{\mathcal{S U B}}$ :
$\underbrace{\hat{\mathcal{E}}\left(\lambda_{\text {max }}\right)}_{w \text { Lasso again }} \underbrace{\hat{\mathcal{E}}\left(\lambda_{\left.r_{\text {max }}-1\right)}\right.}_{w \text { Lasso again }} \cdots \underbrace{\hat{\mathcal{E}}\left(\lambda_{2}\right)}_{m \text { Lasso again }} \underbrace{\hat{\mathcal{E}}\left(\lambda_{1}\right)}_{m \text { Lasso again }}$
this is the Relaxed Lasso (Meinshausen, 2005)

## Relaxed Lasso

$$
\text { for } \lambda \geq 0,0 \leq \phi \leq 1
$$

$$
\hat{\beta}_{\lambda, \phi}=\operatorname{argmin}_{\beta} n^{-1} \sum_{i=1}^{n}\left(Y_{i}-\sum_{j \in \hat{\mathcal{E}}(\lambda)} \beta_{j} X_{i}^{(j)}\right)^{2}+\phi \lambda\|\beta\|_{1}
$$

for $\phi=0$ : OLS on selected variables from Lasso $(\lambda)$ for $\phi=1: \operatorname{Lasso}(\lambda)$
amount of computation for finding all solutions over $\lambda$ and $\phi$ : this is "quasi-convex" optimization

## Relaxed Lasso

for $\lambda \geq 0,0 \leq \phi \leq 1$

$$
\hat{\beta}_{\lambda, \phi}=\operatorname{argmin}_{\beta} n^{-1} \sum_{i=1}^{n}\left(Y_{i}-\sum_{j \in \hat{\mathcal{E}}(\lambda)} \beta_{j} X_{i}^{(j)}\right)^{2}+\phi \lambda\|\beta\|_{1}
$$

for $\phi=0$ : OLS on selected variables from Lasso $(\lambda)$ for $\phi=1: \operatorname{Lasso}(\lambda)$
amount of computation for finding all solutions over $\lambda$ and $\phi$ : often, the same computational complexity as for Lasso/LARS:

$$
O(n p \min (n, p))=O(p) \text { if } p \gg n
$$

worst case: $O\left(n p \min (n, p)^{2}\right)=O(p)$ if $p \gg n \quad$ still linear in $p$
two levels of a convex problem

## Relaxed Lasso

for $\lambda \geq 0,0 \leq \phi \leq 1$

$$
\hat{\beta}_{\lambda, \phi}=\operatorname{argmin}_{\beta} n^{-1} \sum_{i=1}^{n}\left(Y_{i}-\sum_{j \in \hat{\mathcal{E}}(\lambda)} \beta_{j} X_{i}^{(j)}\right)^{2}+\phi \lambda\|\beta\|_{1}
$$

for $\phi=0$ : OLS on selected variables from Lasso $(\lambda)$
for $\phi=1: \operatorname{Lasso}(\lambda)$
amount of computation for finding all solutions over $\lambda$ and $\phi$ : often, the same computational complexity as for Lasso/LARS:

$$
O(n p \min (n, p))=O(p) \text { if } p \gg n
$$

worst case: $O\left(n p \min (n, p)^{2}\right)=O(p)$ if $p \gg n \quad$ still linear in $p$
this is "quasi-convex" optimization
two levels of a convex problem
from Meinshausen (2005):
assume the LfV and other conditions
prediction optimal tuned relaxed Lasso is consistent for variable selection
$\rightsquigarrow$ can use cross-validation to estimate $\lambda$ and such CV-estimated $\hat{\lambda}_{C V}$ is good for variable selection
for very high-dimensional case $\left(p=p_{n} \sim C_{1} \exp \left(C_{2} n^{1-\xi}\right)(0<\xi<1)\right)$
from Meinshausen (2005):
assume the LfV and other conditions
prediction optimal tuned relaxed Lasso is consistent for variable selection
$\rightsquigarrow$ can use cross-validation to estimate $\lambda$ and such CV-estimated $\hat{\lambda}_{C V}$ is good for variable selection
for very high-dimensional case
$\left(p=p_{n} \sim C_{1} \exp \left(C_{2} n^{1-\xi}\right)(0<\xi<1)\right)$
relaxed Lasso has much lower prediction error than Lasso

$$
n=300, p=20, \ldots 650, p_{\text {eff }}=20
$$

## L2-loss

number of selected variables


1: Lasso 2: relaxed Lasso
additional pure noise variables are much less damaging with the relaxed Lasso than for Lasso
for prediction:
Relaxed Lasso never substantially worse than the Lasso the price for the flexibility of the relaxed Lasso is the larger search space $0 \leq \phi \leq 1$ (Lasso: $\phi=1$ )
for variable selection:
Relaxed Lasso (almost) always sparser than Lasso

Binary lymph node classification in breast cancer: $n=49 p=7130$

5-fold CV tuning for each method
cross-validated quantities (2/3 training; $1 / 3$ test)

|  | misclassif. error | number of selected genes |
| :---: | :---: | :---: |
| Lasso | $21.1 \%$ | 13.12 |

Binary lymph node classification in breast cancer: $n=49 p=7130$

5-fold CV tuning for each method
cross-validated quantities (2/3 training; $1 / 3$ test)

|  | misclassif. error | number of selected genes |
| :---: | :---: | :---: |
| Lasso | $21.1 \%$ | 13.12 |
| Relaxed Lasso | $20.1 \%$ | 7.3 |

## DNA splice site detection

DNA sequence

response $Y \in\{0,1\}$ : splice or non-splice site predictor variables: 7 factors each having 4 levels
(full dimension: $4^{7}=16^{\prime} 384$ )
data: $p=16^{\prime} 384, n=11^{\prime} 220$
training: $\quad 5^{\prime} 610$ true splice sites
5'610 non-splice sites
plus an unbalanced validation set
test data: $\quad 4^{\prime} 208$ true splice sites
89'717 non-splice sites
logistic regression:
$\log \left(\frac{p(x)}{1-p(x)}\right)=\beta_{0}+$ main effects + first order interactions $+\ldots$
with sum to zero constraints
use "Lasso" which selects whole terms
instead of selection of dummy indicator variables
e.g. the interaction term between factor 2 and 5 (which is encoded with 9 free parameters/dummy indicators)
$\rightsquigarrow$ Group Lasso (Yuan and Lin (2006), for Gaussian regression)

$$
\text { penalty: } \lambda \sum_{\text {term }_{j}}\left\|\beta_{j}\right\|_{2}
$$

Group Lasso penalty:

- invariant under orthogonal reparametrization
- if term $j$ has dimension 1 : $\left\|\beta_{j}\right\|_{2}=\left\|\beta_{j}\right\|_{1}$
- new efficient algorithms are needed for Group Lasso with binomial likelihood
$\rightsquigarrow$ Block gradient descent with tight approximations for the Hessian
- theory and methodology for high-dimensions: "similar" as for the Lasso
(Meier, v.d. Geer \& PB, 2006)
Group Lasso/Ridge: in spirit of the Relaxed Lasso 1st stage: Group Lasso for logistic regression
2nd stage: Ridge logistic regression on models from 1st stage $\rightsquigarrow$ allows for hierarchical model fitting
$\rightsquigarrow$ better term selection and better prediction than Group Lasso

- mainly neighboring DNA positions show interactions (has been "known" and "debated")
- no interaction among exons and introns (with Group Lasso/Ridge)
- no second-order interactions (with Group Lasso/Ridge)
predictive power:
competitive with "state to the art" maximum entropy modeling from Yeo and Burge (2004)

correlation between true and predicted class | Logistic Group Lasso/Ridge | 0.6593 |
| :---: | :--- |
| max. entropy (Yeo and Burge) | 0.6589 |

- our model is simple (not necessarily the method/algorithm) and has clear interpretation
- it is as good or better than many of the complicated non-Markovian stochastic process models (e.g. Zhao, Huang and Speed (2004))


## Alternative DNA splicing

DNA sequence: for a single gene
exon1 intron1 exon2 intron2 ...exon5 intron5
"regular" splicing $\rightsquigarrow$ exon 1 exon $2 \ldots$ exon5
alternative splicing $\rightsquigarrow$ only some exons are spliced (or spliced in a different order)

5 exons from gene "itpr1":
we know whether exons have been spliced or not data from full length cDNA libraries
tissue from adult cerebrum in rats and different developmental stages of cerebellum in rats
(Emerick \& Agnew, Johns Hopkins)
$\rightsquigarrow$ contingency table(s) with 5 factors (from 5 exons) each having two levels (spliced or not)
the table has many empty cells ("high-dimensional")
(other problems involve 9 exons)
log-linear model for cell probabilities
$\log ($ cell probability $)=$ intercept + main effects + interaction terms
with sum to zero constraints
use the relaxed Lasso for estimation $\rightsquigarrow$ selection of terms Dahinden, Emerick, Parmigiani \& PB (2006)


- no second or higher-order interactions
- interaction pattern well conserved over different developmental stages
with hierarchical Bayesian modeling (a lot of computing...!)

- for suitable choice of the (one) hyperparameter maximum a posteriori (MAP) similar to relaxed Lasso
- for other choices of the hyperparameter: markedly different $\rightsquigarrow$ tune Bayesian model such that MAP $\approx$ relaxed Lasso
$\mathbf{n} \sim \operatorname{Multinom}(\mathbf{p}), \log (\mathbf{p})=X \beta$
$\beta_{j} \mid \gamma_{j} \sim\left(1-\gamma_{j}\right) I_{0}+\gamma_{j} \mathcal{N}\left(0, \sigma^{2}\right)$ independent for all $j$ 's
$\gamma_{j} \sim$ Bernoulli(1/2) independent for all $j$ 's
$\sigma^{2}=1 \quad\left(\right.$ or $\left.\sigma^{2} \sim \Gamma^{-1}(2,3)\right)$
design matrix $X$ encoded with dummies sum-to-zero constraints for parameters for hierarchical models:
- zero coefficients can be interpreted in terms of conditional independence
- invariant under reparametrization zero term remains zero term
in both biology problems:
we are "in a better position" to estimate whether higher-order interactions exist or not
without good regularization and variable selection methods: difficult to answer


## Your own high-dimensional problem...

Two biosynthesis pathways in Arabidopsis Thaliana: asociations among 39 genes from $n=118$ microarray exp

## Your own high-dimensional problem...

Two biosynthesis pathways in Arabidopsis Thaliana: associations among 39 genes from $n=118$ microarray exper. Wille et al. (2004)


## Conclusions

especially for high-dimensional data:

## Conclusions

especially for high-dimensional data:

- Lasso useful for variable filtering it is computationally attractive: linear in dimensionality $p$ the "true model" is contained in the solution set of Lasso
- Relaxed Lasso (or similar two stage procedures) often better prediction than Lasso sparser solutions than Lasso

Software: efficient implementations in R
LARS algorithm for linear models (Hastie)
Group Lasso and Lasso for generalized linear models

## Conclusions

especially for high-dimensional data:

- Lasso useful for variable filtering it is computationally attractive: linear in dimensionality $p$ the "true model" is contained in the solution set of Lasso
- Relaxed Lasso (or similar two stage procedures) often better prediction than Lasso optimal penalty for prediction $\rightsquigarrow$ consistent model selection sparser solutions than Lasso

Software: efficient implementations in R
LARS algorithm for linear models (Hastie)
Group Lasso and Lasso for generalized linear models

## Conclusions

especially for high-dimensional data:

- Lasso useful for variable filtering it is computationally attractive: linear in dimensionality $p$ the "true model" is contained in the solution set of Lasso
- Relaxed Lasso (or similar two stage procedures) often better prediction than Lasso optimal penalty for prediction $\rightsquigarrow$ consistent model selection sparser solutions than Lasso
- Software: efficient implementations in R LARS algorithm for linear models (Hastie) Group Lasso and Lasso for generalized linear models
(Meier)

