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High-dimensional data

(X1, Y1), . . . , (Xn, Yn) i.i.d. or stationary

Xi p-dimensional predictor variable

Yi univariate response variable, e.g. Yi ∈ R or Yi ∈ {0, 1}

high-dimensional: p � n

areas of application:

astronomy, imaging, marketing research, text classification,...

biology, e.g. gene expressions with p ≈ 10′000; n ≈ 10− 100
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Two examples from computational biology

Splice site detection in DNA sequences
I predictor variables: 7 DNA bases with values in
{A, C, G, T}7

dimension: 47 = 16′384
I response variable which encodes whether a site (position

in DNA ) is a splice site or not
I sample size is n ≈ 11′000 but could be much lower (for

other organisms than humans)

Alternative splicing in genes
I 5 (or 9) exons and knowledge whether they have spliced or

not
 contingency table with 5 (or 9) factors

each having two levels
dimensionality: 25 = 32 (but with empty cells already) or

29 = 512
I sample size: n ≈ 170
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High-dimensional linear models

Yi = (β0+)

p∑
j=1

βjX
(j)
i + εi , i = 1, . . . , n

p � n

in short: Y = Xβ + ε

goals:
I prediction, e.g. squared prediction error
I variable selection

estimating the effective variables
(having corresponding coefficient 6= 0)
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Approaches include:

Variable selection via AIC, BIC, (g)MDL (in a forward manner)
Bayesian methods for regularization
...

for example with AIC (and known error variance σ2 = 1):
for every sub-model M

AIC(M) =
n∑

i=1

(Yi − XMβ̂OLS;M︸ ︷︷ ︸
in model M

)2 + 2(no. of parameters (M))

best model = minimizer of AIC(M)

but:

there are 2p sub-models and
we “cannot easily” explore the space of possible sub-models
(this also applies to MCMC techniques in Bayesian statistics)



computational feasibility for high-dimensional problems 

(quasi-) convex optimization

⇔ (relaxed) Lasso︸ ︷︷ ︸
Tibshirani (1996)



Lasso for linear models

β̂(λ) = argminβ(n−1‖Y − Xβ‖2 + λ︸︷︷︸
≥0

‖β‖1︸ ︷︷ ︸Pp
j=1 |βj |

)

Tibshirani (1996)

I convex optimization problem feasible to compute
I does variable selection, i.e.

β̂j(λ) = 0 for some j ’s, depending on λ

(because of `1-norm geometry)

Lasso = convexization of computationally hard problem

for variable selection



more on computation:
LARS algorithm (Efron, Hastie, Johnstone, Tibshirani (2004))
Lasso solutions for all λ’s can be computed in

O(np min(n, p)) essential operations

linear in dimensionality p if p � n

instead of looking at all 2p sub-models...!

why solutions for all λ’s?
 cross-validation to pick a good λ

(and we consider all possible candidate values of λ)

in summary:
I Lasso is computationally great
I statistical properties and justification...?  next minutes



The prediction problem

statistical notion of
high-dimensionality is relative to sample size n

mathematical formulation and conceptually useful:
dimension p = pn

if pn is fast growing function in n ⇔ “high-dimensional”



Theorem (Greenshtein & Ritov, 2004)

I linear model with p = pn = O(nα) for some α < ∞
(high-dimensional)
e.g. n = 100, p = pn = 10′000

I ‖β‖1 = ‖βn‖1 =
∑pn

j=1 |βj,n| = o((n/ log(n))1/4) (sparse)
e.g. number of effective variables not growing too fast

I other minor conditions

Then, for suitable λ = λn,

EX [( f̂ (X )︸︷︷︸
β̂(λ)T X

− f (X )︸︷︷︸
βT X

)2] −→ 0 in probability (n →∞)

Choice of λ in practice for prediction: use cross-validation



and Lasso performs “quite well” for prediction

binary lymph node classification using gene expressions:
a high noise problem

n = 49 samples, p = 7130 gene expressions

cross-validated misclassification error (2/3 training; 1/3 test)

Lasso L2Boosting FPLR Pelora 1-NN DLDA SVM
21.1% 17.7% 35.25% 27.8% 43.25% 36.12% 36.88%

multivariate gene selection
best 200 genes (Wilcoxon test)
no additional gene selection

Lasso selected on CV-average 13.12 out of p = 7129 genes



The variable selection problem

Yi = (β0+)

p∑
j=1

βjX
(j)
i + εi , i = 1, . . . , n

goal: find the effective predictor variables
i.e. the set Etrue = {j ; βj 6= 0}

use the Lasso: Ê(λ) = {j ; β̂j(λ) 6= 0}

as mentioned before: computationally very efficient
for binary lymph node classification with n = 49, p = 7130
computation of Lasso solutions for all λ’s:

CPU time: 2.609 seconds using lars in R



Properties of Ê(λ)

Theorem (Meinshausen & PB, 2004)

I Y , X (j)’s Gaussian (not crucial)
I LfV condition (LfV = Lasso for Variable selection)

see also Zhao & Yu (2006)

I p(n) = O(nα) for some 0 < α < ∞ (high-dimensionality)
I |Etrue,n| = O(nκ) for some 0 < κ < 1 (sparsity)
I other minor conditions

Then: for suitable λ = λn,

P[Ê(λ) = Etrue] = 1−O(exp(−Cn1−δ)) −→ 1 (n →∞)

statistical (asymptotic) justification of convexization of
computationally hard problem for variable selection
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the method and theory immediately generalizes to
Gaussian Graphical Modeling

i.e. the Lasso can be used to estimate
high-dimensional Gaussian graphical models



LfV condition is restrictive
sufficient and necessary for consistent model selection with Lasso

it fails to hold if design matrix is “too correlated”
⇒ Lasso is not consistent anymore for selecting the true model



The LfV condition: a condition on the covariance of X

LfV condition︸ ︷︷ ︸
Meinshausen & PB (2004)

⇔ Irrepresentable condition︸ ︷︷ ︸
Zhao & Yu (2006)

′′ ⇔′′ Lasso is consistent for variable selection

Irrepresentable condition ⇔ |Σ̂noise;eff Σ̂
−1
eff ;eff sign(βeff )| ≤ 1− η

it holds for
I Σ̂ij ≤ ρ|i−j| (0 ≤ ρ < 1) power decay correlations
I dictionaries with coherence︸ ︷︷ ︸

max. correlation

< (2peff − 1)−1

(notion of coherence: Donoho, Elad & Temlyakov (2004))
I easy to construct examples where condition fails to hold



Choice of λ

first (not so good) idea: choose λ to optimize prediction
e.g. via some cross-validation scheme

but: for prediction oracle solution

λ∗ = argminλE[(Y −
p∑

j=1

β̂
(
j λ)X (j))2]

P[Ê(λ∗) = Etrue] < 1 (n →∞) (or = 0 if pn →∞ (n →∞))

asymptotically: prediction optimality yields too large models
(Meinshausen & PB, 2004; related example by Leng et al., 2004)



in summary:
I prediction optimal solution yields asymptotically too large

models
I if LfV condition fails to hold (and assuming weaker

conditions)
Lasso yields models which contain the true model

 Lasso can be used as
a “filter for variable selection” i.e. true model is contained in

selected models from Lasso



Binary lymph node classification in breast cancer: n = 49 p = 7130

5-fold CV tuned Lasso selects 23 genes (on whole data set)

note (in practice): identifiability problem among highly
correlated predictor variables

 an ad-hoc approach:
keep the 23 plus all its highly correlated genes for further
modeling, interpretation etc...



From filtering to selection of variables
with Lasso, we obtain sequence of sub-models

ŜUB = {Ê(λr ); 1 ≤ r ≤ rmax︸︷︷︸
=O(min(n,p))

}, λ1 = 0 < λ2 < . . . < λmax

i.e. not very many sub-models anymore

typically

Ê(λmax) ⊂ . . . ⊂ Ê(λ2) ⊂ Ê(λ1)

assuming the LfV and other conditions:
with high probability,

Etrue ∈ ŜUB,

(and Etrue ⊆ Ê(λ∗))

 we only need a good selector within ŜUB



first (empirically not so good idea): choose best model in ŜUB
using BIC or related method

better:
use the Lasso again for the models in ŜUB:

Ê(λmax)︸ ︷︷ ︸
 Lasso again

Ê(λrmax−1)︸ ︷︷ ︸
 Lasso again

. . . Ê(λ2)︸ ︷︷ ︸
 Lasso again

Ê(λ1)︸ ︷︷ ︸
 Lasso again

this is the Relaxed Lasso (Meinshausen, 2005)
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Relaxed Lasso

for λ ≥ 0, 0 ≤ φ ≤ 1

β̂λ,φ = argminβn−1
n∑

i=1

(Yi −
∑

j∈Ê(λ)

βjX
(j)
i )2 + φλ‖β‖1

for φ = 0: OLS on selected variables from Lasso(λ)
for φ = 1: Lasso(λ)

amount of computation for finding all solutions over λ and φ:
often, the same computational complexity as for Lasso/LARS:

O(np min(n, p)) = O(p) if p � n
worst case: O(np min(n, p)2) = O(p) if p � n still linear in p

this is “quasi-convex” optimization
two levels of a convex problem
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Properties of the relaxed Lasso

from Meinshausen (2005):

assume the LfV and other conditions

prediction optimal tuned relaxed Lasso
is consistent for variable selection

 can use cross-validation to estimate λ
and such CV-estimated λ̂CV is good for variable selection

for very high-dimensional case
(p = pn ∼ C1 exp(C2n1−ξ) (0 < ξ < 1))

relaxed Lasso has much lower prediction error than Lasso
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n = 300, p = 20, . . . 650, peff = 20
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additional pure noise variables are much less damaging with
the relaxed Lasso than for Lasso



for prediction:
Relaxed Lasso never substantially worse than the Lasso

the price for the flexibility of the relaxed Lasso is
the larger search space 0 ≤ φ ≤ 1 (Lasso: φ = 1)

for variable selection:
Relaxed Lasso (almost) always sparser than Lasso



Binary lymph node classification in breast cancer: n = 49 p = 7130

5-fold CV tuning for each method

cross-validated quantities (2/3 training; 1/3 test)

misclassif. error number of selected genes
Lasso 21.1% 13.12

Relaxed Lasso 20.1% 7.3
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DNA splice site detection
DNA sequence

. . . ACGGC . . . NNN GC︸︷︷︸
potential donor site

NNNN

︸ ︷︷ ︸
3 positions exon GC 4 positions intron

. . . AAC . . .

response Y ∈ {0, 1}: splice or non-splice site
predictor variables: 7 factors each having 4 levels

(full dimension: 47 = 16′384)
data: p = 16′384, n = 11′220

training: 5′610 true splice sites

5′610 non-splice sites

plus an unbalanced validation set

test data: 4′208 true splice sites

89′717 non-splice sites



logistic regression:

log
(

p(x)

1− p(x)

)
= β0 + main effects + first order interactions + . . .

with sum to zero constraints

use “Lasso” which selects whole terms
instead of selection of dummy indicator variables

e.g. the interaction term between factor 2 and 5 (which is
encoded with 9 free parameters/dummy indicators)



 Group Lasso (Yuan and Lin (2006), for Gaussian regression)

penalty: λ
∑

term j

‖βj‖2

Group Lasso penalty:
I invariant under orthogonal reparametrization
I if term j has dimension 1: ‖βj‖2 = ‖βj‖1



I new efficient algorithms are needed for Group Lasso with
binomial likelihood
 Block gradient descent with tight approximations for the
Hessian

I theory and methodology for high-dimensions: “similar” as
for the Lasso

(Meier, v.d. Geer & PB, 2006)

Group Lasso/Ridge: in spirit of the Relaxed Lasso
1st stage: Group Lasso for logistic regression
2nd stage: Ridge logistic regression on models from 1st stage

 allows for hierarchical model fitting
 better term selection and better prediction than Group Lasso



Term

1 3 5 7 1:3 1:5 1:7 2:4 2:6 3:4 3:6 4:5 4:7 5:7
2 4 6 1:2 1:4 1:6 2:3 2:5 2:7 3:5 3:7 4:6 5:6 6:7

l 2
−

no
rm

0
1

2 GL
GL/R
GL/MLE
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l 2
−

no
rm
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2

I mainly neighboring DNA positions show interactions
(has been “known” and “debated”)

I no interaction among exons and introns
(with Group Lasso/Ridge)

I no second-order interactions
(with Group Lasso/Ridge)



predictive power:
competitive with “state to the art” maximum entropy modeling
from Yeo and Burge (2004)

correlation between true and predicted class

Logistic Group Lasso/Ridge 0.6593
max. entropy (Yeo and Burge) 0.6589

I our model is simple (not necessarily the method/algorithm)
and has clear interpretation

I it is as good or better than many of the complicated
non-Markovian stochastic process models
(e.g. Zhao, Huang and Speed (2004))



Alternative DNA splicing
DNA sequence: for a single gene

exon1 intron1 exon2 intron2 . . . exon5 intron5

“regular” splicing exon1 exon2 ... exon5
alternative splicing only some exons are spliced

(or spliced in a different order)

5 exons from gene “itpr1”:
we know whether exons have been spliced or not
data from full length cDNA libraries

tissue from adult cerebrum in rats and different developmental
stages of cerebellum in rats
(Emerick & Agnew, Johns Hopkins)

 contingency table(s) with 5 factors (from 5 exons)
each having two levels (spliced or not)

the table has many empty cells (“high-dimensional”)
(other problems involve 9 exons)



log-linear model for cell probabilities

log(cell probability) = intercept + main effects + interaction terms

with sum to zero constraints

use the relaxed Lasso for estimation selection of terms
Dahinden, Emerick, Parmigiani & PB (2006)
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I no second or higher-order interactions
I interaction pattern well conserved over different

developmental stages



with hierarchical Bayesian modeling (a lot of computing...!)
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I for suitable choice of the (one) hyperparameter
maximum a posteriori (MAP) similar to relaxed Lasso

I for other choices of the hyperparameter: markedly different
 tune Bayesian model such that MAP ≈ relaxed Lasso



Bayesian model

n ∼ Multinom(p), log(p) = Xβ

βj |γj ∼ (1− γj)I0 + γjN (0, σ2) independent for all j ’s

γj ∼ Bernoulli(1/2) independent for all j ’s

σ2 = 1 (or σ2 ∼ Γ−1(2, 3))

design matrix X encoded with dummies
sum-to-zero constraints for parameters

for hierarchical models:
I zero coefficients can be interpreted in terms of conditional

independence
I invariant under reparametrization

zero term remains zero term



in both biology problems:

we are “in a better position” to estimate
whether higher-order interactions exist or not

without good regularization and variable selection methods:
difficult to answer



Your own high-dimensional problem...

Two biosynthesis pathways in Arabidopsis Thaliana:
associations among 39 genes from n = 118 microarray exper.

Wille et al. (2004)
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Conclusions

especially for high-dimensional data:

I Lasso useful for variable filtering
it is computationally attractive: linear in dimensionality p
the “true model” is contained in the solution set of Lasso

I Relaxed Lasso (or similar two stage procedures)
often better prediction than Lasso
optimal penalty for prediction consistent model selection
sparser solutions than Lasso

I Software: efficient implementations in R
LARS algorithm for linear models (Hastie)
Group Lasso and Lasso for generalized linear models

(Meier)
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