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GLMMLasso: An Algorithm for High-Dimensional
Generalized Linear Mixed Models Using`1-Penalization

Jürg Schelldorfer, Lukas Meier and Peter Bühlmann∗

AXA Winterthur and ETH Z̈urich

November 20, 2012

Abstract

We propose aǹ1-penalized algorithm for fitting high-dimensional generalized linear mixed

models. Generalized linear mixed models (GLMMs) can be viewed as an extension of gener-

alized linear models for clustered observations. Our Lasso-type approach for GLMMs should

be mainly used as variable screening method to reduce the number of variables below the

sample size. We then suggest a refitting by maximum likelihood based on the selected vari-

ables only. This is an effective correction to overcome problems stemming from the variable

screening procedure which are more severe with GLMMs than for generalized linear models.

We illustrate the performance of our algorithm on simulated as well as on real data examples.

Supplemental materials are available online and the algorithm is implemented in theR package

glmmixedlasso.

Key Words: coordinate gradient descent; Laplace approximation; random-effects model;

variable selection.

1 Introduction

In recent years, high-dimensional linear regression models have been extensively studied. The

most popular method to achieve sparse estimates is the Lasso (Tibshirani, 1996), which uses an

∗Jürg Schelldorfer is Statistician (E-mail: juerg.schelldorfer@axa-winterthur.ch), AXA Winterthur, CH-8400 Win-
terthur, Switzerland, Lukas Meier is Senior Scientist (E-mail: meier@stat.math.ethz.ch), Peter Bühlmann is Professor
(E-mail: buhlmann@stat.math.ethz.ch), Seminar für Statistik, ETH Z̈urich, CH-8092 Z̈urich, Switzerland.
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`1-penalty. The Lasso is not only attractive in terms of its statistical properties but also due to its

fast computation solving a convex optimization problem. However, relatively few articles examine

high-dimensional regression problems involving a non-convex loss function, i.e. Khalili and Chen

(2007) and Sẗadler et al. (2010) for Gaussian mixture models, Pan and Shen (2007) and Witten and

Tibshirani (2010) for clustering and Witten and Tibshirani (2011) for linear discriminant analysis.

Generalized linear mixed models (McCullagh and Nelder, 1989; Breslow and Clayton, 1993;

McCulloch and Searle, 2001; Molenberghs and Verbeke, 2005) are an extension of generalized lin-

ear models by adding random effects to the linear predictor in order to accommodate for clustered

or overdispersed data. These models have received much attention in many applications such as

biology, ecology, medicine, pharmaceutical science and econometrics. Available software pack-

ages (lme4 in R, NLMIXED in SAS, among others) allow to fit a wide range of generalized linear

mixed models.

In this paper we develop a method for high-dimensional generalized linear mixed models. It is

based on a Lasso-type regularization with a cyclic coordinate descent optimization. Due to shrink-

age introduced bỳ1-penalization, our approach performs in a first step variable screening, thereby

selecting a set of candidate active variables. In other words, the proposed method primarily aims

at reducing the dimensionality of the high-dimensional GLMM. In a second step, we perform re-

fitting by maximum likelihood estimation to get accurate parameter estimates. The idea of such a

two-stage approach has been used in linear models (Efron et al., 2004) and it is related to the adap-

tive Lasso (Zou, 2006) and the thresholded Lasso (Zhou, 2010; van de Geer et al., 2011). In fact,

a two-stage approach is much more important than for linear models since shrinkage in GLMMs

can have a severe effect on the estimation of variance components, see Sections 4 and 5.

To the best of our knowledge, there does not exist any literature devoted to truly high-dimensional

generalized linear mixed models. Some papers focus on penalized variable selection procedures

in generalized mixed models with low-dimensional data: we refer to Yang (2007), Ibrahim et al.

(2010), Ni et al. (2010). Groll and Tutz (2012) have independently studied the same statistical

problem and have also used a Lasso-type approach but with a focus on rather low-dimensional

problems. Few papers focus on variable selection in generalized additive mixed models, for ex-

ample Xue et al. (2010) and Lai et al. (2012). Schelldorfer et al. (2011) present statistical theory
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and an algorithm for high-dimensional Gaussian linear mixed models, where computation is much

easier than in the generalized case.

The main contribution of the present paper is the construction and implementation of an ef-

ficient algorithm for`1-penalization in truly high-dimensional generalized linear mixed models,

called the GLMMLasso. We use the Laplace approximation (Bates, 2011b) and combine it with

efficient coordinate gradient descent methods (Tseng and Yun, 2009). Our algorithm is feasible for

problems where the number of variables is in the thousands and taking advantage of sparsity with

respect to dimensionality (i.e. only few active variables) is exploited by an active set strategy.

The rest of the article is organised as follows. In Section 2, we review the generalized linear

mixed model and introduce the GLMMLasso estimator. In Section 3, we describe the details of

the computational algorithm before advocating the two-stage GLMMLasso estimators in Section

4. In Section 5 and 6 we consider the performance of our methods on simulated and real data sets.

The article concludes with a discussion in Section 7. Supplemental materials including additional

simulation examples are available online.

2 Generalized linear mixed models and̀1-penalized estimation

In this section, we first look at the classical GLMM setting where the number of observations

is larger than the number of covariates, i.e.p < n. We closely follow Bates (2011a). Secondly,

we consider the high-dimensional framework, i.e.n� p, and present thè1-penalized maximum

likelihood estimator.

2.1 Model formulation

Suppose that the observations are not independent but grouped instead. Letr = 1, . . . ,N be the

grouping index andj = 1, . . . , nr the jth outcome within groupr. Denote byn the total number of

observations, i.e.n =
∑N

r=1 nr . Let X be then× p fixed-effects design matrix,Z then× q random-

effects design matrix,Y the n-dimensional random response vector andB be theq-dimensional

vector of random effects. We observey of Y whereasB is unobserved. The generalized linear

mixed model is specified by the unconditional distribution ofB and the conditional distribution of
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Y |B = b:

i) Yi |B = b are independent fori = 1, . . . , n.

ii) The distribution ofYi |B = b belongs to the exponential family with density

exp
{
φ−1

(
yiξi − b(ξi)

)
+ c(yi , φ)

}
,

whereb(.) andc(., .) are known functions.φ is the dispersion parameter (known or unknown)

andξi is associated with the conditional meanμi := E[Yi |B = b], i.e. ξi = ξi(μi).

iii) The conditional mean vectorμ depends onb through the known link functiong and the

linear predictorη = Xβ + Zb, with η = g(μ) componentwise. Here,β is the unknownp-

dimensional parameter vector, called fixed effects, andb the unknownq-dimensional vector

of random effects.

iv) B ∼ Nq(0,Σθ ) where the covariance matrixΣθ is parameterized by the unknown parameter

vectorθ ∈ Rd. We assume thatΣθ is positive semidefinite, i.e.Σθ ≥ 0. The dimensionality

d is typically small, sayd ≤ 10.

By usingB andΣθ in the definition above, we have already defined the random-effects structure

of the GLMM. To be more precise, we have specified which variables have an additional random

effect and how the structure ofΣθ looks like (e.g. multiple of the identity or diagonal). A discus-

sion of how to find these structures is beyond the scope of this paper.

Let us writeΣθ in terms of its Cholesky decompositionΣθ = ΛθΛ
T
θ and introduce the (unob-

served) random variableU defined byB := ΛθU whereU ∼ Nq(0,1q). Then the linear predictor

η can be written asη = Xβ +ZΛθu. We estimate the parametersβ, θ andφ (if unknown) by the

maximum likelihood method and predict the random effectsu.
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2.2 Likelihood function

Employing the notationξi(μi) = ξi(β,θ), the likelihood function of a GLMM is given by the

following expression:

L(β,θ, φ) =
∫

Rq

n∏

i=1

[

exp

{

φ−1
(
yiξi(β,θ) − b(ξi(β,θ))

)
+ c(yi , φ)

}]
1

(2π)q/2
exp

{
−

1
2
‖u‖22

}
du

=
1

(2π)q/2

∫

Rq
exp

{ n∑

i=1

(yiξi(β,θ) − b(ξi(β,θ))
φ

+ c(yi , φ)
)
−

1
2
‖u‖22

}

du. (1)

In general, the integral (1) can not be worked out analytically and numerical approximations are

required, see Skrondal and Rabe-Hesketh (2004), Molenberghs and Verbeke (2005) and Jiang

(2007).

2.3 The GLMMLasso estimator

We now turn to the high-dimensional setting where the number of fixed-effect variablesp is

much larger than the number of observationsn, i.e. we study the so-calledn� p setup.

Let us assume that the true underlying fixed-effects vectorβ0 is sparse in the sense that many

coefficients ofβ0 are zero. To enforce sparsity of our estimator, we advocate a Lasso-type ap-

proach. This means that we add an`1-penalty for the fixed-effects vectorβ to the likelihood

function. Thus, we are going to consider the following objective function:

Qλ(β,θ, φ) = −2 logL(β,θ, φ) + λ‖β‖1, (2)

whereλ ≥ 0 is a regularization parameter. Appropriate choices forλ are discussed in Section 4.

We aim at estimating the fixed-effect parameterβ, the covariance parameterθ, and if unknown

the dispersion parameterφ, by

(β̂, θ̂, φ̂) := arg min
β ,θ ,φ

Qλ(β,θ, φ). (3)

We call (3) the GLMMLasso estimator. Since the likelihood function (1) comprises analytically

intractable integrals (except for the Gaussian case), some approximations have to be used. We are

going to illustrate the algorithm using the Laplace approximation. For GLMMs, it is accurate with

low computational burden, as advocated by Bates (2011b). A thorough discussion of the accuracy
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and limitations of the Laplace approximation can be found in Joe (2008). Generally, the Laplace

approximation is used to calculate integrals of the form

I =
∫

Rq

e−S(u )du, (4)

whereS(u) is a known function of aq-dimensional variableu. Let

ũ = arg max
u
−S(u) (5)

(i.e.S′(ũ) = 0), then the Laplace approximation ofI is given by

I ≈ I LA = (2π)q/2|S′′(ũ)|−1/2e−S(ũ ). (6)

The modeũ in (5) is calculated by the penalized iterative least squares (PIRLS) algorithm. It is

presented in Bates (2011b) and described in the supplemental materials. The PIRLS algorithm

is related to the iterative reweighted least squares (IRLS) algorithm for obtaining the maximum

likelihood estimator in generalized linear models.

It should be noted that̃u depends onβ, θ andφ. From (1) and (6) we deduce that the Laplace

approximation of the objective functionQλ(.) in (2) is

QLA
λ (β,θ, φ) = − 2

n∑

i=1

{
yiξi(β,θ) − b(ξi(β,θ))

φ
+ c(yi , φ)

}

+ log |(ZΛθ )
TWβ ,θ ,φ(ZΛθ ) + 1q| (7)

+ ‖ũ(β,θ, φ)‖22 + λ‖β‖1,

whereWβ ,θ ,φ = diag−1
(
φv(μi(β,θ))g′(μi(β,θ))2

)n

i=1
and v(.) is the known conditional variance

function (McCullagh and Nelder, 1989). The estimator (3) is then approximated by

(β̂LA, θ̂LA, φ̂LA) := arg min
β ,θ ,φ

QLA
λ (β,θ, φ). (8)

We call (8) the GLMMLassoLA estimator. It is the approximation (8) to the objective function (3)

that is optimized to obtain the parameter estimates. Moreover, we would like to emphasize that (8)

is a non-convex function with respect to (β,θ, φ) consisting of a non-convex loss function and a

convex penalty.
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3 Computational algorithm

In this section, we present the computational algorithm to obtain the GLMMLassoLA estimator

(8). The algorithm is based on ideas from Tseng and Yun (2009) of the (block) coordinate gradient

descent (CGD) method. The notion of the CGD algorithm is that we cycle through components

of the full parameter vectorψ := (β,θ, φ) ∈ Rp+d+1 and minimize the objective functionQLA
λ (.)

only with respect to one parameter while keeping the other parameters fixed. In doing so we

calculate a quadratic approximation and perform an indirect line search to ensure that the objective

function decreases. (Block) CGD algorithms are used in Meier et al. (2008), Wu and Lange (2008),

Friedman et al. (2010) and Breheny and Huang (2011) and are now extremely popular in high-

dimensional penalized regression problems.

We first give an overview of the algorithm which solves minimization problem (8) exactly

before considering an approximate algorithm which finds a solution close to the exact minimizer

of (8). Finally, we present some details of the algorithm.

3.1 The exact GLMMLasso algorithm

We describe here an exact algorithm, called exact GLMMLasso (we notationally omit the in-

volved Laplace approximation), for the Laplace approximated objective function in (8). Let us

write (7) with a different notation to ease the presentation. Forψ = (β,θ, φ) ∈ Rp+d+1, define the

function

f (ψ) := −2
n∑

i=1

{
yiξi(β,θ) − b(ξi(β,θ))

φ
+ c(yi , φ)

}

+ log |(ZΛθ )
TWψ (ZΛθ ) + 1q| + ‖ũ(ψ)‖22.

Now (8) can be written aŝψLA
λ = arg minψ QLA

λ (ψ) := f (ψ) + λ‖β‖1. Let e j be the jth unit vector

and denote by (s) thesth iteration step. Moreover, we let

β(s) := (β(s)
1 , . . . , β

(s)
p )T , θ(s) := (θ(s)1 , . . . , θ

(s)
d )T , φ(s)

7
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

E
T

H
 Z

ur
ic

h]
 a

t 0
7:

10
 1

5 
A

ug
us

t 2
01

3 



ACCEPTED MANUSCRIPT

be the estimates ofβ, θ andφ in thesth iteration. Using the notation

β(s,s−1,βk) :=
(
β(s)

1 , . . . , β
(s)
k−1, βk, β

(s−1)
k+1 , . . . , β

(s−1)
p

)T
,

θ(s,s−1,θl ) :=
(
θ(s)1 , . . . , θ

(s)
l−1, θl , θ

(s−1)
l+1 , . . . , θ

(s−1)
d

)T
,

β(s,s−1;k) :=
(
β(s)

1 , . . . , β
(s)
k−1, β

(s−1)
k , β(s−1)

k+1 , . . . , β
(s−1)
p

)T
,

the exact GLMMLasso algorithm is summarized in Algorithm 1.

Particularly in the high-dimensional setting, the calculation of the quadratic approximation

requires a large amount of computing time. Therefore it is interesting to examine a much faster

approximate algorithm.

3.2 The (approximate) GLMMLasso algorithm

In the exact Algorithm 1 above, we consider in step (1) b) the modeũ as a function of the

parameters, i.e. ˜u = ũ(β,θ, φ). However, the calculation of the derivatives off (.) with respect

to βk is computationally intensive. This becomes a major issue in the high-dimensional setting

where a substantial amount of computing time is allocated to this particular part of the algorithm.

In addition, the exact GLMMLasso algorithm requires a large number of outer iterationss. To

attenuate these difficulties, we propose a slightly modified version of Algorithm 1. We suggest

performing the quadratic approximation and the inexact line search while consideringũ as fixed

and not depending onβk. Denoting byf (.|ũ) the functionf (.) for which ũ is considered as fixed,

the (approximate) GLMMLasso algorithm is given in Algorithm 2:

We illustrate in the supplemental materials that the approximate GLMMLasso algorithm speeds

up remarkably without loosing that much accuracy. Additionally, the approximation emphasizes

the importance of a refitting as advocated in the next section.

3.3 Convergence behaviour and details of the GLMMLasso algorithm

Numerical convergence.The convergence of the exact GLMMLasso algorithm to a stationary

point can be proofed using the results presented in Tseng and Yun (2009). It is worth pointing out

that in the low-dimensional framework, the exact GLMMLasso algorithm withλ = 0 (no penal-
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Algorithm 1 Exact GLMMLassoalgorithm

(0) Choose a starting valueψ(0) = (β(0),θ(0), φ(0)).

Repeatfor s= 1,2, . . .

(1) (fixed-effect parameter optimization)
For k = 1, . . . , p

a) (Laplace approximation)
Calculate the Laplace approximation

QLA
λ

(
β(s,s−1;k),θ(s−1), φ(s−1)

)
.

b) (Quadratic approximation and inexact line search)

i) Approximate the second derivative

∂2

∂β2
k

f
(
β(s,s−1,βk),θ(s−1), φ(s−1)

)∣∣∣∣
βk=β

(s−1)
k

by h(s)
k > 0 as described in the subsection below.

ii) Calculate the descent directiond(s)
k ∈ R

d(s)
k := arg min

d

{
f
(
β(s,s−1;k),θ(s−1), φ(s−1)

)
+
∂

∂βk
f
(
β(s,s−1,βk),θ(s−1), φ(s−1)

)∣∣∣∣
βk=β

(s−1)
k

d

+
1
2

d2h(s)
k + λ‖β(s,s−1;k) + dek‖1

}
.

iii) Choose a step sizeα(s)
k > 0 and setβ(s,s−1;k+1) = β(s,s−1;k) + α(s)

k d(s)
k ek such that

QLA
λ

(
β(s,s−1;k+1),θ(s−1), φ(s−1)

)
≤ QLA

λ

(
β(s,s−1;k),θ(s−1), φ(s−1)

)
.

(2) (Covariance parameter optimization)
For l = 1, . . . , d

θ(s)l = arg min
θl

QLA
λ

(
β(s),θ(s,s−1;θl ), φ(s−1)

)
.

(3) (Dispersion parameter optimization)

φ(s) = arg min
φ

QLA
λ

(
β(s),θ(s), φ

)
.

until convergence.

ization) gives the same results as the functionglmer in theR packagelme4.

(0) Starting valueψ(0). As starting value forβ, we fit a generalized linear model with the Lasso

where the regularization parameter is chosen by cross-validation. The initial values forθ andφ are

then calculated using steps (2) and (3) in Algorithm 1 and 2.
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Algorithm 2 (Approximate) GLMMLassoalgorithm
Denote by ˜u = ũ

(
β(s,s−1;k),θ(s−1), φ(s−1)). Replace in Algorithm 1 i) - iii) by

i’) Approximate the second derivative

∂2

∂β2
k

f
(
β(s,s−1,βk),θ(s−1), φ(s−1)

∣∣∣∣ũ
)∣∣∣∣
βk=β

(s−1)
k

by h(s)
k > 0 as described in the subsection below.

ii’) Calculate the descent directiond(s)
k ∈ R

d(s)
k := arg min

d

{
f
(
β(s,s−1;k),θ(s−1), φ(s−1)

∣∣∣∣ũ
)
+
∂

∂βk
f
(
β(s,s−1,βk),θ(s−1), φ(s−1)

∣∣∣∣ũ
)∣∣∣∣
βk=β

(s−1)
k

d

+
1
2

d2h(s)
k + λ‖β(s,s−1;k) + dek‖1

}
.

iii’) Choose a step sizeα(s)
k > 0 and setβ(s,s−1;k+1) = β(s,s−1;k) + α(s)

k d(s)
k ek such that

QLA
λ

(
β(s,s−1;k+1),θ(s−1), φ(s−1)

∣∣∣ũ
)
≤ QLA

λ

(
β(s,s−1;k),θ(s−1), φ(s−1)

∣∣∣ũ
)
.

i) Choice of h(s)k . For h(s)
k we choose thekth diagonal element of the Fisher information of a

generalized linear model. Hence we use the second derivative of the first summand in (7). We set

cmin ≤ h(s)
k ≤ cmax for positive constantscmin andcmax (e.g.cmin = 10−5 andcmax = 105) in order that

the algorithm converges (Tseng and Yun, 2009).

ii) Calculation of d(s)
k . The valued(s)

k is the minimizer of the quadratic approximation of the

objective functionQLA
λ (.) and analytically given by (Tseng and Yun, 2009)

d(s)
k =





median

(
λ − ∂/∂βk fβk

h(s)
k

,−βk,
−λ − ∂/∂βk fβk

h(s)
k

)

if βk penalized

−
∂/∂βk fβk

h(s)
k

otherwise,

(9)

where fβk = f
(
β(s,s−1;k),θ(s−1), φ(s−1)) in Algorithm 1 andfβk = f

(
β(s,s−1;k),θ(s−1), φ(s−1)

∣∣∣ũ
)

in Algo-

rithm 2.

iii) Choice ofα(s)
k . The step lengthα(s)

k is chosen such that the objective functionQLA
λ (.) de-

creases. We suggest to use the Armijo rule, which is defined for Algorithm 1 as follows (and
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correspondingly for Algorithm 2 with fixed ˜u):

Armijo rule: Chooseαinit
k > 0 and letα(s)

k be the largest element of{αinit
k δ

l}l=0,1,2,.. satisfying

QLA
λ

(
β(s,s−1;k) + α(s)

k d(s)
k ek,θ

(s−1), φ(s−1)
)
≤ QLA

λ

(
β(s,s−1;k),θ(s−1), φ(s−1)

)
+ α(s)

k %4
k

where4k := ∂/∂βk fβkd
(s)
k + γ(d(s)

k )2h(s)
k + λ‖β(s,s−1;k) + d(s)

k ek‖1 − λ‖β(s,s−1;k)‖1.

The choice of the constants comply with the suggestions in Bertsekas (1999), e.g.αinit
k = 1,δ = 0.5,

% = 0.1 andγ = 0.

Active Set Algorithm.If we assume that the true fixed-effect parameterβ0 is sparse in the sense

that many elements are zero, we can reduce the computing time remarkably by using an active set

algorithm. This is also used in Meier et al. (2008) and Friedman et al. (2010). In particular, we

only cycle through allp coordinates everyDth iteration, otherwise only through the current active

setS(β̂(s−1)) = {k : β̂(s−1)
k , 0}. Typical values forD are 5 and 10.

An implementation of the algorithm is given in theR packageglmmixedlasso and will be

made available on R-Forge (http://r-forge.R-project.org/).

4 The two-stage GLMMLassoLA estimator(s)

From the soft-thresholding property of the Lasso in linear models (Tibshirani, 1996) and in

Gaussian linear mixed models (Schelldorfer et al., 2011), the fixed-effect estimateβ̂ is biased

towards zero. In some generalized linear mixed models the estimate of the covariance parameter

θ is biased, too. To mitigate these bias problems and the approximation error induced by using

the approximate GLMMLasso algorithm, we advocate a two-stage procedure. The first step aims

at estimating a candidate set of predictorsŜ and can be seen as a variable screening procedure.

The purpose of the second step is a more unbiased estimation of the parameters using unpenalized

maximum likelihood (ML) estimation based on the selected variablesŜ from the first step. The

proposed two-stage GLMMLasso algorithm is summarized in Algorithm 3:
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Algorithm 3 Two-stage GLMMLassoalgorithm

Stage 1: Compute the GLMMLassoLA estimate (8) and the setŜ.

Stage 2: Perform unpenalized ML estimation.

In the next subsections, we are going to discuss the specification of the set of variablesŜ.

We propose two methods from the high-dimensional linear regression framework, and we do not

consider the adaptive Lasso (Zou, 2006).

4.1 The GLMMLassoLA-MLE hybrid estimator

The LARS-OLS hybrid estimator was examined in Efron et al. (2004) and also used in Mein-

shausen and B̈uhlmann (2006) and Meier et al. (2008). In our context, it becomes a two-stage

procedure where the model is refitted including only the covariates with a nonzero fixed-effect

coefficient in β̂init , where (β̂init , θ̂init , φ̂init) denotes the initial estimate from (8). More specifically,

chooseŜ = Ŝinit := {k : |β̂k,init , 0}. Then the GLMMLassoLA-MLE hybrid estimator is given by

(β̂, θ̂, φ̂)hybrid := arg min
β Ŝinit

,θ ,φ

−2 logL(βŜinit
,θ, φ), (10)

where forS ⊆ {1, . . . , p}, (βS)k = βk if k ∈ S and (βS)k = 0 if k < S.

4.2 The thresholded GLMMLassoLA estimator

The thresholded Lasso with refitting in high-dimensional linear regression models was exam-

ined in van de Geer et al. (2011) and Zhou (2010). We define the setŜthres to be the set of variables

which have initial fixed-effect coefficients larger than some thresholdλthres > 0, i.e. we choose

Ŝ = Ŝthres := {k : |β̂k,init | > λthres}. The thresholded GLMMLassoLA estimator is then defined by

(β̂, θ̂, φ̂)thres := arg min
β Ŝthres

,θ ,φ

−2 logL(βŜthres
,θ, φ). (11)

The thresholded GLMMLassoLA estimator involves another regularization parameterλthres, which

is determined by minimizing an information criterion presented in the next subsection.
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4.3 Selection of the regularization parameters

Estimators (8), (10) and (11) require the choice of the regularization parametersλ andλthres,

respectively. We propose to use the Bayesian Information Criterion (BIC) and the Akaike Infor-

mation Criterion (AIC), defined by

cn,λ = −2 logL(β̂, θ̂, φ̂) + a(n) ∙ d̂ fλ (12)

wherea(n) = log(n) for the BIC anda(n) = 2 for the AIC. Here,d̂ fλ = |{1 ≤ k ≤ p : β̂k ,

0}| + dim(θ̂) is the sum of of the number of nonzero fixed-effect coefficients and the number of

covariance parameters. The first summand is motivated by the work of Zou et al. (2007). The

second summand is the approach of Bates (2010), who proposes that in the classical generalized

mixed effects model the degrees of freedom are given by the number of unconstrained optimization

parameters. Based on our empirical experience, we suggest for the estimators (8) and (10) the BIC,

whereas for (11) we advocate using the AIC (allowing for a larger number of variables) to selectλ

first and then, sequentially, the BIC to selectλthres. We will compare the performance of the three

estimators in the next sections.

5 Simulation Study

In this section we assess the performance of the GLMMLassoLA estimators (8), (10) and

(11). We compare them with appropriate Lasso, maximum likelihood (ML) and Penalized Quasi-

Likelihood (PQL, Breslow and Clayton (1993)) methods.

In the main text, we only present simulation results for the high-dimensional logistic mixed

model. Simulation studies for the low-dimensional logistic and the Poisson mixed model are in-

cluded in the supplementary material. At the end of this section, we compare the GLMMLassoLA

estimates in a situation where the number of noise variables grows successively.

First of all, let us summarize some general conclusions drawn from real data analysis and the

simulation studies:

a) The variable screening performance of the GLMMLasso algorithm is not only attractive

for the high-dimensional setting, but also for low-dimensional data with a relatively large
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number of variables (sayp > 20).

b) The GLMMLasso algorithm is numerically as stable as standardR functions likeglmer

(Bates, 2010) orglmmPQL (Breslow and Clayton, 1993; Venables and Ripley, 2002) when

p < n. On the other hand,glmpath (Park and Hastie, 2007) andglmnet (Friedman et al.,

2010) may fail to converge when high-dimensional models are misspecified.

c) The main difference between the logistic and the Poisson mixed model is the shrinkage of

the covariance parameter estimates of the GLMMLassoLA estimator. These estimates are

severely biased in logistic mixed models, in contrast to the Poisson mixed model. Further

differences between these two classes are summarized in the supplemental materials.

d) The number of iterationss substantially differs between the classes of generalized linear

mixed models and the data set.

5.1 Preview for the logistic mixed model

In this section we confine the discussion to the logistic mixed model because it is viewed as

the most challenging model within the class of generalized linear mixed models (Molenberghs and

Verbeke, 2005; Jiang, 2007). As an overview, let us sum up the main findings from the simulation

study in the logistic mixed model:

i) The GLMMLassoLA estimate from (8) of the covariance parameterθ is notably biased. In

other words, adding aǹ1-penalty does not only shrink the fixed effects estimatêβ, but also

the covariance parameter estimateθ̂.

ii) In the high-dimensional settings, the GLMMLassoLA-MLE hybrid estimator (10) performs

better in terms of parameter estimation accuracy than the thresholded GLMMLassoLA esti-

mator (11).

iii) The more random effects, the more important it is to use the GLMMLassoLA for variable

screening (instead of a Lasso ignoring the grouping structure).

iv) The number of total iterationss needed is small, often about 15 iterations.
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5.2 High-dimensional logistic mixed model

In all subsequent simulation schemes (including the supplemental materials), we restrict our-

selves to the case where the number of observations per cluster is equal, i.e.nr = nC for r =

1, . . . ,N. The covariates are generated from a multivariate normal distribution with mean zero and

covariance matrixV with pairwise correlationVkk′ = ρ
|k−k′| andρ = 0.2. Denote byβ0 the true

fixed effects (wherein (β0)1 is the intercept) and bys0 the true number of nonzero fixed-effect co-

efficients.

For the logistic mixed models, the intercept and the first covariate have independent ran-

dom effects with different variance parameters. In particular,θ = (θ1, θ2) and covariance matrix

Σθ = diag(θ21, , . . . , θ
2
1, θ

2
2, . . . , θ

2
2) ∈ R

2N, i.e. q = 2N. We investigate the following two examples

in the high-dimensional setting:

H1: N = 40,nC = 10,n = 400,p = 500,θ21 = θ22 = 1 ands0 = 5 with β0 = (0.1,1,−1, 1,−1, 0, . . . , 0)T .

H2: N = 50,nC = 10,n = 500,p = 1500,θ21 = θ22 = 1 ands0 = 5 with β0 = (0.1,1,−1, 1,−1, 0, . . . , 0)T .

The fitted models are all correctly specified. Hereafter, we denote byoracle the ML estimate

of the model which includes only the variables from the true active set. Letglmmlasso, hybrid

glmmlassoandthres glmmlassobe the GLMMLassoLA estimates (8), (10) and (11), respectively.

We compare the GLMMLassoLA methods with the standard Lasso for generalized linear models

(which ignore the grouping structure). For that purpose we use theglmpathalgorithm (Park and

Hastie, 2007) and the BIC as variable selection criterion. Then, lethybrid glmpathand thres

glmpathbe the two-stage procedures based onglmpath(without random effects).

The results in the form of median and rescaled median absolute deviation (in parentheses) over

100 simulation runs are shown in Table 1. There,|S(β̂)| denotes the cardinality of the estimated

active set and TP is the number of true positives (selected variables which are in the true active

set). SE is the squared error of the fixed-effect coefficients, i.e. SE= ‖β̂ − β0‖22.

Comparing the cardinality of the active set, we see thatthres glmmlassoand thres glmpath

have much larger active sets thanglmmlassoandglmpath, respectively. This is largely due to the

fact that we employ the AIC in the first and the BIC in the second stage. This is outweighed by

the advantage that on average (not shown), the true effects are predominantly included inthres

glmmlasso. The active set ofglmmlassois slightly smaller than that ofglmpath. And yet, the
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number of TP is similar as forglmpath. Hence, we conclude that the existence of random effects

does affect the variable selection performance ofglmpath.

Concerning covariance parameter estimation, we read off from the table that̂θ21 and θ̂22 are

seriously biased forglmmlasso. This motivates the usage of a two-stage procedure. The table

suggests that the hybrid and the thresholded procedures have improved estimation accuracy of the

random effects parameters compared to their original counterparts.

Looking at the fixed-effect parameter estimation accuracy, the simulation study reveals that the

glmmlassoestimates are less biased than the correspondingglmpathestimates, resulting in lower

squared error. And the same holds forhybrid glmmlassoandhybrid glmpath. The fixed-effect

parameter estimates ofthres glmmlassoandthres glmpathperform inadequately compared to their

hybrid counterparts. As marked by an asterisk in the table,β2 is not subject to penalization for the

GLMMLassoLA estimator since this variable has a random effect (Schelldorfer et al., 2011). Thus

the bias of the estimate is much smaller than for the other fixed-effect coefficients.

To sum up the simulation study, we first conclude thathybrid glmmlassooutperformsthres

glmmlassoin terms of parameter estimation accuracy, with similar performance regarding true

positives. Second,glmmlassoprocedures do outperformglmpathprocedures as variable screening

methods. Of course,glmpathis fitting a wrong model without random effects.

5.3 Logistic mixed model with a growing number of noise covariates

Here, we assess the performance ofglmmlassoandhybrid glmmlassowhen the number of noise

variables grows successively. In the low-dimensional setting, we compare them with the ML esti-

mate computed by theR functionglmer (denoted byglmer). In addition, letp-glmerbe the method

which performs variable selection in the following way: Eliminate consecutively (backward selec-

tion) all variables with a p-value larger than 5% until the final model is attained comprising only

significant variables. We compare these four methods in terms of their performance of twice the

negative out-of-sample log-likelihood. Let us fix the following random intercept model design:

n = 400,N = 40,nC = 10,θ2 = 1, β0 = (0,1,−1,1,−1). We start withp = 5 (no noise variables)

and raise the number of variables top = 65. The results over 50 simulation runs are depicted in

Figure 1.
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The figures show that the negative out-of-sample log-likelihood values forglmergrow polyno-

mial whereas the likelihoods for the other methods remain fairly constant. The increase inglmer

stems from the fact that it overfits the model for a growing number of covariates. When focusing

on the figures in more detail, we read off that the negative log-likelihood ofglmmlassoincreases

slightly for largerp whereas the negative log-likelihood ofhybrid glmmlassoremains stable. The

rationale for this small increase inglmmlassois that the more noise covariates, the larger the opti-

mal λ, and henceforth the larger the shrinkage of the fixed effects. And this leads to the increase

of the out-of-sample log-likelihood.hybrid glmmlasso(and alsothres glmmlasso) overcomes this

problem and leads to a stable out-of-sample log-likelihood irrespective ofp.

5.4 Correlated Random Effects

Both from a methodological and an implementational point of view it is conceptually possible

to use correlated random effects. As an illustration we use the logistic mixed modelH1 with

correlated random effects (with unstructured covariance matrix) where we use a correlation of

ρ = 0.5 between the two random effects. The corresponding results are illustrated in Table 2.

The results are very similar to the uncorrelated case. However, the bias of the correlation estimate

seems to be less severe than the bias of the variance components.

6 Illustration

In this section we illustrate the proposed GLMMLassoLA estimators for Poisson regression on

an extended real data set with count data.

Data description.We consider the epilepsy data from Thall and Vail (1990) which were also

analyzed by Breslow and Clayton (1993). The data were obtained from a randomized clinical trial

of 59 patients with epilepsy, comparing a new drug (Trt=1) with placebo (Trt=0). The response

variable consists of counts of epileptic seizures during the two weeks before each of four clinic

visits (V4=1 for fourth visit, 0 otherwise). Further covariates in the analysis are the logarithm of

age (Age), the logarithm of 1/4 the number of baseline seizures (Base) and the interaction of Base
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and Trt (Base x Trt). The main question of interest is whether taking the new drug reduces the

number of epileptic seizures compared with placebo. In order to assess the performance of the

proposed procedure with high-dimensional data, we addU(−1,1) distributed noise predictors to

get a data set withn = 236, N = 59, nr = 4 for r = 1, . . . ,N and p = 4000. All predictors are

standardized to have mean zero and standard deviation one.

Model. Model III in Breslow and Clayton (1993) is a two level GLMM (Bates, 2010), which

is an extension of the single level GLMM introduced in Section 2 for more than one grouping

variable. The model consists of two independent random intercept effects. One for subject (level

1, indexr) and one for observation (level 2, indexj). Letθ2subandθ2obsbe the corresponding variance

parameters. Then the linear predictor can be written as

log(μr j ) = ηr j = xT
r jβ + θsubur + θobsur j r = 1, . . . , 59, j = 1, . . . , 4.

Results.The results of the analysis are presented in Table 3. In the first column we show the

estimates for Model III without performing variable selection. There, Intercept, Base and Trt are

significant at the 5% level (indicated by†). If we perform backward selection using the BIC, we

end up with a model including Intercept and Base only. And this model coincides with the one

selected byglmmlasso. Hybrid glmmlassoovercomes the bias problems ofglmmlassoand it yields

a better model in terms of the BIC.Thres glmmlassoincludes additional noise variables, thereby

achieving the smallest BIC score for all models under consideration. Comparinghybrid glmmlasso

andthres glmmlasso, the table suggests that the additional covariates in the latter model reduce the

variability while keeping the fixed-effect estimates unaltered.

7 Concluding Remarks

We address the problem of estimating high-dimensional generalized linear mixed models (GLMMs).

While low-dimensional generalized linear mixed models (Bates, 2010) and high-dimensional gen-

eralized linear models (van de Geer, 2008) have been extensively studied in recent years, little

attention has been devoted to high-dimensional GLMMs. We provide an efficient algorithm for the
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`1-penalized maximum likelihood estimator, called GLMMLasso. It is based on the Laplace ap-

proximation, coordinatewise optimization and a speeding up approximation. The method should be

typically used as a screening procedure to estimate a small set of important variables. We propose

refitting by maximum likelihood to get accurate parameter estimates. The second stage is much

more important than for linear models, because`1-shrinkage can lead to severe bias problems for

the estimation of the variance components. Our work is primarily a contribution addressing the

numerical challenges of performing high-dimensional variable selection and parameter estimation

in nonlinear mixed-effects models involving a non-convex loss function. An implementation of the

algorithm can be found in ourR packageglmmixedlasso. It will be made available on R-Forge.

SUPPLEMENTAL MATERIALS

All the following supplemental files can be obtained as a single zip file online (glmmlasso.zip):

Appendices: Details of the PIRLS algorithm, the comparison of the exact and approximate GLMM-

Lasso algorithm and additional simulation studies.(glmmlasso sm.pdf)

Data set: The extended epilepsy data set used in Section 6. (epilepsy.txt)

R-package for GLMMLasso : R-packageglmmixedlasso containing code to perform the GLMM-

Lasso algorithm. (glmmixedlasso-0.1-2.tar.gz)
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Table 1:Simulation results (medians) for the logistic mixed models H1 and H2 (rescaled median
absolute deviations in parentheses). A∗ means that the corresponding coefficient is not subject to
penalization in the GLMMLassoLA estimate.

Model Method |S(β̂)| TP θ̂21 θ̂22 β̂∗1 β̂∗2 β̂3 β̂4 β̂5 SE
True 5 5 1 1 0.1 1 -1 1 -1

H1 oracle 5 5 0.85 0.86 0.07 1.04 -0.99 0.98 -1.01 0.14
(0) (0) (0.4) (0.59) (0.2) (0.25) (0.22) (0.18) (0.14) (0.088)

glmmlasso 6 5 0.38 0.37 0.06 0.66 -0.3 0.26 -0.34 1.6
(1.48) (0) (0.24) (0.3) (0.14) (0.16) (0.14) (0.14) (0.12) (0.42)

glmpath 7 5 - - 0.04 0.24 -0.21 0.22 -0.28 2.4
(2.22) (0) - - (0.13) (0.12) (0.11) (0.1) (0.1) (0.52)

hybrid glmmlasso 6 5 0.89 0.87 0.08 1.05 -0.99 1 -1.03 0.44
(1.48) (0) (0.43) (0.58) (0.19) (0.25) (0.23) (0.18) (0.16) (0.32)

hybrid glmpath 7 5 0.86 0.87 0.08 1.01 -0.99 0.99 -1.02 0.7
(2.22) (0) (0.42) (0.53) (0.2) (0.28) (0.24) (0.19) (0.16) (0.64)

thres glmmlasso 10 5 1.02 1.11 0.1 1.19 -1.09 1.11 -1.13 1.3
(3.71) (0) (0.7) (0.85) (0.22) (0.29) (0.23) (0.2) (0.19) (0.77)

thres glmpath 10 5 0.91 0.94 0.09 1.11 -1.07 1.11 -1.1 1.1
(2.97) (0) (0.49) (0.59) (0.21) (0.27) (0.25) (0.19) (0.2) (0.73)

H2 oracle 5 5 0.89 0.94 0.11 1.02 -0.98 1.02 -1.02 0.13
(0) (0) (0.4) (0.53) (0.18) (0.25) (0.15) (0.18) (0.16) (0.1)

glmmlasso 6 5 0.39 0.41 0.09 0.66 -0.31 0.27 -0.34 1.6
(1.48) (0) (0.23) (0.28) (0.13) (0.17) (0.1) (0.11) (0.09) (0.27)

glmpath 6.5 5 - - 0.08 0.23 -0.21 0.21 -0.28 2.4
(0.74) (0) - - (0.11) (0.13) (0.08) (0.11) (0.08) (0.34)

hybrid glmmlasso 6 5 0.93 0.96 0.12 1.02 -0.99 1.05 -1.04 0.34
(1.48) (0) (0.44) (0.51) (0.19) (0.26) (0.15) (0.17) (0.16) (0.3)

hybrid glmpath 6.5 5 0.87 0.94 0.12 1.01 -0.99 1.03 -1.04 0.48
(0.74) (0) (0.42) (0.5) (0.18) (0.22) (0.15) (0.18) (0.17) (0.37)

thres glmmlasso 14 5 1.3 1.33 0.16 1.26 -1.16 1.2 -1.22 2
(5.93) (0) (0.87) (0.79) (0.27) (0.27) (0.28) (0.26) (0.24) (1.7)

thres glmpath 13.5 5 0.9 1.03 0.17 1.17 -1.07 1.13 -1.15 1.8
(5.19) (0) (0.52) (0.64) (0.24) (0.25) (0.19) (0.22) (0.21)(1.2)
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Table 2:Simulation results (medians) for the logistic mixed models H1 (rescaled median absolute
deviations in parentheses). A∗ means that the corresponding coefficient is not subject to penaliza-
tion in the GLMMLassoLA estimate.

Model Method |S(β̂)| TP θ̂21 θ̂22 ρ̂ β̂∗1 β̂∗2 β̂3 β̂4 β̂5 SE
True 5 5 1 1 0.5 0.1 1 -1 1 -1

H1 oracle 5 5 0.88 0.94 0.53 0.1 0.97 -1.03 1.02 -1.01 0.14
(0) (0) (0.46) (0.54) (0.37) (0.18) (0.24) (0.17) (0.15) (0.15) (0.1)

glmmlasso 6 5 0.41 0.41 0.63 0.07 0.66 -0.33 0.28 -0.34 1.6
(1.48) (0) (0.22) (0.25) (0.51) (0.14) (0.16) (0.12) (0.11) (0.11)(0.35)
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Table 3: Results for the epilepsy data. Model III is based on 6 fixed-effect covariates while the
other methods are based on p= 4000variables, including 3994 noise covariates.† indicates that
the corresponding coefficient is significant at the5% level. ‡ means that five noise variables are
selected, but not shown in the table. S(β̂) = {k : β̂k , 0} is the total number of selected variables.

Model III glmmlasso hybrid glmmlasso thresglmmlasso
BIC 527.3 571.8 515.5 480.3
S(β̂) 6 2 2 7‡

Intercept 1.58† 1.62 1.58 1.58
Base 0.66† < 10−4 0.74 0.75
Trt −0.47† - - -
Base x Trt 0.36 - - -
Age 0.11 - - -
V4 -0.04 - - -
θ̂2sub 0.21 0.68 0.25 0.28
θ̂2obs 0.13 0.12 0.13 0.04
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Figure 1: Minus twice out-of-sample log-likelihood for a growing number of covariates. The
ML estimate performs badly whereas the GLMMLassoLA estimators remain stable, and they are
comparable to the p-glmer in the low-dimensional framework.
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