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GLMMLasso: An Algorithm for High-Dimensional
Generalized Linear Mixed Models Usidg-Penalization

Jurg Schelldorfer, Lukas Meier and PeteailBmann®
AXA Winterthur and ETH Zirich

November 20, 2012

Abstract

We propose afh-penalized algorithm for fitting high-dimensional generalized linear mixed
models. Generalized linear mixed models (GLMMSs) can be viewed as an extension of gener-
alized linear models for clustered observations. Our Lasso-type approach for GLMMs should
be mainly used as variable screening method to reduce the number of variables below the
sample size. We then suggest a refitting by maximum likelihood based on the selected vari-
ables only. This is anfeective correction to overcome problems stemming from the variable
screening procedure which are more severe with GLMMs than for generalized linear models.
We illustrate the performance of our algorithm on simulated as well as on real data examples.
Supplemental materials are available online and the algorithm is implementeRipaickage

glmmixedlasso.

Key Words: coordinate gradient descent; Laplace approximation; randéeote model;

variable selection.

1 Introduction

In recent years, high-dimensional linear regression models have been extensively studied. The

most popular method to achieve sparse estimates is the Lasso (Tibshirani, 1996), which uses an

*Jurg Schelldorfer is Statistician (E-mail: juerg.schelldorfer@axa-winterthur.ch), AXA Winterthur, CH-8400 Win-
terthur, Switzerland, Lukas Meier is Senior Scientist (E-mail: meier@stat.math.ethz.ch), BlelteaBn is Professor
(E-mail: buhlmann@stat.math.ethz.ch), SemitmStatistik, ETH Zirich, CH-8092 Zirich, Switzerland.
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{1-penalty. The Lasso is not only attractive in terms of its statistical properties but also due to its
fast computation solving a convex optimization problem. However, relatively few articles examine

high-dimensional regression problems involving a non-convex loss function, i.e. Khalili and Chen

(2007) and Sidler et al. (2010) for Gaussian mixture models, Pan and Shen (2007) and Witten and
Tibshirani (2010) for clustering and Witten and Tibshirani (2011) for linear discriminant analysis.

Generalized linear mixed models (McCullagh and Nelder, 1989; Breslow and Clayton, 1993;
McCulloch and Searle, 2001; Molenberghs and Verbeke, 2005) are an extension of generalized lin-
ear models by adding randorffects to the linear predictor in order to accommodate for clustered
or overdispersed data. These models have received much attention in many applications such as
biology, ecology, medicine, pharmaceutical science and econometrics. Available software pack-
ages [me4 in R, NLMIXED in SAS, among others) allow to fit a wide range of generalized linear
mixed models.

In this paper we develop a method for high-dimensional generalized linear mixed models. Itis
based on a Lasso-type regularization with a cyclic coordinate descent optimization. Due to shrink-
age introduced by, -penalization, our approach performs in a first step variable screening, thereby
selecting a set of candidate active variables. In other words, the proposed method primarily aims
at reducing the dimensionality of the high-dimensional GLMM. In a second step, we perform re-
fitting by maximum likelihood estimation to get accurate parameter estimates. The idea of such a
two-stage approach has been used in linear models (Efron et al., 2004) and it is related to the adap-
tive Lasso (Zou, 2006) and the thresholded Lasso (Zhou, 2010; van de Geer et al., 2011). In fact,
a two-stage approach is much more important than for linear models since shrinkage in GLMMs
can have a severdtect on the estimation of variance components, see Sections 4 and 5.

To the best of our knowledge, there does not exist any literature devoted to truly high-dimensional
generalized linear mixed models. Some papers focus on penalized variable selection procedures
in generalized mixed models with low-dimensional data: we refer to Yang (2007), lIbrahim et al.
(2010), Ni et al. (2010). Groll and Tutz (2012) have independently studied the same statistical
problem and have also used a Lasso-type approach but with a focus on rather low-dimensional
problems. Few papers focus on variable selection in generalized additive mixed models, for ex-
ample Xue et al. (2010) and Lai et al. (2012). Schelldorfer et al. (2011) present statistical theory
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and an algorithm for high-dimensional Gaussian linear mixed models, where computation is much
easier than in the generalized case.

The main contribution of the present paper is the construction and implementation of an ef-
ficient algorithm for¢;-penalization in truly high-dimensional generalized linear mixed models,
called the GLMMLasso. We use the Laplace approximation (Bates, 2011b) and combine it with
efficient coordinate gradient descent methods (Tseng and Yun, 2009). Our algorithm is feasible for
problems where the number of variables is in the thousands and taking advantage of sparsity with
respect to dimensionality (i.e. only few active variables) is exploited by an active set strategy.

The rest of the article is organised as follows. In Section 2, we review the generalized linear
mixed model and introduce the GLMMLasso estimator. In Section 3, we describe the details of
the computational algorithm before advocating the two-stage GLMMLasso estimators in Section
4. In Section 5 and 6 we consider the performance of our methods on simulated and real data sets.
The article concludes with a discussion in Section 7. Supplemental materials including additional

simulation examples are available online.

2 Generalized linear mixed models and;-penalized estimation

In this section, we first look at the classical GLMM setting where the number of observations
is larger than the number of covariates, pe< n. We closely follow Bates (2011a). Secondly,
we consider the high-dimensional framework, nex p, and present thé&-penalized maximum

likelihood estimator.

2.1 Model formulation

Suppose that the observations are not independent but grouped insteiad. Let., N be the
grouping index ang = 1, ..., n, the jth outcome within group. Denote byn the total number of
observations, i.en = Y, n.. Let X be then x p fixed-efects design matrixZ then x g random-
effects design matrixy the n-dimensional random response vector @de theg-dimensional
vector of random #ects. We observg of ¥ whereasB is unobserved. The generalized linear

mixed model is specified by the unconditional distributioro&nd the conditional distribution of
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Y|B =b:
1) Yi|B = b are independent far=1,...,n.

i) The distribution ofY;|8 = b belongs to the exponential family with density

exple(yi&i - b(&)) + cvi, 9)),

whereb(.) andc(., .) are known functionsg is the dispersion parameter (known or unknown)

andé is associated with the conditional megan= E[Y;|B = b], i.e. & = &(u;).

iii) The conditional mean vector depends orb through the known link functiog and the
linear predictom = X3 + Zb, with n = g(u) componentwise. Hergj is the unknownp-
dimensional parameter vector, called fixéteets, and the unknowrg-dimensional vector

of random &ects.

Iv) B ~ Ny(0, Xy) where the covariance matrk, is parameterized by the unknown parameter
vectord € RY. We assume thd, is positive semidefinite, .83, > 0. The dimensionality

d is typically small, sayd < 10.

By using8 andX, in the definition above, we have already defined the randfdects structure
of the GLMM. To be more precise, we have specified which variables have an additional random
effect and how the structure &I, looks like (e.g. multiple of the identity or diagonal). A discus-
sion of how to find these structures is beyond the scope of this paper.

Let us writeX in terms of its Cholesky decompositidy = Ay Ag and introduce the (unob-
served) random variabi®f defined byB := AyU whereld ~ Ny(0, 14). Then the linear predictor
n can be written ag = X 3+ ZAyu. We estimate the parametg¥s@ and¢ (if unknown) by the

maximum likelihood method and predict the randoffie etswu.
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2.2 Likelihood function

Employing the notatiow;(u;) = & (3, ), the likelihood function of a GLMM is given by the
following expression:

L(B.6.¢) = fR q l_ll [eXp{¢_1(Yi§i (8.6) - b(&(8.6))) + c{yi, ¢)}]ﬁ exp| - %nuué}du

] (z,riq/z fR oo { 3 (46(5.0) - (.0, o ) - %Hu“%}du. (1)
i=1

In general, the integral (1) can not be worked out analytically and numerical approximations are
required, see Skrondal and Rabe-Hesketh (2004), Molenberghs and Verbeke (2005) and Jiang
(2007).

2.3 The GLMMLasso estimator

We now turn to the high-dimensional setting where the number of fifédtevariablesp is
much larger than the number of observatianse. we study the so-called< p setup.

Let us assume that the true underlying fixdéfkets vecto3, is sparse in the sense that many
codficients of 3y are zero. To enforce sparsity of our estimator, we advocate a Lasso-type ap-
proach. This means that we add &npenalty for the fixed-#ects vector3 to the likelihood

function. Thus, we are going to consider the following objective function:

Q/I(IB’ 0’ ¢) =-2 |Og L(/B’ 0’ ¢) + /1||/8||1’ (2)

whered > 0 is a regularization parameter. Appropriate choicestfare discussed in Section 4.
We aim at estimating the fixed¥ect paramete8, the covariance paramet#yand if unknown

the dispersion parameter by
(B.0.9) := arg minQu(4, 9, ¢). (3)
0.6

We call (3) the GLMMLasso estimator. Since the likelihood function (1) comprises analytically
intractable integrals (except for the Gaussian case), some approximations have to be used. We are
going to illustrate the algorithm using the Laplace approximation. For GLMMs, it is accurate with

low computational burden, as advocated by Bates (2011b). A thorough discussion of the accuracy
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and limitations of the Laplace approximation can be found in Joe (2008). Generally, the Laplace

approximation is used to calculate integrals of the form

| = f oSy, (4)
R

whereS(u) is a known function of @-dimensional variables. Let

u = arg max-S(u) (5)

u

(i.e.S’(u) = 0), then the Laplace approximation lois given by
| ~ ILA — (2ﬂ)q/2|S"(ﬂ,)|_1/2€_s(d). (6)

The modeu in (5) is calculated by the penalized iterative least squares (PIRLS) algorithm. It is
presented in Bates (2011b) and described in the supplemental materials. The PIRLS algorithm
is related to the iterative reweighted least squares (IRLS) algorithm for obtaining the maximum
likelihood estimator in generalized linear models.

It should be noted that depends o8, 8 and¢. From (1) and (6) we deduce that the Laplace

approximation of the objective functia@,(.) in (2) is

¢
+[1a(3, 6, 9)II5 + B,

FHB.0.0)=-2) {y‘f‘(ﬁ ) ~DEB.O) oy, ¢)} +1001(ZA0) Wi o(ZA0) + 14 (7)
i=1

n
i

whereWsg, = diag™ (¢>v(/1i([3, 0)g (ui (3, 0))2) . andv(.) is the known conditional variance
function (McCullagh and Nelder, 1989). The estimator (3) is then approximated by
(B, 6%, ¢) := argminQiA(3, 6, ¢). (8)

5.0.¢
We call (8) the GLMMLasst" estimator. It is the approximation (8) to the objective function (3)
that is optimized to obtain the parameter estimates. Moreover, we would like to emphasize that (8)
is a non-convex function with respect t8,0, ¢) consisting of a non-convex loss function and a

convex penalty.
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3 Computational algorithm

In this section, we present the computational algorithm to obtain the GLMMEasstimator
(8). The algorithm is based on ideas from Tseng and Yun (2009) of the (block) coordinate gradient
descent (CGD) method. The notion of the CGD algorithm is that we cycle through components
of the full parameter vectoy := (3,0, ¢) € RP*%* and minimize the objective functio@}(.)
only with respect to one parameter while keeping the other parameters fixed. In doing so we
calculate a quadratic approximation and perform an indirect line search to ensure that the objective
function decreases. (Block) CGD algorithms are used in Meier et al. (2008), Wu and Lange (2008),
Friedman et al. (2010) and Breheny and Huang (2011) and are now extremely popular in high-
dimensional penalized regression problems.

We first give an overview of the algorithm which solves minimization problem (8) exactly
before considering an approximate algorithm which finds a solution close to the exact minimizer

of (8). Finally, we present some details of the algorithm.

3.1 The exact GLMMLasso algorithm

We describe here an exact algorithm, called exact GLMMLasso (we notationally omit the in-
volved Laplace approximation), for the Laplace approximated objective function in (8). Let us
write (7) with a diferent notation to ease the presentation. ®ct (3, 8, ¢) € RP*1, define the
function

f) = -2 {yifi(ﬂ» 0) - b(i(5.6))
i=1

+ c(Yi, ¢)} +10g1(ZAg) Wy (Z Ag) + 1gl + lla(eh)Il5.

Now (8) can be written aézﬂLA = argmin, Q\A(z)) := f(+p) + 8|1 Lete; be thejth unit vector

and denote byd) the sth iteration step. Moreover, we let

BY = (B9, BO)T, 09 = (ED,....60T, ¢9

ACCEPTED MANUSCRIPT
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be the estimates @, 8 and¢ in the sth iteration. Using the notation

: 1 T
BT = (B BB BBy )

/
0 = (6,60, 0,65, %, ... 05 Y)

10 . (a9 (9 os-1) o(s-1) D\
BT = (B, ALY BT BSTY)

the exact GLMMLasso algorithm is summarized in Algorithm 1.
Particularly in the high-dimensional setting, the calculation of the quadratic approximation
requires a large amount of computing time. Therefore it is interesting to examine a much faster

approximate algorithm.

3.2 The (approximate) GLMMLasso algorithm

In the exact Algorithm 1 above, we consider in step (1) b) the modes a function of the
parameters, i.ew = u(3, 0, ¢). However, the calculation of the derivatives ff) with respect
to Bk is computationally intensive. This becomes a major issue in the high-dimensional setting
where a substantial amount of computing time is allocated to this particular part of the algorithm.
In addition, the exact GLMMLasso algorithm requires a large number of outer iteragions
attenuate these filiculties, we propose a slightly modified version of Algorithm 1. We suggest
performing the quadratic approximation and the inexact line search while consideasdixed
and not depending g8x. Denoting byf(.|a) the functionf(.) for which = is considered as fixed,
the (approximate) GLMMLasso algorithm is given in Algorithm 2:

We illustrate in the supplemental materials that the approximate GLMMLasso algorithm speeds
up remarkably without loosing that much accuracy. Additionally, the approximation emphasizes

the importance of a refitting as advocated in the next section.

3.3 Convergence behaviour and details of the GLMMLasso algorithm

Numerical convergencd&.he convergence of the exact GLMMLasso algorithm to a stationary
point can be proofed using the results presented in Tseng and Yun (2009). It is worth pointing out

that in the low-dimensional framework, the exact GLMMLasso algorithm with O (no penal-
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Algorithm 1 Exact GLMMLassalgorithm
(0) Choose a starting valug© = (3©, 9, ¢©),

Repeatfor s=1,2,...

(1) (fixed-gfect parameter optimization)
Fork=1,...,p

a) (Laplace approximation)
Calculate the Laplace approximation

Qle(ﬁ(S,S—l:k), 9(5—1)7 ¢(S—1)>_
b) (Quadratic approximation and inexact line search)
i) Approximate the second derivative
62

g f( B g(sD), ¢<H))|

3,35 =B

by h® > 0 as described in the subsection below.
ii) Calculate the descent directialy’ € R

. . 0
dl(<3) - argdmln{f(,@(s’s‘l'k), o), ¢(S—1)) + % f(IB(SsS—lﬂk)’ oD, ¢(S—1))

Bty
1 :
+ Eolzh(ks) + AlBETH 1 deyly .
iii) Choose a step sizel® > 0 and se3(s 1D = gi8s-1K 4 (9d9¢, such that
Q/%A(,B(Ss_l;kﬂ), 0(5—1)’ ¢(s—l)) < Q/%A(ﬂ(ss—l;k)’ 0(5—1)’¢(s—1)).
(2) (Covariance parameter optimization)

Forl=1,...,d

9|(5) = arg mianjA(ﬂ(s), g(ss-14) ¢(%1)>.
0

(3) (Dispersion parameter optimization)

¢ = argminQA(3, 6, ¢).
¢

until convergence.

ization) gives the same results as the functidmer in theR packagelme4.

(0) Starting valuapy©. As starting value fof3, we fit a generalized linear model with the Lasso
where the regularization parameter is chosen by cross-validation. The initial valéesridp are

then calculated using steps (2) and (3) in Algorithm 1 and 2.

ACCEPTED MANUSCRIPT
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Algorithm 2 (Approximate) GLMMLassalgorithm
Denote byu = @(B(50, 9D ¢(s-D) Replace in Algorithm 1 i) - iii) by

i) Approximate the second derivative

(92
<z f( Blss180 gls-D), ¢(s1)|ﬁ)'

B peesle

by h® > 0 as described in the subsection below.

ii") Calculate the descent directicﬂf) eR

4o = argdmin{ f (B(S.S—I:k)’ 6=, ¢(H)|1~4) + % f( 35180 (s, ¢(5—1)|ﬁ) d

=B

1 .
+ @R + B 4 dela)

i) Choose a step size? > 0 and se3s1k+1) = gs5-10 1 ¢(Id9¢, such that

Q/IiA(IB(S,S—l;kH)’ oD, ¢(s—1)| ,a) < Q';A( BEs10_g(s-1), ¢(s—1)|ﬁ).

i) Choice of IfY. For h® we choose théth diagonal element of the Fisher information of a
generalized linear model. Hence we use the second derivative of the first summand in (7). We set
Cmin < hff) < Cmax for positive constantsm, andcmay (€.9.Cmin = 107> andcmax = 10°) in order that

the algorithm converges (Tseng and Yun, 2009).

ii) Calculation of ¢”. The valued is the minimizer of the quadratic approximation of the
objective functionQ}4(.) and analytically given by (Tseng and Yun, 2009)

A—0/0B«f -1 —0/0Bkf
mediar(%, —Bk; %) if Bk penalized
d® = e e 9
—% otherwise
k

wherefs, = f(B36510, 9D, ¢(5-D) in Algorithm 1 andf,, = f(8©S, 9D, ¢(|4) in Algo-
rithm 2.

iii) Choice ofe!. The step lengtlel? is chosen such that the objective functi@i(.) de-

creases. We suggest to use the Armijo rule, which is defined for Algorithm 1 as follows (and
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correspondingly for Algorithm 2 with fixed)?
Armijo rule: Chooser™ > 0 and Ietaff) be the largest element afi"5'} g1, satisfying
Q,%A(B(&S_l;k) + a,(ks)dl((s)ek’ 9(5—1)’¢(s—1)) < Qle(,B(S’S_l:k), 0(5—1)’¢(s—1)) + CL’(kS)QAk

whereak := 3/9Bif5, 0 + y(d)?h® + |86 + dPeyl; — AIIBES ;.

The choice of the constants comply with the suggestions in Bertsekas (1999}2%;91, 0 =0.5,
o=0.21andy = 0.

Active Set Algorithmlf we assume that the true fixedkect parametef, is sparse in the sense
that many elements are zero, we can reduce the computing time remarkably by using an active set
algorithm. This is also used in Meier et al. (2008) and Friedman et al. (2010). In particular, we
only cycle through alp coordinates everipth iteration, otherwise only through the current active
setS(3¢ D) = {k: B £ 0}. Typical values foD are 5 and 10.

An implementation of the algorithm is given in tlRepackageglmmixedlasso and will be

made available on R-Forgattp://r-forge.R-project.org/).

4 The two-stage GLMMLassd* estimator(s)

From the soft-thresholding property of the Lasso in linear models (Tibshirani, 1996) and in
Gaussian linear mixed models (Schelldorfer et al., 2011), the fifedteestimate3 is biased
towards zero. In some generalized linear mixed models the estimate of the covariance parameter
0 is biased, too. To mitigate these bias problems and the approximation error induced by using
the approximate GLMMLasso algorithm, we advocate a two-stage procedure. The first step aims
at estimating a candidate set of predictrand can be seen as a variable screening procedure.
The purpose of the second step is a more unbiased estimation of the parameters using unpenalized
maximum likelihood (ML) estimation based on the selected variaflé®mm the first step. The

proposed two-stage GLMMLasso algorithm is summarized in Algorithm 3:
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Algorithm 3 Two-stage GLMMLassalgorithm
Stage 1: Compute the GLMMLas<vestimate (8) and the sét

Stage 2: Perform unpenalized ML estimation.

In the next subsections, we are going to discuss the specification of the set of vaSables
We propose two methods from the high-dimensional linear regression framework, and we do not

consider the adaptive Lasso (Zou, 2006).

4.1 The GLMMLasso*A-MLE hybrid estimator

The LARS-OLS hybrid estimator was examined in Efron et al. (2004) and also used in Mein-
shausen and ithimann (2006) and Meier et al. (2008). In our context, it becomes a two-stage
procedure where the model is refitted including only the covariates with a nonzero firet-e
codficient in Binit, where (i, Oinit. dinit) denotes the initial estimate from (8). More specifically,
chooseS = Syt = {k : |Binit # 0}. Then the GLMMLassg*-MLE hybrid estimator is given by
(B, 0. $nyoria = %23:22”‘2 logL(Bs,,. 0. 9). (10)

where forS C {1,...,p}, (Bs)k =pcif ke Sand Bs)k =0if k¢ S.

4.2 The thresholded GLMMLassd* estimator

The thresholded Lasso with refitting in high-dimensional linear regression models was exam-
ined in van de Geer et al. (2011) and Zhou (2010). We define tH&setto be the set of variables
which have initial fixed-&ect codficients larger than some thresholges > 0, i.e. we choose
S = Siives 1= {K : |Buinitl > Atnres). The thresholded GLMMLasst estimator is then defined by

(8.0 $)uves = argmin-21ogL (Bs,... 6. ). (11)
X

Sthres’
The thresholded GLMMLass$6 estimator involves another regularization parameggs, which

is determined by minimizing an information criterion presented in the next subsection.
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4.3 Selection of the regularization parameters

Estimators (8), (10) and (11) require the choice of the regularization paramed@iAres,
respectively. We propose to use the Bayesian Information Criterion (BIC) and the Akaike Infor-
mation Criterion (AIC), defined by

Coa = —2l0gL(B.6.4) + a(n) - df, (12)

wherea(n) = log(n) for the BIC anda(n) = 2 for the AIC. Here,dAfA =fl<k<p:pB#

0} + dim(é) is the sum of of the number of nonzero fixeflleet codficients and the number of
covariance parameters. The first summand is motivated by the work of Zou et al. (2007). The
second summand is the approach of Bates (2010), who proposes that in the classical generalized
mixed gfects model the degrees of freedom are given by the number of unconstrained optimization
parameters. Based on our empirical experience, we suggest for the estimators (8) and (10) the BIC,
whereas for (11) we advocate using the AIC (allowing for a larger number of variables) to.select
first and then, sequentially, the BIC to seldgt.s. We will compare the performance of the three

estimators in the next sections.

5 Simulation Study

In this section we assess the performance of the GLMML'4sestimators (8), (10) and
(11). We compare them with appropriate Lasso, maximum likelihood (ML) and Penalized Quasi-
Likelihood (PQL, Breslow and Clayton (1993)) methods.

In the main text, we only present simulation results for the high-dimensional logistic mixed
model. Simulation studies for the low-dimensional logistic and the Poisson mixed model are in-
cluded in the supplementary material. At the end of this section, we compare the GLMMt.asso
estimates in a situation where the number of noise variables grows successively.

First of all, let us summarize some general conclusions drawn from real data analysis and the

simulation studies:

a) The variable screening performance of the GLMMLasso algorithm is not only attractive

for the high-dimensional setting, but also for low-dimensional data with a relatively large
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number of variables (say > 20).

b) The GLMMLasso algorithm is numerically as stable as stan@afhctions like glmer
(Bates, 2010) oglmmPQL (Breslow and Clayton, 1993; Venables and Ripley, 2002) when
p < n. On the other handylmpath (Park and Hastie, 2007) andmnet (Friedman et al.,

2010) may fail to converge when high-dimensional models are misspecified.

c) The main diference between the logistic and the Poisson mixed model is the shrinkage of
the covariance parameter estimates of the GLMMLsgstimator. These estimates are
severely biased in logistic mixed models, in contrast to the Poisson mixed model. Further

differences between these two classes are summarized in the supplemental materials.

d) The number of iterations substantially diers between the classes of generalized linear

mixed models and the data set.

5.1 Preview for the logistic mixed model

In this section we confine the discussion to the logistic mixed model because it is viewed as
the most challenging model within the class of generalized linear mixed models (Molenberghs and
Verbeke, 2005; Jiang, 2007). As an overview, let us sum up the main findings from the simulation

study in the logistic mixed model:

i) The GLMMLass6” estimate from (8) of the covariance paramelds notably biased. In
other words, adding afy-penalty does not only shrink the fixef@fects estimaté, but also

the covariance parameter estiméte

i) In the high-dimensional settings, the GLMMLas$8eMLE hybrid estimator (10) performs
better in terms of parameter estimation accuracy than the thresholded GLMMt assio
mator (11).

i) The more random fects, the more important it is to use the GLMMLagséor variable

screening (instead of a Lasso ignoring the grouping structure).

iv) The number of total iterationsneeded is small, often about 15 iterations.
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5.2 High-dimensional logistic mixed model

In all subsequent simulation schemes (including the supplemental materials), we restrict our-
selves to the case where the number of observations per cluster is equal,+.ac forr =
1,...,N. The covariates are generated from a multivariate normal distribution with mean zero and
covariance matrixy/ with pairwise correlatiodViy, = p** andp = 0.2. Denote by3, the true
fixed dfects (wherein@o); is the intercept) and by, the true number of nonzero fixedFect co-
efficients.

For the logistic mixed models, the intercept and the first covariate have independent ran-
dom dfects with diferent variance parameters. In particutars (61, 6,) and covariance matrix
¥y = diag@?,,...,6%,65,...,05) € R*™, i.e.q = 2N. We investigate the following two examples
in the high-dimensional setting:

Hi: N =40,nc = 10,n = 400,p = 500,62 = 65 = 1 andsp = 5 with 8o = (0.1, 1,-1,1,-1,0,...,0)".
Hz: N =50,nc = 10,n = 500,p = 1500,62 = 62 = 1 andsp = 5 with o = (0.1,1,-1,1,-1,0,...,0)".

The fitted models are all correctly specified. Hereafter, we denotedwle the ML estimate
of the model which includes only the variables from the true active set.glbetnlasse hybrid
glmmlassaandthres gimmlassbe the GLMMLassb* estimates (8), (10) and (11), respectively.

We compare the GLMMLas$6 methods with the standard Lasso for generalized linear models
(which ignore the grouping structure). For that purpose we usglthpathalgorithm (Park and
Hastie, 2007) and the BIC as variable selection criterion. Therhybtid glmpathand thres
glmpathbe the two-stage procedures basedjlnpath(without random #&ects).

The results in the form of median and rescaled median absolute deviation (in parentheses) over
100 simulation runs are shown in Table 1. Th¢E¢{B)| denotes the cardinality of the estimated
active set and TP is the number of true positives (selected variables which are in the true active
set). SE is the squared error of the fixdteet codficients, i.e. SE ||[§ - Bollg.

Comparing the cardinality of the active set, we see thegs gimmlass@andthres glmpath
have much larger active sets thglmmlassaandglmpath respectively. This is largely due to the
fact that we employ the AIC in the first and the BIC in the second stage. This is outweighed by
the advantage that on average (not shown), the tfigets are predominantly included ihres

glmmlasso The active set oglmmlassas slightly smaller than that aflmpath And yet, the
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number of TP is similar as fayimpath Hence, we conclude that the existence of randffieces
does #ect the variable selection performancegthpath

Concerning covariance parameter estimation, we réafram the table that? and 62 are
seriously biased foglmmlasso This motivates the usage of a two-stage procedure. The table
suggests that the hybrid and the thresholded procedures have improved estimation accuracy of the
random éfects parameters compared to their original counterparts.

Looking at the fixed-fect parameter estimation accuracy, the simulation study reveals that the
glmmlasscestimates are less biased than the corresporglingathestimates, resulting in lower
squared error. And the same holds fybrid gimmlassand hybrid gimpath The fixed-dfect
parameter estimates tifres glmmlassandthres gimpathperform inadequately compared to their
hybrid counterparts. As marked by an asterisk in the tgklés not subject to penalization for the
GLMMLassd* estimator since this variable has a randdfeet (Schelldorfer et al., 2011). Thus
the bias of the estimate is much smaller than for the other fixitecodficients.

To sum up the simulation study, we first conclude thglbrid gimmlassmutperformsthres
glmmlassain terms of parameter estimation accuracy, with similar performance regarding true
positives. Secondjlmmlass@rocedures do outperforgimpathprocedures as variable screening

methods. Of coursglmpathis fitting a wrong model without randontfects.

5.3 Logistic mixed model with a growing number of noise covariates

Here, we assess the performancglaimlass@andhybrid gimmlassevhen the number of noise
variables grows successively. In the low-dimensional setting, we compare them with the ML esti-
mate computed by thiefunctionglmer (denoted byglmer). In addition, lep-glmerbe the method
which performs variable selection in the following way: Eliminate consecutively (backward selec-
tion) all variables with a p-value larger than 5% until the final model is attained comprising only
significant variables. We compare these four methods in terms of their performance of twice the
negative out-of-sample log-likelihood. Let us fix the following random intercept model design:
n=400,N =40,nc =10,6°=1,3, = (0,1,-1,1,-1). We start withp = 5 (no noise variables)
and raise the number of variablesfio= 65. The results over 50 simulation runs are depicted in

Figure 1.
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The figures show that the negative out-of-sample log-likelihood valuegrizer grow polyno-
mial whereas the likelihoods for the other methods remain fairly constant. The increglssein
stems from the fact that it overfits the model for a growing number of covariates. When focusing
on the figures in more detail, we reaff that the negative log-likelihood afimmlassancreases
slightly for largerp whereas the negative log-likelihood loybrid gimmlass@emains stable. The
rationale for this small increase gimmlassas that the more noise covariates, the larger the opti-
mal A, and henceforth the larger the shrinkage of the fix@elces. And this leads to the increase
of the out-of-sample log-likelihoodhybrid gimmlassgand alsahres glmmlasspovercomes this

problem and leads to a stable out-of-sample log-likelihood irrespectipe of

5.4 Correlated Random Hfects

Both from a methodological and an implementational point of view it is conceptually possible
to use correlated randontfects. As an illustration we use the logistic mixed modtiel with

correlated randomfkects (with unstructured covariance matrix) where we use a correlation of

p = 0.5 between the two randontfects. The corresponding results are illustrated in Table 2.

The results are very similar to the uncorrelated case. However, the bias of the correlation estimate

seems to be less severe than the bias of the variance components.

6 lllustration

In this section we illustrate the proposed GLMMLadgsestimators for Poisson regression on

an extended real data set with count data.

Data description.We consider the epilepsy data from Thall and Vail (1990) which were also
analyzed by Breslow and Clayton (1993). The data were obtained from a randomized clinical trial
of 59 patients with epilepsy, comparing a new drug €£Ijtwith placebo (Trt0). The response
variable consists of counts of epileptic seizures during the two weeks before each of four clinic
visits (V4=1 for fourth visit, O otherwise). Further covariates in the analysis are the logarithm of

age (Age), the logarithm of/4 the number of baseline seizures (Base) and the interaction of Base
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and Trt (Base x Trt). The main question of interest is whether taking the new drug reduces the
number of epileptic seizures compared with placebo. In order to assess the performance of the
proposed procedure with high-dimensional data, we @, 1) distributed noise predictors to
get a data set with = 236,N = 59,n, = 4forr = 1,...,N andp = 4000. All predictors are

standardized to have mean zero and standard deviation one.

Model. Model Ill in Breslow and Clayton (1993) is a two level GLMM (Bates, 2010), which
is an extension of the single level GLMM introduced in Section 2 for more than one grouping
variable. The model consists of two independent random interdkgute One for subject (level
1, indexr) and one for observation (level 2, ind@x Let6? , andé?, . be the corresponding variance

parameters. Then the linear predictor can be written as

|Og([.1”):)7” :m;l—JB‘i'HsubuI"i'eobéJ” r:1,...,59, J :1,...,4.

Results.The results of the analysis are presented in Table 3. In the first column we show the
estimates for Model Il without performing variable selection. There, Intercept, Base and Trt are
significant at the 5% level (indicated bY. If we perform backward selection using the BIC, we
end up with a model including Intercept and Base only. And this model coincides with the one
selected byglmmlassoHybrid gimmlass@mvercomes the bias problemsgiinmlassand it yields
a better model in terms of the BlThres gimmlassancludes additional noise variables, thereby
achieving the smallest BIC score for all models under consideration. Combatanigl glmmlasso
andthres glmmlassahe table suggests that the additional covariates in the latter model reduce the

variability while keeping the fixedffect estimates unaltered.

7 Concluding Remarks

We address the problem of estimating high-dimensional generalized linear mixed models (GLMMs).
While low-dimensional generalized linear mixed models (Bates, 2010) and high-dimensional gen-
eralized linear models (van de Geer, 2008) have been extensively studied in recent years, little

attention has been devoted to high-dimensional GLMMs. We providéiareat algorithm for the
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{1-penalized maximum likelihood estimator, called GLMMLasso. It is based on the Laplace ap-
proximation, coordinatewise optimization and a speeding up approximation. The method should be
typically used as a screening procedure to estimate a small set of important variables. We propose
refitting by maximum likelihood to get accurate parameter estimates. The second stage is much
more important than for linear models, becadsshrinkage can lead to severe bias problems for

the estimation of the variance components. Our work is primarily a contribution addressing the
numerical challenges of performing high-dimensional variable selection and parameter estimation
in nonlinear mixed-ffects models involving a non-convex loss function. An implementation of the

algorithm can be found in o packageglmmixedlasso. It will be made available on R-Forge.

SUPPLEMENTAL MATERIALS

All the following supplemental files can be obtained as a single zip file online (glmmlasso.zip):

Appendices: Details of the PIRLS algorithm, the comparison of the exact and approximate GLMM-

Lasso algorithm and additional simulation studiggmmlassa sm.pdf)
Data set: The extended epilepsy data set used in Section 6. (epilepsy.txt)

R-package for GLMMLasso : R-packagglmmixedlasso containing code to perform the GLMM-

Lasso algorithm. (gimmixedlasso-0.1-2.tar.gz)
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Table 1: Simulation results (medians) for the logistic mixed modelsart H, (rescaled median
absolute deviations in parentheses): means that the corresponding gl&ent is not subject to
penalization in the GLMMLass$b6 estimate.

Model Method ISB) TP & o5 B B B3 Ba Bs SE
True 5 5 1 1 0.1 1 -1 1 -1
H; oracle 5 5 0.85 0.86 0.07 1.04 -099 098 -1.01 0.14
(0) (O (0.4 (059 (0.2) (0.25) (0.22) (0.18) (0.14) (0.088)
glmmlasso 6 5 038 037 0.06 0.66 -0.3 0.26 -0.34 1.6
(1.48) (0) (0.24) (0.3) (0.14) (0.16) (0.14) (0.14) (0.12) (0.42)
glmpath 7 5 - - 0.04 024 -021 022 -0.28 2.4
(2.22) (0) - (0.13) (0.12) (0.11) (0.1) (0.1) (0.52)
hybrid gimmlasso 6 5 0.89 0.87 0.08 1.05 -0.99 1 -1.03 0.44
(1.48) (0) (0.43) (0.58) (0.19) (0.25) (0.23) (0.18) (0.16) (0.32)
hybrid glmpath 7 5 086 087 0.08 1.01 -099 099 -1.02 0.7
(2.22) (0) (0.42) (0.53) (0.2) (0.28) (0.24) (0.19) (0.16) (0.64)
thres glimmlasso 10 5 1.02 1.11 0.1 1.19 -1.09 111 -1.13 1.3
(3.71) (0) (0.7) (0.85) (0.22) (0.29) (0.23) (0.2) (0.19) (0.77)
thres glmpath 10 5 091 094 0.09 111 -1.07 111 -1.1 1.1
(2.97) (0) (0.49) (0.59) (0.21) (0.27) (0.25) (0.19) (0.2) (0.73)
H, oracle 5 5 089 094 011 1.02 -098 1.02 -1.02 0.13
(0) (0 (0.4) (0.53) (0.18) (0.25) (0.15) (0.18) (0.16) (0.1)
glmmlasso 6 5 039 041 009 066 -031 027 -0.34 1.6
(1.48) (0) (0.23) (0.28) (0.13) (0.17) (0.1) (0.11) (0.09) (0.27)
glmpath 6.5 5 - - 0.08 023 -021 021 -0.28 2.4
(0.74) (0) - (0.11) (0.13) (0.08) (0.11) (0.08) (0.34)
hybrid gimmlasso 6 5 0.93 0.96 0.12 1.02 -099 105 -1.04 0.34
(1.48) (0) (0.44) (0.51) (0.19) (0.26) (0.15) (0.17) (0.16) (0.3)
hybrid glmpath 6.5 5 087 094 0.12 101 -099 1.03 -1.04 0.48
(0.74) (0) (0.42) (0.5) (0.18) (0.22) (0.15) (0.18) (0.17) (0.37)
thres glimmlasso 14 5 1.3 1.33 0.16 1.26 -1.16 1.2 -1.22 2
(5.93) (0) (0.87) (0.79) (0.27) (0.27) (0.28) (0.26) (0.24) (1.7)
thres gimpath 135 5 0.9 1.03 0.17 117 -1.07 113 -1.15 1.8
(5.19) (0) (0.52) (0.64) (0.24) (0.25) (0.19) (0.22) (0.21)(1.2)
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Table 2: Simulation results (medians) for the logistic mixed modelgrescaled median absolute
deviations in parentheses).*Aneans that the corresponding gi@ent is not subject to penaliza-
tion in the GLMMLassH* estimate.

Model Method ISB) TP 6 62 R B By Ba Ba Bs SE
True 5 5 1 1 0.5 0.1 1 -1 1 -1
H;  oracle 5 5 088 094 053 01 097 -1.03 1.02 -1.01 0.14

(0) (0) (0.46) (0.54) (0.37) (0.18) (0.24) (0.17) (0.15) (0.15) (0.1)
gmmlasso 6 5 041 041 063 007 066 -033 028 -034 16
(1.48) (0) (0.22) (0.25) (0.51) (0.14) (0.16) (0.12) (0.11) (0.11p.35)
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Table 3: Results for the epilepsy data. Model Il is based on 6 fixgekcecovariates while the
other methods are based on=p4000variables, including 3994 noise covariatésindicates that
the corresponding cggcient is significant at th&% level. * means that five noise variables are
selected, but not shown in the tablg3 = {k : 3« # 0} is the total number of selected variables.

Model Il glmmlasso hybrid gimmlasso thrgémmlasso
BIC 527.3 571.8 515.5 480.3
S(3) 6 2 2 7
Intercept 158f 1.62 1.58 1.58
Base 066 <10* 0.74 0.75
Trt -047" - - -
Base x Trt 0.36 - - -
Age 0.11 - - -
V4 -0.04 - - -
(" 0.21 0.68 0.25 0.28
6° 0.13 0.12 0.13 0.04

obs
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Figure 1: Minus twice out-of-sample log-likelihood for a growing number of covariates. The
ML estimate performs badly whereas the GLMMLagsestimators remain stable, and they are
comparable to the p-gimer in the low-dimensional framework.
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