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Abstract We consider a finite mixture of regressions (FMR) model for high-
dimensional inhomogeneous data where the number of covariates may be much larger
than sample size. We propose an �1-penalized maximum likelihood estimator in an
appropriate parameterization. This kind of estimation belongs to a class of problems
where optimization and theory for non-convex functions is needed. This distinguishes
itself very clearly from high-dimensional estimation with convex loss- or objective
functions as, for example, with the Lasso in linear or generalized linear models. Mix-
ture models represent a prime and important example where non-convexity arises.

For FMR models, we develop an efficient EM algorithm for numerical optimiza-
tion with provable convergence properties. Our penalized estimator is numerically
better posed (e.g., boundedness of the criterion function) than unpenalized maximum
likelihood estimation, and it allows for effective statistical regularization including
variable selection. We also present some asymptotic theory and oracle inequalities:
due to non-convexity of the negative log-likelihood function, different mathematical
arguments are needed than for problems with convex losses. Finally, we apply the
new method to both simulated and real data.
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1 Introduction

In applied statistics, tremendous number of applications deal with relating a ran-
dom response variable Y to a set of explanatory variables or covariates X =
(X(1), . . . ,X(p)) through a regression-type model. The homogeneity assumption
that the regression coefficients are the same for different observations (Y1,X1), . . . ,

(Yn,Xn) is often inadequate. Parameters may change for different subgroups of ob-
servations. Such heterogeneity can be modeled with a Finite Mixture of Regressions
(FMR) model. Especially with high-dimensional data, where the number of covari-
ates p is much larger than sample size n, the homogeneity assumption seems rather
restrictive: at least a fraction of covariates may exhibit a different influence on the
response among various observations (i.e., sub-populations). Hence, addressing the
issue of heterogeneity in high-dimensional data is important in many practical appli-
cations. We will empirically demonstrate with real data in Sect. 7.2 that substantial
prediction improvements are possible by incorporating a heterogeneity structure to
the model.

We propose here an �1-penalized method, i.e., a Lasso-type estimator (Tibshi-
rani 1996), for estimating a high-dimensional Finite Mixture of Regressions (FMR)
model where p � n. Our procedure is related to the proposal in Khalili and Chen
(2007). However, we argue that a different parameterization leads to more efficient
computation in high-dimensional optimization for which we prove numerical conver-
gence properties. Our algorithm can easily handle problems where p is in the thou-
sands. Furthermore, regarding statistical performance, we present an oracle inequality
which includes the setting where p � n: this is very different from Khalili and Chen
(2007) who use fixed p asymptotics in the low-dimensional framework. Our theory
for deriving oracle inequalities in the presence of non-convex loss functions, as the
negative log-likelihood in a mixture model is non-convex, is rather non-standard but
sufficiently general to cover other cases than FMR models.

From a more general point of view, we show in this paper that high-dimensional
estimation problems with non-convex loss functions can be addressed with high com-
putational efficiency and good statistical accuracy. Regarding the computation, we
develop a rather generic block coordinate descent generalized EM algorithm which
is surprisingly fast even for large p. Progress in efficient gradient descent methods
build on various developments by Tseng (2001) and Tseng and Yun (2008), and
their use for solving Lasso-type convex problems has been worked out by, e.g.,
Fu (1998), Friedman et al. (2007, 2008) and Meier et al. (2008). We present in
Sect. 7.3 some computation times for the more involved case with non-convex ob-
jective function using a block coordinate descent generalized EM algorithm. Re-
garding statistical theory, almost all results for high-dimensional Lasso-type prob-
lems have been developed for convex loss functions, e.g., the squared error in a
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Gaussian regression (Greenshtein and Ritov 2004; Meinshausen and Bühlmann 2006;
Zhao and Yu 2006; Bunea et al. 2007; Zhang and Huang 2008; Meinshausen and Yu
2009; Wainwright 2009; Bickel et al. 2009; Cai et al. 2009b; Candès and Plan 2009;
Zhang 2009) or the negative log-likelihood in a generalized linear model (van de
Geer 2008). We present a non-trivial modification of the mathematical analysis of
�1-penalized estimation with convex loss to non-convex but smooth likelihood prob-
lems.

When estimation is defined via optimization of a non-convex objective function,
there is a major gap between the actual computation and the procedure studied in
theory. The computation is typically guaranteed to find a local optimum of the ob-
jective function only, whereas the theory is usually about the estimator defined by a
global optimum. Particularly in high-dimensional problems, it is difficult to compute
a global optimum and it would be desirable to have some theoretical properties of es-
timators arising from local optima. We do not provide an answer to this difficult issue
in this paper. The beauty of, e.g., the Lasso or the Dantzig selector (Candès and Tao
2007) in high-dimensional problems is the provable correctness or optimality of the
estimator which is actually computed. A challenge for future research is to establish
such provable correctness of estimators involving non-convex objective functions.
A noticeable exception is presented in Zhang (2010) for linear models, where some
theory is derived for an estimator based on a local optimum of a non-convex opti-
mization criterion.

The rest of this article is mainly focusing on Finite Mixture of Regressions (FMR)
models. Some theory for high-dimensional estimation with non-convex loss functions
is presented in Sect. 5 for more general settings than FMR models. The further organi-
zation of the paper is as follows: Sect. 2 describes the FMR model with an appropriate
parameterization, Sect. 3 introduces �1-penalized maximum-likelihood estimation,
Sects. 4 and 5 present mathematical theory for the low- and high-dimensional case,
Sect. 6 develops some efficient generalized EM algorithm and describes its numeri-
cal convergence properties, and Sect. 7 reports on simulations, real data analysis and
computational timings.

2 Finite mixture of Gaussian regressions model

Our primary focus is on the following mixture model involving Gaussian compo-
nents:

Yi |Xi independent for i = 1, . . . , n,

Yi |Xi = x ∼ fξ (y|x)dy for i = 1, . . . , n,

fξ (y|x) =
k∑

r=1

πr

1√
2πσr

exp

(
− (y − xT βr)

2

2σ 2
r

)
, (2.1)

ξ = (β1, . . . , βk, σ1, . . . , σk,π1, . . . , πk−1) ∈ R
kp × R

k
>0 × Π,

Π =
{

π;πr > 0 for r = 1, . . . , k − 1 and
k−1∑

r=1

πr < 1

}
.
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Thereby, Xi ∈ R
p are fixed or random covariates, Yi ∈ R is a univariate response

variable and ξ = (β1, . . . , βk, σ1, . . . , σk,π1, . . . , πk−1) denotes the (p + 2) · k − 1
free parameters and πk is given by πk = 1 −∑k−1

r=1 πr . The model in (2.1) is a mix-
ture of Gaussian regressions, where every component r has its individual vector of
regression coefficients βr and error variances σ 2

r . We are particularly interested in the
case where p � n.

2.1 Reparameterized mixture of regressions model

We prefer to work with a reparameterized version of model (2.1) whose penalized
maximum likelihood estimator is scale-invariant and easier to compute. The com-
putational aspect will be discussed in greater detail in Sects. 3.1 and 6. Define new
parameters

φr = βr/σr , ρr = σ−1
r , r = 1, . . . , k.

This yields a one-to-one mapping from ξ in (2.1) to a new parameter vector θ =
(φ1, . . . , φk, ρ1, . . . , ρk,π1, . . . , πk−1), and the model (2.1) in reparameterized form
then equals:

Yi |Xi independent for i = 1, . . . , n,

Yi |Xi = x ∼ hθ (y|x)dy for i = 1, . . . , n,

hθ (y|x) =
k∑

r=1

πr

ρr√
2π

exp

(
−1

2

(
ρry − xT φr

)2
)

, (2.2)

θ = (φ1, . . . , φk, ρ1, . . . , ρk,π1, . . . , πk−1) ∈ R
kp × R

k
>0 × Π,

Π =
{

π;πr > 0 for r = 1, . . . , k − 1 and
k−1∑

r=1

πr < 1

}
,

with πk = 1 −∑k−1
r=1 πr . This is the main model we are analyzing and working with.

The log-likelihood function of this model equals

�(θ;Y) =
n∑

i=1

log

(
k∑

r=1

πr

ρr√
2π

exp

(
−1

2

(
ρrYi − XT

i φr

)2
))

. (2.3)

Since we want to deal with the p � n case, we have to regularize the maximum like-
lihood estimator (MLE) in order to obtain reasonably accurate estimates. We propose
below some �1-norm penalized MLE which is different from a naive �1-norm penalty
for the MLE in the non-transformed model (2.1). Furthermore, it is well known that
the (log-) likelihood function is generally unbounded. We will see in Sect. 3.2 that
our penalization will mitigate this problem.
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3 �1-norm penalized maximum likelihood estimator

We argue first for the case of a (non-mixture) linear model why the reparameterization
above in Sect. 2.1 is useful and quite natural.

3.1 �1-norm penalization for reparameterized linear models

Consider a Gaussian linear model

Yi =
p∑

j=1

βjX
(j)
i + εi, i = 1, . . . , n,

ε1, . . . , εn i.i.d. ∼ N
(
0, σ 2), (3.4)

where Xi are either fixed or random covariates. In short, we often write

Y = Xβ + ε,

with n × 1 vectors Y and ε, p × 1 vector β and n × p matrix X. In the sequel,
‖ · ‖ denotes the Euclidean norm. The �1-norm penalized estimator, called the Lasso
(Tibshirani 1996), is defined as

β̂λ = arg min
β

n−1‖Y − Xβ‖2 + λ

p∑

j=1

|βj |. (3.5)

Here λ is a non-negative regularization parameter. The Gaussian assumption is not
crucial in model (3.4) but it is useful to make connections to the likelihood frame-
work. The Lasso estimator in (3.5) is equivalent to minimizing the penalized negative
log-likelihood n−1�(β;Y1, . . . , Yn) as a function of the regression coefficients β and
using the �1-penalty ‖β‖1 =∑p

j=1 |βj |: equivalence here means that we obtain the
same estimator for a potentially different tuning parameter. But the Lasso estimator
in (3.5) does not provide an estimate of the nuisance parameter σ 2.

In mixture models, it will be crucial to have a good estimator of σ 2 and the role
of the scaling of the variance parameter is much more important than in homoge-
neous regression models. Hence, it is important to take σ 2 into the definition and
optimization of the penalized maximum likelihood estimator: we could proceed with
the following estimator,

β̂λ, σ̂
2
λ = arg min

β,σ 2

(−n−1�
(
β,σ 2;Y1, . . . , Yn

)+ λ‖β‖1
)

= arg min
β,σ 2

(
log(σ ) + ‖Y − Xβ‖2/

(
2nσ 2)+ λ‖β‖1

)
. (3.6)

Note that we are penalizing only the β-parameter. However, the scale parameter esti-
mate σ̂ 2

λ is influenced indirectly by the amount of shrinkage λ.



N. Städler et al.

There are two main drawbacks of the estimator in (3.6). First, it is not equivariant
(Lehmann 1983) under scaling of the response. More precisely, consider the transfor-
mation

Y ′ = bY, β ′ = bβ, σ ′ = bσ (b > 0) (3.7)

which leaves model (3.4) invariant. A reasonable estimator based on transformed data
Y ′ should lead to estimators β̂ ′, σ̂ ′ which are related to β̂, σ̂ through β̂ ′ = bβ̂ and
σ̂ ′ = bσ̂ . This is not the case for the estimator in (3.6). Secondly, and as important as
the first issue, the optimization in (3.6) is non-convex and hence, some of the major
computational advantages of Lasso for high-dimensional problems is lost. We address
these drawbacks by using the penalty term λ

‖β‖1
σ

leading to the following estimator:

β̂λ, σ̂
2
λ = arg min

β,σ 2

(
log(σ ) + ‖Y − Xβ‖2/

(
2nσ 2)+ λ

‖β‖1

σ

)
.

This estimator is equivariant under the scaling transformation (3.7), i.e., the estima-
tors β̂ ′, σ̂ ′ based on Y ′ transform as β̂ ′ = bβ̂ and σ̂ ′ = bσ̂ . Furthermore, it penalizes
the �1-norm of the coefficients and small variances σ 2 simultaneously which has
some close relations to the Bayesian Lasso (Park and Casella 2008). For the latter, a
Bayesian approach is used with a conditional Laplace prior specification of the form

p
(
β|σ 2)=

p∏

j=1

λ

2
√

σ 2
exp

(
−λ

|βj |√
σ 2

)

and a noninformative scale-invariant marginal prior p(σ 2) = 1/σ 2 for σ 2. Park and
Casella (2008) argue that conditioning on σ 2 is important because it guarantees a
unimodal full posterior.

Most importantly, we can re-parameterize to achieve convexity of the optimization
problem

φj = βj/σ, ρ = σ−1.

This then yields the following estimator which is equivariant under scaling and whose
computation involves convex optimization:

φ̂λ, ρ̂λ = arg min
φ,ρ

(
− log(ρ) + 1

2n
‖ρY − Xφ‖2 + λ‖φ‖1

)
. (3.8)

From an algorithmic point of view, fast algorithms are available to solve the optimiza-
tion in (3.8). Shooting algorithms (Fu 1998) with coordinate-wise descent are espe-
cially suitable, as demonstrated by, e.g., Friedman et al. (2007), Meier et al. (2008)
or Friedman et al. (2008). We describe in Sect. 6.1 an algorithm for estimation in a
mixture of regressions model, a more complex task than the optimization for (3.8).
As we will see in Sect. 6.1, we will make use of the Karush–Kuhn–Tucker (KKT)
conditions in the M-step of a generalized EM algorithm. For the simpler criterion in
(3.8) for a non-mixture model, the KKT conditions imply the following which we
state without a proof. Denote by 〈·, ·〉 the inner product in n-dimensional Euclidean
space and by Xj the j th column of X.
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Proposition 1 Every solution (φ̂, ρ̂) of (3.8) satisfies:

−ρ̂〈Xj , Y 〉 + 〈Xj ,Xφ̂〉 + nλsgn(φ̂j ) = 0 if φ̂j 
= 0,
∣∣−ρ̂〈Xj , Y 〉 + 〈Xj ,Xφ̂〉∣∣≤ nλ if φ̂j = 0,

and

ρ̂ = 〈Y,Xφ̂〉 +
√

〈Y,Xφ̂〉2 + 4‖Y‖2n

2‖Y‖2
.

3.2 �1-norm penalized MLE for mixture of Gaussian regressions

Consider the mixture of Gaussian regressions model in (2.2). Assuming that p is
large, we want to regularize the MLE. In the spirit of the approach in (3.8), we pro-
pose for the unknown parameter θ = (φ1, . . . , φk, ρ1, . . . , ρk,π1, . . . , πk−1) the esti-
mator:

θ̂
(γ )
λ = arg min

θ∈Θ

−n−1�
(γ )
pen,λ(θ), θ = (φ1, . . . , φk, ρ1, . . . , ρk,π1, . . . , πk−1), (3.9)

−n−1�
(γ )
pen,λ(θ) = −n−1

n∑

i=1

log

(
k∑

r=1

πr

ρr√
2π

exp

(
−1

2

(
ρrYi − XT

i φr

)2
))

+ λ

k∑

r=1

π
γ
r ‖φr‖1, (3.10)

Θ = R
kp × R

k
>0 × Π, (3.11)

where Π = {π;πr > 0 for r = 1, . . . , k − 1 and
∑k−1

r=1 πr < 1} with πk = 1 −∑k−1
r=1 πr . The value of γ ∈ {0,1/2,1} parameterizes three different penalties.
The first penalty function with γ = 0 is independent of the component probabili-

ties πr . As we will see in Sects. 6.1 and 6.4, the optimization for computing θ̂
(0)
λ is

easiest, and we establish a rigorous result about numerical convergence of a gener-
alized EM algorithm. The penalty with γ = 0 works fine if the components are not
very unbalanced, i.e., the true πr ’s aren’t too different. In case of strongly unbalanced
components, the penalties with values γ ∈ {1/2,1} are to be preferred, at the price of
having to pursue a more difficult optimization problem. The value of γ = 1 has been
proposed by Khalili and Chen (2007) for the naively parameterized likelihood from
model (2.1). We will report in Sect. 7.1 about empirical comparisons with the three
different penalties involving γ ∈ {0,1/2,1}.

All three penalty functions involve the �1-norm of the component specific ratios
φr = βr

σr
and hence small variances are penalized. The penalized criteria therefore

stay finite whenever σr → 0: this is in sharp contrast to the unpenalized MLE where
the likelihood is unbounded if σr → 0; see, for example, McLachlan and Peel (2000).

Proposition 2 Assume that Yi 
= 0 for all i = 1, . . . , n. Then the penalized negative
log-likelihood −n−1�

(0)
pen,λ(θ) is bounded from below for all values θ ∈ Θ from (3.11).
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A proof is given in Appendix C. Even though Proposition 2 is only stated and
proved for the penalized negative log-likelihood with γ = 0, we expect that the state-
ment is also true for γ = 1/2 or 1.

Due to the �1-norm penalty, the estimator is shrinking some of the components of
φ1, . . . , φk exactly to zero, depending on the magnitude of the regularization parame-
ter λ. Thus, we can do variable selection as follows. Denote by

Ŝ = {(r, j); 1 ≤ r ≤ k, 1 ≤ j ≤ p, φ̂r,j 
= 0
}
. (3.12)

Here, φ̂r,j is the j th coefficient of the estimated regression parameter φ̂r belonging
to mixture component r . The set Ŝ denotes the collection of non-zero estimated, i.e.,
selected, regression coefficients in the k mixture components. Note that no signifi-
cance testing is involved, but, of course, Ŝ = Ŝ

(γ )
λ depends on the specification of the

regularization parameter λ and the type of penalty described by γ .

3.3 Adaptive �1-norm penalization

A two-stage adaptive �1-norm penalization for linear models has been proposed by
Zou (2006), called the adaptive Lasso. It is an effective way to address some bias
problems of the (one-stage) Lasso which may employ strong shrinkage of coefficients
corresponding to important variables.

The two-stage adaptive �1-norm penalized estimator for a mixture of Gaussian
regressions is defined as follows. Consider an initial estimate θ ini, for example, from
the estimator in (3.9). The adaptive criterion to be minimized involves a re-weighted
�1-norm penalty term:

−n−1�
(γ )

adapt(θ) = −n−1
n∑

i=1

log

(
k∑

r=1

πr

ρr√
2π

exp

(
−1

2

(
ρrYi − XT

i φr

)2
))

+ λ

k∑

r=1

π
γ
r

p∑

j=1

wr,j |φr,j |,

wr,j = 1

|φini
r,j |

, θ = (ρ1, . . . , ρk,φ1, . . . , φk,π1, . . . , πk−1), (3.13)

where γ ∈ {0,1/2,1}. The estimator is then defined as

θ̂
(γ )

adapt;λ = arg min
θ∈Θ

−n−1�
(γ )

adapt(θ), (3.14)

where Θ is as in (3.11).
The adaptive Lasso in linear models has better variable selection properties than

the Lasso, see Zou (2006), Huang et al. (2008), van de Geer et al. (2010). We present
some theory for the adaptive estimator in FMR models in Sect. 4. Furthermore, we re-
port some empirical results in Sect. 7.1 indicating that the two-stage adaptive method
often outperforms the one-stage �1-penalized estimator.
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3.4 Selection of the tuning parameters

The regularization parameters to be selected are the number of components k, the
penalty parameter λ and we may also want to select the type of the penalty function,
i.e., selection of γ .

One possibility is to use a modified BIC criterion which minimizes

BIC = −2�
(
θ̂

(γ )

λ,k

)+ log(n)de, (3.15)

over a grid of candidate values for k, λ and maybe also γ . Here, θ̂
(γ )

λ,k denotes the
estimator in (3.9) using the parameters λ, k, γ in (3.10), and −�(·) is the negative
log-likelihood. Furthermore, de = k + (k − 1) +∑j=1,...,p;r=1,...,k 1{φ̂r,j 
=0} is the
effective number of parameters (Pan and Shen 2007).

Alternatively, we may use a cross-validation scheme for tuning parameter selec-
tion minimizing some cross-validated negative log-likelihood.

Regarding the grid of candidate values for λ, we consider 0 ≤ λ1 < · · · < λM ≤
λmax, where λmax is given by

λmax = max
j=1,...,p

∣∣∣∣
〈Y,Xj 〉√

n‖Y‖
∣∣∣∣. (3.16)

At λmax, all coefficients φ̂j (j = 1, . . . , p) of the one-component model are exactly
zero. Equation (3.16) easily follows from Proposition 1.

For the adaptive �1-norm penalized estimator minimizing the criterion in (3.13),
we proceed analogously but replacing θ̂

(γ )

λ,k in (3.15) by θ̂
(γ )

adapt;λ in (3.14). As initial
estimator in the adaptive criterion, we propose to use the estimate in (3.9) which is
optimally tuned using the modified BIC or some cross-validation scheme.

4 Asymptotic properties for fixed p and k

Following the penalized likelihood theory of Fan and Li (2001), we establish first
some asymptotic properties of the estimator in (3.10). As in Fan and Li (2001), we
assume in this section that the design is random and that the number of covariates
p and the number of mixture components k are fixed as sample size n → ∞. Of
course, this does not reflect a truly high-dimensional scenario, but the theory and
methodology is much easier for this case. An extended theory for p potentially very
large in relation to n is presented in Sect. 5.

Denote by θ0 the true parameter.

Theorem 1 (Consistency) Consider model (2.2) with random design, fixed p and k.
If λ = O(n−1/2) (n → ∞) then, under the regularity conditions (A)–(C) from Fan
and Li (2001) on the joint density function of (Y,X), there exists a local minimizer
θ̂

(γ )
λ of −n−1�

(γ )
pen,λ(θ) in (3.10) (γ ∈ {0,1/2,1}) such that

√
n
(
θ̂

(γ )
λ − θ0

)= OP (1).
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A proof is given in Appendix A. Theorem 1 can be easily misunderstood. It does
not guarantee the existence of an asymptotically consistent sequence of estimates.
The only claim is that a clairvoyant statistician (with pre-knowledge of θ0) can choose
a consistent sequence of roots in the neighborhood of θ0 (van der Vaart 2007). In the
case where −n−1�

(γ )
pen,λ(θ) has a unique minimizer, which is the case for a FMR

model with one component, the resulting estimator would be root-n consistent. But
for a general FMR model with more than one component and typically several local
minimizers, this does not hold anymore. In this sense, the preceding theorem might
look better than it is.

Next, we present an asymptotic oracle result in the spirit of Fan and Li (2001)
for the two-stage adaptive procedure described in Sect. 3.3. Denote by S the popula-
tion analogue of (3.12), i.e., the set of non-zero regression coefficients. Furthermore,
let θS = ({φr,j ; (r, j) ∈ S}, ρ1, . . . , ρk,π1, . . . , πk−1) be the sub-vector of parame-
ters corresponding to the true non-zero regression coefficients (denoted by S) and
analogously for θ̂S .

Theorem 2 (Asymptotic oracle result for adaptive procedure) Consider model (2.2)
with random design, fixed p and k. If λ = o(n−1/2), nλ → ∞ and if θ ini satisfies
θ ini − θ0 = OP (n−1/2), then, under the regularity conditions (A)–(C) from Fan and
Li (2001) on the joint density function of (Y,X), there exists a local minimizer θ̂

(γ )

adapt;λ
of −n−1�

(γ )

adapt(θ) in (3.13) (γ ∈ {0,1/2,1}) which satisfies:

1. (Consistency in variable selection) P[Ŝ(γ )

adapt;λ = S] → 1 (n → ∞).

2. (Oracle Property)
√

n(θ̂
(γ )

adapt;λ,S
− θ0,S) �d N (0, IS(θ0)

−1), where IS(θ0) is the
Fisher information knowing that θSc = 0 (i.e., the submatrix of the Fisher infor-
mation at θ0 corresponding to the variables in S).

A proof is given in Appendix A. As in Theorem 1, the assertion of the theorem
is only making a statement about some local optimum. Furthermore, this result only
holds for the adaptive criterion with weights wr,j = 1

|φini
r,j | coming from a root-n con-

sistent initial estimator θ ini; this is a rather strong assumption given the fact that The-
orem 1 only ensures existence of such an estimator. The non-adaptive estimator with
the �1-norm penalty as in (3.10) cannot achieve sparsity and maintain root-n con-
sistency due to the bias problem mentioned in Sect. 3.3 (see also Khalili and Chen
2007).

5 General theory for high-dimensional setting with non-convex smooth loss

We present here some theory, entirely different from Theorems 1 and 2, which reflects
some consistency and optimality behavior of the �1-norm penalized maximum like-
lihood estimator for the potentially high-dimensional framework with p � n. In par-
ticular, we derive some oracle inequality which is non-asymptotic. We intentionally
present this theory for �1-penalized smooth likelihood problems which are generally
non-convex; �1-penalized likelihood estimation in FMR models is then a special case
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discussed in Sect. 5.3. The following Sects. 5.1–5.2 introduce some mathematical
conditions and derive auxiliary results and a general oracle inequality (Theorem 3);
the interpretation of these conditions and of the oracle result is discussed for the case
of FMR models at the end of Sect. 5.3.1.

5.1 The setting and notation

Let {fψ ; ψ ∈ Ψ } be a collection of densities with respect to the Lebesgue measure
μ on R (i.e., the range for the response variable). The parameter space Ψ is assumed
to be a bounded subset of some finite-dimensional space, say

Ψ ⊂ {ψ ∈ R
d; ‖ψ‖∞ ≤ K

}
,

where we have equipped (quite arbitrarily) the space R
d with the sup-norm ‖ψ‖∞ =

max1≤j≤d |ψj |. In our setup, the dimension d will be regarded as a fixed constant
(which still covers high-dimensionality of the covariates, as we will see). Then, equiv-
alent metrics are, e.g., the ones induced by the �q -norm ‖ψ‖q = (

∑d
j=1 |ψj |q)1/q

(q ≥ 1).
We observe a covariate X in some space X ⊂ R

p and a response variable Y ∈ R.
The true conditional density of Y given X = x is assumed to be equal to

fψ0(·|x) = fψ0(x),

where

ψ0(x) ∈ Ψ, ∀x ∈ X .

That is, we assume that the true conditional density of Y given x is depending on x

only through some parameter function ψ0(x). Of course, the introduced notation also
applies to fixed instead of random covariates.

The parameter {ψ0(x); x ∈ X } is assumed to have a nonparametric part of interest
{g0(x); x ∈ X } and a low-dimensional nuisance part η0, i.e.,

ψ0(·)T = (g0(·)T , ηT
0

)
,

with

g0(x) ∈ R
k, ∀x ∈ X , η0 ∈ R

m, k + m = d.

In case of FMR models, g(x)T = (φT
1 x,φT

2 x, . . . , φT
k x) and η involves the parame-

ters ρ1, . . . , ρk,π1, . . . , πk−1. More details are given in Sect. 5.3.
With minus the log-likelihood as loss function, the so-called excess risk

E (ψ |ψ0) = −
∫

log

[
fψ

fψ0

]
fψ0 dμ

is the Kullback–Leibler information. For fixed covariates x1, . . . , xn, we define the
average excess risk

Ē (ψ |ψ0) = 1

n

n∑

i=1

E
(
ψ(xi)

∣∣ψ0(xi)
)
,

and for random design, we take the expectation E[E (ψ(X)|ψ0(X))].
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5.1.1 The margin

Following Tsybakov (2004) and van de Geer (2008) we call the behavior of the ex-
cess risk E (ψ |ψ0) near ψ0 the margin. We will show in Lemma 1 that the margin is
quadratic.

Denote by

lψ = logfψ

the log-density. Assuming the derivatives exist, we define the score function

sψ = ∂lψ

∂ψ
,

and the Fisher information

I (ψ) =
∫

sψsT
ψfψ dμ = −

∫
∂2lψ

∂ψ∂ψT
fψ dμ.

Of course, we can then also look at I (ψ(x)) using the parameter function ψ(x).
In the sequel, we introduce some conditions (Conditions 1–5). Their interpretation

for the case of FMR models is given at the end of Sect. 5.3.1. First, we will assume
boundedness of the third derivatives.

Condition 1 It holds that

sup
ψ∈Ψ

max
(j1,j2,j3)∈{1,...,d}3

∣∣∣∣
∂3

∂ψj1∂ψj2∂ψj3

lψ (·)
∣∣∣∣≤ G3(·),

where

sup
x∈X

∫
G3(y)fψ0(y|x)dμ(y) ≤ C3 < ∞.

For a symmetric, positive semi-definite matrix A, we let Λ2
min(A) be its smallest

eigenvalue.

Condition 2 For all x ∈ X , the Fisher information matrix I (ψ0(x)) is positive defi-
nite and, in fact,

Λmin = inf
x∈X

Λmin
(
I
(
ψ0(x)

))
> 0.

Further, we will need the following identifiability condition.

Condition 3 For all ε > 0, there exists an αε > 0 such that

inf
x∈X

inf
ψ∈Ψ

‖ψ−ψ0(x)‖2>ε

E
(
ψ |ψ0(x)

)≥ αε.

Based on these three conditions, we have the following result:
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Lemma 1 Assume Conditions 1, 2, and 3. Then

inf
x∈X

E (ψ |ψ0(x))

‖ψ − ψ0(x)‖2
2

≥ 1

c2
0

,

where

c2
0 = max

[
1

ε0
,
dK2

αε0

]
, ε0 = 3Λ2

min

2d3/2
.

A proof is given in Appendix B.

5.1.2 The empirical process

We now specialize to the case where

ψ(x)T = (g(x)T , ηT
)
,

where (with some abuse of notation)

g(x)T = gφ(x)T = (g1(x), . . . , gk(x)
)
,

gr (x) = gφr (x) = xT φr , x ∈ R
p, φr ∈ R

p, r = 1, . . . , k.

We also write

ψϑ(x)T = (gφ(x)T , ηT
)
, ϑT = (φT

1 , . . . , φT
k , ηT

)

to make the dependence of the parameter function ψ(x) on ϑ more explicit.
We will assume that

sup
x∈X

∥∥φT x
∥∥∞ = sup

x∈X
max

1≤r≤k

∣∣φT
r x
∣∣≤ K.

This can be viewed as a combined condition on X and φ. For example, if X is
bounded by a fixed constant this supremum (for fixed φ) is finite.

Our parameter space is now

Θ̃ ⊂
{
ϑT = (φT

1 , . . . , φT
k , ηT

); sup
x∈X

∥∥φT x
∥∥∞ ≤ K, ‖η‖∞ ≤ K

}
. (5.17)

Note that Θ̃ is, in principle, (pk+m)-dimensional. The true parameter ϑ0 is assumed
to be an element of Θ̃ .

Let us define

Lϑ(x, ·) = logfψ(x)(·), ψ(x)T = ψϑ(x)T = (gφ(x)T , ηT
)
,

ϑT = (φT
1 , . . . , φT

k , ηT
)
,
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and the empirical process for fixed covariates x1, . . . , xn

Vn(ϑ) = 1

n

n∑

i=1

(
Lϑ(xi, Yi) − E

[
Lϑ(xi, Y )

∣∣X = xi

])
.

We now fix some T ≥ 1 and λ0 ≥ 0 and define the event

T =
{

sup
ϑT =(φT ,ηT )∈Θ̃

|Vn(ϑ) − Vn(ϑ0)|
(‖φ − φ0‖1 + ‖η − η0‖2) ∨ λ0

≤ T λ0

}
. (5.18)

5.2 Oracle inequality for the Lasso for non-convex loss functions

For an optimality result, we need some condition on the design. Denote the active set,
i.e., the set of non-zero coefficients, by

S = {(r, j); φr,j 
= 0
}
, s = |S|,

and let

φJ = {φ(r,j); (r, j) ∈ J
}
, J ⊆ {1, . . . , k} × {1, . . . , p}.

Further, let

Σn = 1

n

n∑

i=1

xix
T
i .

Condition 4 (Restricted eigenvalue condition) There exists a constant κ ≥ 1 such
that, for all φ ∈ R

pk satisfying

‖φSc‖1 ≤ 6‖φS‖1,

it holds that

‖φS‖2
2 ≤ κ2

k∑

r=1

φT
r Σnφr .

For ψ(·)T = (g(·)T , ηT ), we use the notation

‖ψ‖2
Qn

= 1

n

n∑

i=1

k∑

r=1

g2
r (xi) +

m∑

j=1

η2
j .

We also write for g(·) = (g1(·), . . . , gk(·))T ,

‖g‖2
Qn

= 1

n

n∑

i=1

k∑

r=1

g2
r (xi).
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Thus

‖gφ‖2
Qn

=
k∑

r=1

φT
r Σnφr ,

and the bound in the restricted eigenvalue condition then reads

‖φS‖2
2 ≤ κ2‖gφ‖2

Qn
.

Bounding ‖gφ‖2
Qn

in terms of ‖φS‖2
2 can be done directly using, e.g., the Cauchy–

Schwarz inequality. The restricted eigenvalue condition ensures a bound in the other
direction which itself is needed for an oracle inequality. Some references about the
restricted eigenvalue condition are provided at the end of Sect. 5.3.1.

We employ the Lasso-type estimator

ϑ̂T = (φ̂T , η̂T
)= arg min

ϑT =(φT ,ηT )∈Θ̃

{
−1

n

n∑

i=1

Lϑ(xi, Yi) + λ

k∑

r=1

‖φr‖1

}
. (5.19)

We omit in the sequel the dependence of ϑ̂ on λ. Note that we consider here
a global minimizer which may be difficult to compute if the empirical risk
n−1∑n

i=1 Lϑ(xi, Yi) is non-convex in ϑ . We then write ‖φ‖1 =∑k
r=1 ‖φr‖1. We

let

ψ̂(x)T = (g
φ̂
(x)T , η̂T

)
,

which depends only on the estimate ϑ̂ , and we denote by

ψ0(x)T = (gφ0(x)T , ηT
0

)
.

Theorem 3 (Oracle result for fixed design) Assume fixed covariates x1, . . . , xn, Con-
ditions 1–3 and 4, and that λ ≥ 2T λ0 for the estimator in (5.19) with T and λ0 as in
(5.18). Then on T , defined in (5.18), for the average excess risk (average Kullback–
Leibler loss),

Ē (ψ̂ |ψ0) + 2(λ − T λ0)‖φ̂Sc‖1 ≤ 8(λ + T λ0)
2c2

0κ
2s,

where c0 and κ are defined in Lemma 1 and Condition 4, respectively.

A proof is given in Appendix B. We will give an interpretation of this result in
Sect. 5.3.1, where we specialize to FMR models. In the case of FMR models, the
probability of the set T is large as shown in detail by Lemma 3 below.

Before specializing to FMR models, we present more general results for lower
bounding the probability of the set T . We make the following assumption.

Condition 5 For the score function sϑ (·) = sψϑ (·), we have

sup
ϑ∈Θ̃

‖sϑ (·)‖∞ ≤ G1(·),

for some function G1(·).
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Condition 5 primarily has notational character. Later, in Lemma 2 and particu-
larly in Lemma 3, the function G1(·) needs to be sufficiently regular to ensure small
corresponding probabilities.

Define

λ0 = Mn logn

√
log(p ∨ n)

n
. (5.20)

As we will see, we usually choose Mn � √log(n). Let Px denote the conditional
probability given (X1, . . . ,Xn) = (x1, . . . , xn) = x, and with the expression l{·} we
denote the indicator function.

Lemma 2 Assume Condition 5. We have for constants c1, c2 and c3 depending on k

and K , and for all T ≥ c1,

sup
ϑT =(φT ,ηT )∈Θ̃

|Vn(ϑ) − Vn(ϑ0)|
(‖φ − φ0‖1 + ‖η − η0‖2) ∨ λ0

≤ T λ0,

with Px probability at least

1 − c2 exp

[
−T 2 log2n log(p ∨ n)

c2
3

]
− Px

(
1

n

n∑

i=1

F(Yi) > T λ2
0/(dK)

)
,

where (for i = 1, . . . , n)

F(Yi) = G1(Yi)l
{
G1(Yi) > Mn

}+ E
[
G1(Y )l

{
G1(Y ) > Mn}

∣∣X = xi

]
.

Regarding the constants λ0 and K , see (5.20) and (5.17), respectively.

A proof is given in Appendix B.

5.3 FMR models

In the finite mixture of regressions model from (2.2) with k components, the parame-
ter is ϑT = (φT , ηT ) = (φT

1 , . . . , φT
k , logρ1, . . . , logρk, logπ1, . . . , logπk−1), where

the ρr = σ−1
r are the inverse standard deviations in mixture component r and the πr

are the mixture coefficients. For mathematical convenience and simpler notation, we
consider here the log-transformed ρ and π parameters in order to have lower and
upper bounds for ρ and π . Obviously, there is a one-to-one correspondence between
ϑ and θ from Sect. 2.1.

Let the parameter space be

Θ̃ ⊂
{

ϑT ; sup
x∈X

∥∥φT x
∥∥∞ ≤ K,‖ logρ‖∞ ≤ K,−K ≤ logπ1 ≤ 0, . . . ,

−K ≤ logπk−1 ≤ 0,

k−1∑

r=1

πr < 1

}
, (5.21)

and πk = 1 −∑k−1
r=1 πr .
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We consider the estimator

ϑ̂λ = arg min
ϑ∈Θ̃

−n−1
n∑

i=1

log

(
k∑

r=1

πr

ρr√
2π

exp

(
−1

2

(
ρrYi −XT

i φr

)2
))

+λ

k∑

r=1

‖φr‖1.

(5.22)
This is the estimator from Sect. 3.2 with γ = 0. We emphasize the boundedness of
the parameter space by using the notation Θ̃ . In contrast to Sect. 4, we focus here
on any global minimizer of the penalized negative log-likelihood which is arguably
difficult to compute.

In the following, we transform the estimator ϑ̂λ to θ̂λ in the parameterization θ

from Sect. 2.1. Using some abuse of notation we denote the average excess risk by
Ē (θ̂λ|θ0).

5.3.1 Oracle result for FMR models

We specialize now our results from Sect. 5.2 to FMR models.

Proposition 3 For fixed design FMR models as in (2.2) with Θ̃ in (5.21), Conditions
1, 2 and 3 are met, for appropriate C3, Λmin and {αε}, depending on k and K . Also
Condition 5 holds with

G1(y) = eK |y| + K.

Proof This follows from straightforward calculations. �

In order to show that the probability for the set T is large, we invoke Lemma 2
and the following result.

Lemma 3 For fixed design FMR models as in (2.2) with Θ̃ in (5.21), for some con-
stants c4, c5 and c6, depending on k, and K , and for Mn = c4

√
logn and n ≥ c6, the

following holds:

Px

(
1

n

n∑

i=1

F(Yi) > c5
logn

n

)
≤ 1

n
,

where (for i = 1, . . . , n)

F(Yi) = G1(Yi)l
{
G1(Yi) > Mn

}+ E
[
G1(Y )l

{
G1(Y ) > Mn

}∣∣X = xi

]
,

and G1(·) is as in Proposition 3.

A proof is given in Appendix B.
Hence, the oracle result in Theorem 3 for our �1-norm penalized estimator in the

FMR model holds on a set T , summarized in Theorem 4, and this set T has large
probability due to Lemma 2 and Lemma 3 as described in the following corollary.
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Corollary 1 For fixed design FMR models as in (2.2) with Θ̃ in (5.21), we have for
constants c2, c4, c7, c8 depending on k and K ,

Px[T ] ≥ 1 − c2 exp

[
−T 2 log2n log(p ∨ n)

c2
7

]
− n−1 for all n ≥ c8,

where T is defined with λ0 = Mn logn

√
log(p∨n)

n
and Mn = c4

√
logn.

Theorem 4 (Oracle result for FMR models) Consider a fixed design FMR model as
in (2.2) with Θ̃ in (5.21). Assume Condition 4 (restricted eigenvalue condition) and
that λ ≥ 2T λ0 for the estimator in (5.22). Then on T , which has large probability as
stated in Corollary 1, for the average excess risk (average Kullback–Leibler loss),

Ē (θ̂λ|θ0) + 2(λ − T λ0)‖φ̂Sc‖1 ≤ 8(λ + T λ0)
2c2

0κ
2s,

where c0 and κ are defined in Lemma 1 and Condition 4, respectively.

The oracle inequality of Theorem 4 has the following well-known interpretation.
First, we obtain

Ē (θ̂λ|θ0) ≤ 8(λ + T λ0)
2c2

0κ
2s.

That is, the average Kullback–Leibler risk is of the order O(sλ2
0) = O(s log3 n log(p∨

n)/n) (take λ = 2T λ0, use definition (5.20) and the assumption on Mn in Lemma 3
above) which is up to the factor log3 n log(p ∨ n) the optimal convergence rate if one
would know the s non-zero coefficients. As a second implication we obtain

‖φ̂Sc‖1 ≤ 4(λ + T λ0)c
2
0κ

2s,

saying that the noise components in Sc have small estimated values (e.g., its �1-norm
converges to zero at rate O(sλ0)).

Note that the Conditions 1, 2, 3 and 5 hold automatically for FMR mod-
els, as described in Proposition 3. We do require a restricted eigenvalue condi-
tion on the design, here Condition 4. In fact, for the Lasso or Dantzig selec-
tor in linear models, restricted eigenvalue conditions (Koltchinskii 2009; Bickel et
al. 2009) are considerably weaker than coherence conditions (Bunea et al. 2007;
Cai et al. 2009a) or assuming the restricted isometry property (Candès and Tao 2005;
Cai et al. 2009b); for an overview among the relations, see van de Geer and Bühlmann
(2009).

5.3.2 High-dimensional consistency of FMR models

We finally give a consistency result for FMR models under weaker conditions than
the oracle result from Sect. 5.3.1. Denote by θ0 the true parameter vector in a FMR
model. In contrast to Sect. 4, the number of covariates p can grow with the number
of observations n. Therefore, also the true parameter θ0 depends on n. To guarantee
consistency we have to assume some sparsity condition, i.e., the �1-norm of the true

parameter can only grow with o(

√
n/(log3 n log(p ∨ n))).
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Theorem 5 (Consistency) Consider a fixed design FMR model (2.2) with Θ̃ in (5.21)
and fixed k. Moreover, assume that

‖φ0‖1 =
k∑

r=1

‖φ0,r‖1 = o
(√

n/
(
log3 n log(p ∨ n)

))
(n → ∞).

If λ = C

√
log3 n log(p ∨ n)/n for some C > 0 sufficiently large, then any (global)

minimizer θ̂λ as in (5.22) satisfies

Ē (θ̂λ|θ0) = oP (1) (n → ∞).

A proof is given in Appendix B. The (restricted eigenvalue) Condition 4 on the
design is not required; this is typical for a high-dimensional consistency result, see
Greenshtein and Ritov (2004) for the Lasso in linear models.

6 Numerical optimization

We present a generalized EM (GEM) algorithm for optimizing the criterion in (3.10)
in Sect. 6.1. In Sects. 6.2 and 6.3, we give further details on speeding-up and on
initializing the algorithm. Finally, we discuss numerical convergence properties in
Sect. 6.4. For the convex penalty (γ = 0) function, we prove convergence to a sta-
tionary point.

6.1 GEM algorithm for optimization

Maximization of the log-likelihood of a mixture density is often done using the tradi-
tional EM algorithm of Dempster et al. (1977). Consider the complete log-likelihood

�c(θ;Y,Δ) =
n∑

i=1

k∑

r=1

Δi,r log

(
ρr√
2π

e− 1
2 (ρrYi−XT

i φr )
2
)

+ Δi,r log(πr).

Here (Δi,1, . . . ,Δi,k), i = 1, . . . , n, are i.i.d. unobserved multinomial variables show-
ing the component-membership of the ith observation in the FMR model: Δi,r = 1
if observation i belongs to component r , and Δi,r = 0 otherwise. The expected com-
plete (scaled) negative log-likelihood is then

Q(θ |θ ′) = −n−1
Eθ ′
[
�c(θ;Y,Δ)|Y ],

and the expected complete (scaled) penalized negative log-likelihood is

Qpen(θ |θ ′) = Q(θ |θ ′) + λ

k∑

r=1

π
γ
r ‖φr‖1.

The EM algorithm works by alternating between the E- and M-step. Denote the
parameter value at EM-iteration m by θ(m) (m = 0,1,2, . . .), where θ(0) is a vector
of starting values.
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E-Step: Compute Q(θ |θ(m)), or equivalently,

γ̂i,r = Eθ(m)[Δi,r |Y ] = π
(m)
r ρ

(m)
r e− 1

2 (ρ
(m)
r Yi−XT

i φ
(m)
r )2

∑k
l=1 π

(m)
l ρ

(m)
l e− 1

2 (ρ
(m)
l Yi−XT

i φ
(m)
l )2

,

r = 1, . . . , k, i = 1, . . . , n.

Generalized M-Step: Improve Qpen(θ |θ(m)) w.r.t. θ ∈ Θ .

(a) Improvement with respect to π = (π1, . . . , πk):
Fix φ at the present value φ(m) and improve

−n−1
n∑

i=1

k∑

r=1

γ̂i,r log(πr) + λ

k∑

r=1

π
γ
r

∥∥φ(m)
r

∥∥
1 (6.23)

with respect to the probability simplex

{
π;πr > 0 for r = 1, . . . , k and

k∑

r=1

πr = 1

}
.

Denote by π̄ (m+1) =
∑n

i=1 γ̂i

n
which is a feasible point of the simplex. We propose

to update π as

π(m+1) = π(m) + t (m)
(
π̄ (m+1) − π(m)

)
,

where t (m) ∈ (0,1]. In practice, t (m) is chosen to be the largest value in the grid
{δk; k = 0,1,2, . . .} (0 < δ < 1) such that (6.23) is not increased. In our exam-
ples, δ = 0.1 worked well.

(b) Coordinate descent improvement with respect to φ and ρ:
A simple calculation shows that the M-step decouples for each component into k

distinct optimization problems of the form

− log(ρr) + 1

2nr

‖ρr Ỹ − X̃φr‖2 + nλ

nr

(
π(m+1)

r

)γ ‖φr‖1, r = 1, . . . , k (6.24)

with

nr =
n∑

i=1

γ̂i,r , (Ỹi , X̃i) =
√

γ̂i,r (Yi,Xi), r = 1, . . . , k.

Problem (6.24) has the same form as (3.8); in particular, it is convex in
(ρr ,φr,1, . . . , φr,p). Instead of fully optimizing (6.24), we only minimize with
respect to each of the coordinates, holding the other coordinates at their current
value. Closed-form coordinate updates can easily be computed for each compo-
nent r (r = 1, . . . , k) using Proposition 1:

ρ(m+1)
r = 〈Ỹ , X̃φ

(m)
r 〉 +

√
〈Ỹ , X̃φ

(m)
r 〉2 + 4‖Ỹ‖2nr

2‖Ỹ‖2
,



�1-penalization for mixture regression models

φ
(m+1)
r,j =

⎧
⎪⎨

⎪⎩

0 if |Sj | ≤ nλ(π
(m+1)
r )γ ,

(nλ(π
(m+1)
r )γ − Sj )/‖X̃j‖2 if Sj > nλ(π

(m+1)
r )γ ,

−(nλ(π
(m+1)
r )γ + Sj )/‖X̃j‖2 if Sj < −nλ(π

(m+1)
r )γ ,

where Sj is defined as

Sj = −ρ(m+1)
r 〈X̃j , Ỹ 〉 +

∑

s<j

φ(m+1)
r,s 〈X̃j , X̃s〉 +

∑

s>j

φ(m)
r,s 〈X̃j , X̃s〉

and j = 1, . . . , p.

Because we only improve Qpen(θ |θ(m)) instead of a full minimization, see M-step (a)
and (b), this is a generalized EM (GEM) algorithm. We call it the block coordinate
descent generalized EM algorithm (BCD-GEM); the word block refers to the fact that
we are updating all components of π at once. Its numerical properties are discussed
in Sect. 6.4.

Remark 1 For the convex penalty function with γ = 0, a minimization with respect

to π in M-step (a) is achieved with π(m+1) =
∑n

i=1 γ̂i

n
, i.e., using t (m) = 1. Then, our

M-step corresponds to exact coordinate-wise minimization of Qpen(θ |θ(m)).

6.2 Active set algorithm

There is a simple way to speed-up the algorithm described above. When updating the
coordinates φr,j in the M-step (b), we restrict ourselves during every 10 EM-iterations
to the current active set (the non-zero coordinates) and visit the remaining coordinates
every 11th EM-iteration to update the active set. In very high-dimensional and sparse
settings, this leads to a remarkable decrease in computational times. A similar active
set strategy is also used in Friedman et al. (2007) and Meier et al. (2008). We illustrate
in Sect. 7.3 the gain of speed when staying during every 10 EM-iterations within the
active set.

6.3 Initialization

The algorithm of Sect. 6.1 requires the specification of starting values θ(0). We
found empirically that the following initialization works well. For each observation i,
i = 1, . . . , n, draw randomly a class κ ∈ {1, . . . , k}. Assign for observation i and the
corresponding component κ the weight γ̃i,κ = 0.9 and weights γ̃i,r = 0.1 for all other
components. Finally, normalize γ̃i,r , r = 1, . . . , k, to achieve that summing over the
indices k yields the value one, to get the normalized values γ̂i,r . Note that this can
be viewed as an initialization of the E-step. In the M-step which follows afterwards,
we update all coordinates from the initial values φ

(0)
r,j = 0, ρ

(0)
r = 2, π

(0)
r = 1/k,

r = 1, . . . , k, j = 1, . . . , p.

6.4 Numerical convergence of the BCD-GEM algorithm

We address here the convergence properties of the BCD-GEM algorithm described in
Sect. 6.1. A detailed account of the convergence properties of the EM algorithm in a
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general setting has been given by Wu (1983). Under regularity conditions, including
differentiability and continuity, convergence to stationary points is proved for the
EM algorithm. For the GEM algorithm, similar statements are true under conditions
which are often hard to verify.

As a GEM algorithm, our BCD-GEM algorithm has the descent property which
means that the criterion function is reduced at each iteration:

−n−1�
(γ )
pen,λ

(
θ(m+1)

)≤ −n−1�
(γ )
pen,λ

(
θ(m)

)
. (6.25)

Since −n−1�
(0)
pen,λ(θ) is bounded from below (Proposition 2), the following result

holds.

Proposition 4 For the BCD-GEM algorithm, −n−1�
(0)
pen,λ(θ

(m)) decreases monoton-

ically to some value �̄ > −∞.

In Remark 1, we noted that, for the convex penalty function with γ = 0, the M-step
of the algorithm corresponds to exact coordinate-wise minimization of Qpen(θ |θ(m)).
In this case, convergence to a stationary point can be shown.

Theorem 6 Consider the BCD-GEM algorithm for the criterion function in (3.10)
with γ = 0. Then, every cluster point θ̄ ∈ Θ of the sequence {θ(m);m = 0,1,2, . . .},
generated by the BCD-GEM algorithm, is a stationary point of the criterion function
in (3.10).

A precise definition of a stationary point in a non-differentiable setup and a proof
of the Theorem are given in Appendix C. The proof uses the crucial facts that
Qpen(θ |θ ′) is a convex function in θ and that it is strictly convex in each coordinate
of θ .

7 Simulations, real data example and computational timings

7.1 Simulations

We consider four different simulation setups. Simulation scenario 1 compares the
performance of the unpenalized MLE with our estimators from Sect. 3.2 (FMRLasso)
and Sect. 3.3 (FMRAdapt) in a situation where the total number of noise covariates
grows successively. For computing the unpenalized MLE, we used the R-package
FlexMix (Leisch 2004; Grün and Leisch 2007, 2008); Simulation 2 explores sparsity;
Simulation 3 compares cross-validation and BIC; and Simulation 4 compares the
different penalty functions with the parameters γ = 0,1/2,1. For every setting, the
results are based on 100 independent simulation runs.

All simulations are based on Gaussian FMR models as in (2.1); the coefficients
πr,βr , σr and the sample size n are specified below. The covariate X is generated
from a multivariate normal distribution with mean 0 and covariance structure as spec-
ified below.
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Unless otherwise specified, the penalty with γ = 1 is used in all simulations. As
explored empirically in Simulation 4, in case of balanced problems (approximately
equal πr ), the FMRLasso performs similarly for all three penalties. In unbalanced
situations, the best results are typically achieved with γ = 1. In addition, unless oth-
erwise specified, the true number of components k is assumed to be known.

For all models, training-, validation- and test data are generated of equal size n.
The estimators are computed on the training data, with the tuning parameter (e.g., λ)
selected by minimizing twice the negative log-likelihood (log-likelihood loss) on the
validation data. As performance measure, the predictive log-likelihood loss (twice the
negative log-likelihood) of the selected model is computed on the test data.

Regarding variable selection, we count a covariable X(j) as selected if β̂r,j 
= 0 for
at least one r ∈ {1, . . . , k}. To assess the performance of FMRLasso on recovering the
sparsity structure, we report the number of truly selected covariates (True Positives)
and falsely selected covariates (False Positives).

Obviously, the performances depend on the signal-to-noise ratio (SNR) which we
define for an FMR model as

SNR = Var(Y )

Var(Y |βr = 0; r = 1, . . . , k)
=
∑k

r=1 πr(β
T
r Cov(X)βr + σ 2

r )
∑k

r=1 πrσ 2
r

,

where the last equality follows since E[X] = 0.

7.1.1 Simulation 1

We consider five different FMR models: M1, M2, M3, M4 and M5. The parameters
(πk,βk, σk), the sample size n of the training-, validation- and test-data, the corre-
lation structure of covariates corrl,m = corr(X(l),X(m)) and the signal-to-noise ratio
(SNR) are specified in Table 1. Models M1, M2, M3 and M5 have two components
and five active covariates, whereas model M4 has three components and six active
covariates. M1, M2 and M3 differ only in their variances σ 2

1 , σ 2
2 and hence have

different signal-to-noise ratios. Model M5 has a non-diagonal covariance structure.
Furthermore, in model M5, the variances σ 2

1 , σ 2
2 are tuned to achieve the same signal-

to-noise ratio as in model M1.
We compare the performances of the maximum likelihood estimator (MLE), the

FMRLasso and the FMRAdapt in a situation where the number of noise covariates
grows successively. For the models M1, M2, M3, M5 with two components, we start
with ptot = 5 (no noise covariates) and go up to ptot = 125 (120 noise covariates).
For the three component model M4, we start with ptot = 6 (no noise covariates) and
go up to ptot = 155 (149 noise covariates).

The boxplots in Figs. 1–5 of the predictive log-likelihood loss, denoted by Er-
ror, the True Positives (TP) and the False Positives (FP) over 100 simulation runs
summarize the results for the different models. We read off from these boxplots that
the MLE performs very badly when we add noise covariates. On the other hand, our
penalized estimators remain stable. For example, for M1 the MLE with ptot = 20 per-
forms worse than the FMRLasso with ptot = 125, or for M4 the MLE with ptot = 10
performs worse than the FMRLasso with ptot = 75. Impressive is also the huge gain
of the FMRAdapt method over FMRLasso in terms of log-likelihood loss and false
positives.
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Fig. 1 Simulation 1, Model M1. (Top) Predictive log-likelihood loss (Error) for MLE, FMRLasso, FM-
RAdapt; (Bottom) False Positives (FP) and True Positives (TP) for FMRLasso and FMRAdapt

7.1.2 Simulation 2

In this section, we explore the sparsity properties of the FMRLasso. The model spec-
ifications are given in Table 2. Consider the ratios pact : n : ptot. The total number
of covariates ptot grows faster than the number of observations n and the number
of active covariates pact: when ptot is doubled, pact is raised by one and n is raised
by 50 from model to model. In particular, we obtain a series of models which gets
“sparser” as n grows (larger ratio n/pact). In order to compare the performance of
the FMRLasso, we report the True Positive Rate (TPR) and the False Positive Rate
(FPR) defined as:

TPR = #truly selected covariates

#active covariates
,

FPR = #falsely selected covariates

#inactive covariates
.

These numbers are reported in Fig. 6. We see that the False Positive Rate ap-
proaches zero for sparser models, indicating that the FMRLasso recovers the true
model better in sparser settings regardless of the large number of noise covariates.
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Fig. 2 Simulation 1, Model M2. Same notation as in Fig. 1

Table 2 Series of models for simulation 2 which gets “sparser” as n grows: when ptot is doubled, pact is
raised by one and n is raised by 50 from model to model

pact 3 4 5 6 7 8 9

n 50 100 150 200 250 300 350

ptot 10 20 40 80 160 320 640

β1 (3,3,3,0,0, . . .)

β2 (−1,−1,−1,0,0, . . .)

σ 0.5, 0.5

π 0.5, 0.5

7.1.3 Simulation 3

So far, we regarded the number k of components as given, while we have chosen
an optimal λopt by minimizing the negative log-likelihood loss on validation data. In
this section, we compare the performance of 10-fold cross-validation and the BIC
criterion presented in Sect. 3.4 for selecting the tuning parameters k and λ. We use
model M1 of Sect. 7.1.1 with ptot = 25,50,75. For each of these models, we tune the
FMRLasso estimator according to the following strategies:

(1) Assume the number of components is given (k = 2). Choose the optimal tuning
parameter λopt using 10-fold cross-validation.
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Fig. 3 Simulation 1, Model M3. Same notation as in Fig. 1

(2) Assume the number of components is given (k = 2). Choose λopt by minimizing
the BIC criterion (3.15).

(3) Choose the number of components k ∈ {1,2,3} and λopt by minimizing the BIC
criterion (3.15).

The results of this simulation are presented in Fig. 7, where boxplots of the log-
likelihood loss (Error) are shown. All three strategies perform equally well. With
ptot = 25 the BIC criterion in strategy (3) always chooses k = 2. For the model with
ptot = 50, strategy (3) chooses k = 2 in 98 simulation runs and k = 3 in two runs.
Finally, with ptot = 75, the third strategy chooses k = 2 in 92 runs and k = 3 eight
times.

7.1.4 Simulation 4

In the preceding simulations, we always used the value γ = 1 in the penalty term
of the FMRLasso estimator (3.10). In this section, we compare the FMRLasso for
different values γ = 0,1/2,1. First, we compute the FMRLasso for γ = 0,1/2,1 on
model M1 of Sect. 7.1.1 with ptot = 50. Then we do the same calculations for an
“unbalanced” version of this model with π1 = 0.3 and π2 = 0.7.

In Fig. 8, the boxplots of the log-likelihood loss (Error), the False Positives (FP)
and the True Positives (TP) over 100 simulation runs are shown. We see that the
FMRLasso performs similarly for γ = 0,1/2,1. Nevertheless, the value γ = 1 is
slightly preferable in the “unbalanced” setup.
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Fig. 4 Simulation 1, Model M4. Same notation as in Fig. 1

7.2 Real data example

We now apply the FMRLasso to a dataset of riboflavin (vitamin B2) production by
Bacillus Subtilis. The real-valued response variable is the logarithm of the riboflavin
production rate. The data has been kindly provided by DSM (Switzerland). There are
p = 4088 covariates (genes) measuring the logarithm of the expression level of 4088
genes and measurements of n = 146 genetically engineered mutants of Bacillus Sub-
tilis. The population seems to be rather heterogeneous as there are different strains of
Bacillus Subtilis which are cultured under different fermentation conditions. We do
not know the different homogeneity subgroups. For this reason, a FMR model with
more than one component might be more appropriate than a simple linear regression
model.

We compute the FMRLasso estimator for k = 1, . . . ,5 components. To keep the
computational effort reasonable, we use only the 100 covariates (genes) exhibiting
the highest empirical variances. We choose the optimal tuning parameter λopt by 10-
fold cross-validation (using the log-likelihood loss). As a result, we get five different
estimators which we compare according to their cross-validated log-likelihood loss
(CV Error). These numbers are plotted in Fig. 9. The estimator with three compo-
nents performs clearly best, resulting in a 17% improvement in prediction over a
(non-mixture) linear model, and it selects 51 genes. In Fig. 10, the coefficients of
the 20 most important genes, ordered according to

∑3
r=1 |β̂r,j |, are shown. From the
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Fig. 5 Simulation 1, Model M5. Same notation as in Fig. 1

important variables, only gene 83 shows the opposite sign of the estimated regres-
sion coefficients among the three different mixture components. However, it happens
that some covariates (genes) exhibit a strong effect in one or two mixture compo-
nents but none in the remaining other components. Finally, for comparison, the one-
component (non-mixture) model selects 26 genes, of which 24 are also selected in
the three-component model.

7.3 Computational timings

In this section, we report on the run times of the BCD-GEM algorithm on two
high-dimensional examples. In particular, we focus on the substantial gain of speed
achieved by using the active set version of the algorithm described in Sect. 6.2. All
computations were carried out with the statistical computing language and environ-
ment R. Timings depend on the stopping criterion used in the algorithm. We stop the
algorithm if the relative function improvement and the relative change of the parame-
ter vector are small enough, i.e.,

|�(γ )
pen,λ(θ

(m+1)) − �
(γ )
pen,λ(θ

(m))|
1 + |�(γ )

pen,λ(θ
(m+1))|

≤ τ,

max
j

{ |θ(m+1)
j − θ

(m)
j |

1 + |θ(m+1)
j |

}
≤ √

τ , τ = 10−6.
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Fig. 6 Simulation 2 compares the performance of the FMRLasso for a series of models which gets
“sparser” as the sample size grows. (Top) True Positive Rate (TPR); (Bottom) False Positive Rate (FPR)
over 100 simulation runs

We consider a high-dimensional version of the two component model M1 from
Sect. 7.1.1 with n = 200, ptot = 1000 and the riboflavin dataset from Sect. 7.2 with
three components, n = 146 and ptot = 100. We use the BCD-GEM algorithm with
and without active set strategy to fit the FMRLasso on a small grid of eight values
for λ. The corresponding BIC, CPU times (in seconds) and number of EM-iterations
are reported in Tables 3 and 4. The values for the BCD-GEM without active set strat-
egy are written in brackets. For model M1 and an appropriate λ with minimal BIC
score, the active set algorithm converges in 5.96 seconds whereas the standard BCD-
GEM needs 53.15 seconds. There is also a considerable gain of speed for the real
data: 0.89 seconds versus 3.57 seconds for λ with optimal BIC. Note that in Table 3,
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Fig. 7 Simulation 3 compares different strategies for choosing the tuning parameters k and λ. The box-
plots show the predictive log-likelihood loss (Error) of the FMRLasso, tuned by strategies (1), (2) and (3),
for model M1 with ptot = 25,50,75

the BIC scores sometimes differ substantially for inappropriate values of λ. For such
regularization parameters, the solutions are unstable and different local optima are
attained depending on the algorithm used. However, if the regularization parameter
is in a reasonable range with low BIC score, the results stabilize.

8 Discussion

We have presented an �1-penalized estimator for a finite mixture of high-dimensional
Gaussian regressions where the number of covariates may greatly exceed sample
size. Such a model and the corresponding Lasso-type estimator are useful to blindly
account for often encountered inhomogeneity of high-dimensional data. On a high-
dimensional real data example, we demonstrate a 17% gain in prediction accuracy
over a (non-mixture) linear model.

The computation and mathematical analysis in such a high-dimensional mixture
model is challenging due to the non-convex behavior of the negative log-likelihood.
Moreover, with high-dimensional estimation defined via optimization of a non-
convex objective function, there is a major gap between the actual computation and
the procedure analyzed in theory. We do not provide an answer to this issue in this pa-
per. Regarding the computation in FMR models, a simple reparameterization is very
beneficial and the �1-penalty term makes the optimization problem numerically much
better behaved. We develop an efficient generalized EM algorithm and we prove its
numerical convergence to a stationary point. Regarding the statistical properties, be-
sides standard low-dimensional asymptotics, we present a non-asymptotic oracle in-
equality for the Lasso-type estimator in a high-dimensional setting with general, non-
convex but smooth loss functions. The mathematical arguments are different than
what is typically used for convex losses.
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Fig. 8 Simulation 4 compares the FMRLasso for different values γ = 0,1/2,1. The upper row of the
panels shows the boxplots of the log-likelihood loss (Error), the False Positives (FP) and the True Positives
(TP) for model M1 with ptot = 50 and π1 = π2 = 0.5. The lower row of the panels shows the same
boxplots for an “unbalanced” version of model M1 with π1 = 0.3 and π2 = 0.7
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Appendix A: Proofs for Sect. 4

A.1 Proof of Theorem 1

We assume the regularity assumptions (A)–(C) of Fan and Li (2001). The theorem
follows from Theorem 1 of Fan and Li (2001).
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Fig. 9 Riboflavin production
data. Cross-validated negative
log-likelihood loss (CV Error)
for the FMRLasso estimator
when varying over different
numbers of components

A.2 Proof of Theorem 2

In order to keep the notation simple, we give the proof for a two class mixture with
k = 2. All arguments in the proof can also be used for a general mixture with more
than two components. Remember that −n−1�adapt(θ) is given by

−n−1�adapt(θ) = −n−1�(θ) + λ

(
π

γ

1

p∑

j=1

w1,j |φ1,j | + (1 − π1)
γ

p∑

j=1

w2,j |φ2,j |
)

,

where �(θ) is the log-likelihood function. The weights wr,j are given by wr,j = 1
|φini

r,j | ,
r = 1,2, and j = 1, . . . , p.

Assertion 1. Let θ̂ be a root-n consistent local minimizer of −n−1�adapt(θ) (con-
struction as in Fan and Li 2001).

For all (r, j) ∈ S, we easily see from consistency of θ̂ that P[(r, j) ∈ Ŝ] → 1. It
then remains to show that for all (r, j) ∈ Sc, P[(r, j) ∈ Ŝc] → 1. Assume the contrary,
i.e., w.l.o.g. there is an s ∈ {1, . . . , p} with φ1,s = 0 such that φ̂1,s 
= 0 with non-
vanishing probability.

By Taylor’s theorem, applied to the function n−1 ∂�(θ)
∂φ1,s

, there exists a (random)

vector θ̃ on the line segment between θ0 and θ̂ such that

1

n

∂�adapt

∂φ1,s

∣∣∣∣
θ̂

= 1

n

∂�

∂φ1,s

∣∣∣∣
θ0︸ ︷︷ ︸

(1)

+ 1

n

∂�′

∂φ1,s

∣∣∣∣
θ0︸ ︷︷ ︸

(2)

(θ̂ − θ0)
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+ 1

2
(θ̂ − θ0)

T 1

n

∂�′′

∂φ1,s

∣∣∣∣
θ̃︸ ︷︷ ︸

(3)

(θ̂ − θ0) − λπ̂
γ

1 w1,ssgn(φ̂1,s ).

Now, using the regularity assumptions and the central limit theorem, term (1) is of
order OP ( 1√

n
). Similarly, term (2) is of order OP (1) by the law of large numbers.

Term (3) is of order OP (1) by the law of large numbers and the regularity condition
on the third derivatives (condition (C) of Fan and Li 2001).

Therefore, we have

1

n

∂�adapt

∂φ1,s

∣∣∣∣
θ̂

= OP

(
1√
n

)
+(OP (1)+ (θ̂ −θ0)

T OP (1)
)
(θ̂ −θ0)−λπ̂

γ

1 w1,ssgn(φ̂1,s ).

As θ̂ is root-n consistent we get

1

n

∂�adapt

∂φ1,s

∣∣∣∣
θ̂

= OP

(
1√
n

)
+ (OP (1) + oP (1)OP (1)

)

× OP

(
1√
n

)
− λπ̂

γ

1 w1,ssgn(φ̂1,s )

= 1√
n

(
OP (1) − nλ√

n
π̂

γ

1 w1,ssgn(φ̂1,s )

)
. (A.26)

From the assumption on the initial estimator, we have

nλ√
n
w1,s = nλ√

n|φini
1,s |

= nλ

OP (1)
→ ∞ as nλ → ∞.

Therefore, the second term in the brackets of (A.26) dominates the first and the prob-
ability of the event

{
sgn

(
1

n

∂�adapt

∂φ1,s

∣∣∣∣
θ̂

)
= −sgn(φ̂1,s ) 
= 0

}

tends to 1. But this contradicts the assumption that θ̂ is a local minimizer (i.e.,
1
n

∂�adapt
∂φ1,s

|
θ̂

= 0).
Assertion 2. Write θ = (θS, θSc ). From part (1), it follows that with probability

tending to one θ̂S is a root-n local minimizer of −n−1�adapt(θS,0).
By using a Taylor expansion,

0 = 1

n
�′

adapt

∣∣∣∣
θ̂S

= 1

n
�′
∣∣∣∣
θ0,S

+ 1

n
�′′
∣∣∣∣
θ0,S︸ ︷︷ ︸

(1)

(θ̂S − θ0,S) + 1

2
(θ̂S − θ0,S)T︸ ︷︷ ︸

(2)

1

n
�′′′
∣∣∣∣
θ̃S︸ ︷︷ ︸

(3)

(θ̂S − θ0,S)
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− λ

⎛

⎜⎜⎜⎝

π̂
γ

1 w1,Ssgn(φ̂1,S)

(1 − π̂1)
γ w2,Ssgn(φ̂2,S)

0
0

γ π̂
γ−1
1

∑
(1,j)∈S w1,j |φ̂1,j | − γ (1 − π̂1)

γ−1∑
(2,j)∈S w2,j |φ̂2,j |

⎞

⎟⎟⎟⎠ .

Now term (1) is of order −IS(θ0)+oP (1) (law of large numbers); term (2) is of order
oP (1) (consistency); and term (3), with some abuse of notation an (|S|+ 3)-vector of
(|S|+ 3)× (|S|+ 3) matrices, is of order OP (1) (law of large numbers and regularity
condition on the third derivatives). Therefore, we have

√
n

1

n
�′
∣∣∣∣
θ0,S

+ (−IS(θ0) + oP (1)
)√

n(θ̂S − θ0,S) − √
nλOP (1) = 0,

or

(−IS(θ0) + oP (1)
)√

n(θ̂S − θ0,S) − √
nλOP (1) = − 1√

n
�′
∣∣∣∣
θ0,S

. (A.27)

Notice that 1√
n
�′|θ0,S

�d N (0, IS(θ0)) by the central limit theorem. Furthermore,√
nλ = o(1) as λ = o(n−1/2).
Therefore,

√
n(θ̂S − θ0,S) �d N (0, IS(θ0)

−1) follows from (A.27).

Appendix B: Proofs for Sect. 5

B.1 Proof of Lemma 1

Using a Taylor expansion,

E (ψ |ψ0) = (ψ − ψ0)
T I (ψ0)(ψ − ψ0)/2 + rψ ,

where

|rψ | ≤ ‖ψ − ψ0‖3
1

6

∫
sup
ψ∈Ψ

max
j1,j2,j3

∣∣∣∣
∂3lψ

∂ψj1∂ψj2∂ψj3

∣∣∣∣fψ0 dμ

≤ d3/2C3

6
‖ψ − ψ0‖3

2.

Hence

E
(
ψ |ψ0(x)

)≥ ‖ψ − ψ0(x)‖2
2Λ

2
min/2 − d3/2C3

∥∥ψ − ψ0(x)
∥∥3

2/6.

Now, apply the auxiliary lemma below, with K2
0 = dK2, Λ2 = Λ2

min/2, and C =
d3/2C3/6.
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Auxiliary Lemma Let h : [−K0,K0] → [0,∞) have the following properties:

(i) ∀ε > 0 ∃αε > 0 such that infε<|z|≤K0 h(z) ≥ αε ,
(ii) ∃Λ > 0, C > 0, such that ∀|z| ≤ K0, h(z) ≥ Λ2z2 − C|z|3.

Then ∀|z| ≤ K0,

h(z) ≥ z2/C2
0 ,

where

C2
0 = max

[
1

ε0
,
K2

0

αε0

]
, ε0 = Λ2

2C
.

Proof (Auxiliary Lemma) If ε0 > K0, we have h(z) ≥ Λ2z2/2 for all |z| ≤ K0.
If ε0 ≤ K0 and |z| ≤ ε0, we also have h(z) ≥ (Λ2 − ε0C)z2 ≥ Λ2z2/2.
If ε0 ≤ K0 and ε0 < |z| ≤ K0, we have h(z) ≥ αε0 = K2

0 αε0/K
2
0 ≥ |z|2αε0/K

2
0 . �

B.2 Proof of Lemma 2

In order to prove Lemma 2, we first state and prove a suitable entropy bound:
We introduce the norm

∥∥h(·, ·)∥∥
Pn

=
√√√√1

n

n∑

i=1

h2(xi, Yi).

For a collection H of functions on X × Y , we let H(·, H,‖ · ‖Pn) be the entropy of H
equipped with the metric induced by the norm ‖ · ‖Pn (for a definition of the entropy
of a metric space, see van de Geer 2000).

Define for ε > 0,

Θ̃(ε) = {ϑT = (φT
1 , . . . , φT

k , ηT
) ∈ Θ̃ : ‖φ − φ0‖1 + ‖η − η0‖2 ≤ ε

}
.

Entropy Lemma For a constant C0 depending on k and m, we have for all u > 0
and Mn > 0,

H
(
u,
{
(Lϑ − Lϑ∗)l{G1 ≤ Mn} : ϑ ∈ Θ̃(ε)

}
,‖ · ‖Pn

)≤ C0
ε2M2

n

u2
log

(
εMn

u

)
.

Proof (Entropy Lemma) We have

∣∣Lϑ(x, y) − Lϑ̃(x, y)
∣∣2 ≤ G2

1(y)

[
k∑

r=1

∣∣(φr − φ̃r )
T x
∣∣+ ‖η − η̃‖1

]2

≤ dG2
1(y)

[
k∑

r=1

∣∣(φr − φ̃r )
T x
∣∣2 + ‖η − η̃‖2

2

]
.
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It follows that

∥∥(Lϑ − Lϑ̃)l{G1 ≤ Mn}
∥∥2

Pn
≤ dM2

n

[
k∑

r=1

1

n

n∑

i=1

∣∣(φr − φ̃r )
T xi

∣∣2 + ‖η − η̃‖2
2

]
.

Let N(·,Γ, τ ) denote the covering number of a metric space (Γ, τ ) with the metric
(induced by the norm) τ , and let H(·,Γ, τ ) = logN(·,Γ, τ ) be its entropy (for a
definition of the covering number of a metric space, see van de Geer 2000). If Γ is a
ball with radius ε in the Euclidean space R

N , one easily verifies that

H(u,Γ, τ) ≤ N log

(
5ε

u

)
, ∀u > 0.

Thus H(u, {η ∈ R
m : ‖η−η0‖2 ≤ ε},‖·‖2) ≤ m log( 5ε

u
),∀u > 0. Moreover, applying

a bound as in Lemma 2.6.11 of van der Vaart and Wellner (1996) gives

H

(
2u,

{
k∑

r=1

(φr − φ0,r )
T xr : ‖φ − φ0‖1 ≤ ε

}
,‖ · ‖Pn

)
≤
(

ε2

u2
+ 1

)
log(1 + kp).

We can therefore conclude that

H
(
3
√

dMnu,
{
(Lϑ − Lϑ0)l{G1 ≤ Mn} : ϑ ∈ Θ̃(ε)

}
,‖ · ‖Pn

)

≤
(

ε2

u2
+ m + 1

)(
log

(
5ε

u

)
+ log(1 + kp)

)
. �

Let us now turn to the main proof of Lemma 2.
In what follows, {ct } are constants depending on Λmax, k, m and K . The truncated

version of the empirical process is

V trunc
n (ϑ) = 1

n

n∑

i=1

(
Lϑ(xi, Yi)l

{
G1(Yi) ≤ Mn

}

− E
[
Lϑ(xi, Y )l

{
G1(Y ) ≤ Mn

}∣∣X = xi

])
.

Let ε > 0 be arbitrary. We invoke Lemma 3.2 in van de Geer (2000), combined with
a symmetrization lemma (e.g., a conditional version of Lemma 3.3 in van de Geer
2000). We apply these lemmas to the class

{
(Lϑ − Lϑ0)l{G1 ≤ Mn} : ϑ ∈ Θ̃(ε)

}
.

In the notation used in Lemma 3.2 of van de Geer (2000), we take
δ = c4T εMn logn

√
log(p ∨ n)/n, and R = c5(ε ∧ 1)Mn. This then gives

Px

(
sup

ϑ∈Θ̃(ε)

∣∣V trunc
n (ϑ) − V trunc

n (ϑ0)
∣∣≥ c6εT Mn logn

√
log(p ∨ n)

n

)

≤ c7 exp

[
−T 2 log2 n log(p ∨ n)(ε2 ∨ 1)

c2
8

]
.
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Here, we use the bound (for 0 < a ≤ 1),

∫ 1

a

1

u

√

log

(
1

u

)
du ≤ log3/2

(
1

a

)
.

We then invoke the peeling device: split the set Θ̃ into sets
{
ϑ ∈ Θ̃ : 2−(j+1) ≤ ‖φ − φ0‖1 + ‖η − η0‖2 ≤ 2−j

}
,

where j ∈ Z, and 2−j+1 ≥ λ0. There are no more than c9 logn indices j ≤ 0 with
2−j+1 ≥ λ0. Hence, we get

sup
ϑT =(φT ,ηT )∈Θ̃

|V trunc
n (ϑ) − V trunc

n (ϑ0)|
(‖φ − φ∗‖1 + ‖η − η∗‖2) ∨ λ0

≤ 2c6T Mn logn

√
log(p ∨ n)

n
,

with Px probability at least

1 − c7[c9 logn] exp

[
−T 2 log2 n log(p ∨ n)

c2
8

]

−
∞∑

j=1

c7 exp

[
−T 222j log2 n log(p ∨ n)

c2
8

]
≥ 1 − c2 exp

[
−T 2 log2 n log(p ∨ n)

c2
10

]
.

Finally, to remove the truncation, we use
∣∣(Lϑ(x, y) − Lϑ0(x, y)

)
l
{
G1(y) > Mn

}∣∣≤ dKG1(y)l
{
G1(y) > Mn

}
.

Hence

|(V trunc
n (ϑ) − V trunc

n (ϑ0)) − (Vn(ϑ) − Vn(ϑ0))|
(‖φ − φ∗‖1 + ‖η − η∗‖2) ∨ λ0

≤ dK

nλ0

n∑

i=1

(
G1(Yi)l

{
G1(Yi) > Mn

}+ E
[
G1(Y )l

{
G1(Y ) > Mn

}∣∣X = xi

])
.

B.3 Proof of Theorem 3

On T ,

Ē (ψ̂ |ψ0) + λ‖φ̂‖1 ≤ T λ0
[(‖φ̂ − φ0‖1 + ‖η̂ − η0‖2

)∨ λ0
]+ λ‖φ0‖1 + Ē (ψ0|ψ0).

By Lemma 1,

Ē (ψ̂ |ψ0) ≥ ‖ψ̂ − ψ0‖2
Qn

/c2
0,

and Ē (ψ0|ψ0) = 0.
Case 1 Suppose that

‖φ̂ − φ0‖1 + ‖η̂ − η0‖2 ≤ λ0.
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Then we find

Ē (ψ̂ |ψ0) ≤ T λ2
0 + λ‖φ̂ − φ0‖1 + Ē (ψ0|ψ0)

≤ (λ + T λ0)λ0.

Case 2 Suppose that

‖φ̂ − φ0‖1 + ‖η̂ − η0‖2 ≥ λ0,

and that

T λ0‖η̂ − η0‖2 ≥ (λ + T λ0)‖φ̂S − (φ0)S‖1.

Then we get

Ē (ψ̂ |ψ0) + (λ − T λ0)‖φ̂Sc‖1 ≤ 2T λ0‖η̂ − η0‖2

≤ 4T 2λ2
0c

2
0 + ‖η̂ − η0‖2

2/(2c2
0)

≤ 4T 2λ2
0c

2
0 + Ē (ψ̂ |ψ0)/2.

So then

Ē (ψ̂ |ψ0) + 2(λ − T λ0)‖φ̂Sc‖1 ≤ 8T 2λ2
0c

2
0.

Case 3 Suppose that

‖φ̂ − φ0‖1 + ‖η̂ − η0‖2 ≥ λ0,

and that

T λ0‖η̂ − η0‖2 ≤ (λ + T λ0)
∥∥φ̂S − (φ0)S

∥∥
1.

Then we have

Ē (ψ̂ |ψ0) + (λ − T λ0)‖φ̂Sc‖1 ≤ 2(λ + T λ0)‖φ̂S − φ0‖1.

So then

‖φ̂Sc‖1 ≤ 6
∥∥φ̂S − (φ0)S

∥∥
1.

We can then apply the restricted eigenvalue condition to φ̂ − φ0. This gives

Ē (ψ̂ |ψ0) + (λ − T λ0)‖φ̂Sc‖1 ≤ 2(λ + T λ0)
√

s‖φ̂S − φ0‖2

≤ 2(λ + T λ0)
√

sκ‖ĝ − g0‖Qn

≤ 4(λ + T λ0)
2c2

0κ
2s + Ē (ψ̂ |ψ0)/2.

So we arrive at

Ē (ψ̂ |ψ0) + 2(λ − T λ0)‖φ̂Sc‖1 ≤ 8(λ + T λ0)
2c2

0κ
2s.
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B.4 Proof of Lemma 3

Let Z be a standard normal random variable. Then by straightforward computations,
for all M > 0,

E
[|Z|l{|Z| > M

}]≤ 2 exp
[−M2/2

]
,

and

E
[|Z|2l

{|Z| > M
}]≤ (M + 2) exp

[−M2/2
]
.

Thus, for n independent copies Z1, . . . ,Zn of Z, and M = 2
√

logn,

P

(
1

n

n∑

i=1

|Zi |l
{|Zi | > M

}
>

4 logn

n

)

≤ P

(
1

n

n∑

i=1

|Zi |l
{|Zi | > M

}− E
[|Z|l{|Z| > M

}]
>

2 logn

n

)

≤ nE[|Z|2l{|Z| > M}]
4(logn)2

≤ 2

n
.

The result follows from this, as

G1(Y ) = eK |Y | + K,

and Y has a normal mixture distribution.

B.5 Proof of Theorem 5

On T , defined in (5.18) with λ0 = c4

√
log3 n log(p ∨ n)/n (c4 as in Lemma 3; i.e.,

Mn = c4
√

log(n) in (5.20)), we have the basic inequality

Ē (ψ̂ |ψ0) + λ‖φ̂‖1 ≤ T λ0
[(‖φ̂ − φ0‖1 + ‖η̂ − η0‖2

)∨ λ0
]+ λ‖φ0‖1 + Ē (ψ0|ψ0).

Note that ‖η̂ − η0‖2 ≤ 2K and Ē (ψ0|ψ0) = 0. Hence, for n sufficiently large,

Ē (ψ̂ |ψ0) + λ‖φ̂‖1 ≤ T λ0
(‖φ̂ − φ0‖1 + 2K

)+ λ‖φ0‖1 + Ē (ψ0|ψ0)

≤ T λ0
(‖φ̂‖1 + ‖φ0‖1 + 2K

)+ λ‖φ0‖1 + Ē (ψ0|ψ0),

and therefore also

Ē (ψ̂ |ψ0) + (λ − T λ0)‖φ̂‖1 ≤ T λ02K + (λ + T λ0)‖φ0‖1 + Ē (ψ0|ψ0).

It holds that λ ≥ 2T λ0 (since λ = C

√
log3 n log(p ∨ n)/n for some C > 0 sufficiently

large), λ0 = O(

√
log3 n log(p ∨ n)/n) and λ = O(

√
log3 n log(p ∨ n)/n), and due

to the assumption about ‖φ0‖1 we obtain on the set T that Ē (ψ̂ |ψ0) → Ē (ψ0|ψ0) =
0 (n → ∞). Finally, the set T has large probability, as shown by Lemma 2 and using
Proposition 3 and Lemma 3 for FMR models.
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Appendix C: Proofs for Sects. 3 and 6

C.1 Proof of Proposition 2

We restrict ourselves to a two class mixture with k = 2. Consider the function u(ξ)

defined as

u(ξ) = exp
(
�(0)

pen(ξ)
)

=
n∏

i=1

{(
π1√
2πσ1

exp

(−(Yi − XT
i β1)

2

2σ 2
1

)
+ (1 − π1)√

2πσ2

× exp

(−(Yi − XT
i β2)

2

2σ 2
2

))
exp

(−λ‖β1‖1

σ1

)
exp

(−λ‖β2‖1

σ2

)}
. (C.28)

We will show that u(ξ) is bounded from above for ξ = (β1, β2, σ1, σ2,π1) ∈ Ξ =
R

2p × R
2
>0 × [0,1]. Then, clearly, −n−1�

(0)
pen(θ) is bounded from below for θ =

(φ1, φ2, ρ1, ρ2,π1) ∈ Θ = R
2p × R

2
>0 × (0,1).

The critical point for unboundedness is if we choose for an arbitrary sample point
i ∈ {1, . . . , n} a β∗

1 such that Yi −XT
i β∗

1 = 0 and let σ1 → 0. Without the penalty term

exp(
−λ‖β∗

1 ‖1
σ1

) in (C.28) the function would tend to infinity as σ1 → 0. But as Yi 
= 0

for all i ∈ {1, . . . , n}, β∗
1 cannot be zero, and therefore exp(

−λ‖β∗
1 ‖1

σ1
) forces u(ξ) to

tend to 0 as σ1 → 0.
Let us give a more formal proof for the boundedness of u(ξ). Choose a small

0 < ε1 < mini {Y 2
i } and ε2 > 0. As Yi 
= 0, i = 1, . . . , n, there exists a small constant

m > 0 such that

0 < min
i

{
Y 2

i

}− ε1 ≤ (Yi − XT
i β1

)2 (C.29)

holds for all i = 1, . . . , n as long as ‖β1‖1 < m, and

0 < min
i

{
Y 2

i

}− ε1 ≤ (Yi − XT
i β2

)2 (C.30)

holds for all i = 1, . . . , n as long as ‖β2‖1 < m.
Furthermore, there exists a small constant δ > 0 such that

1√
2πσ1

exp
(
−
(

min
i

{
Y 2

i

}− ε1

)/
2σ 2

1

)
< ε2 and

1√
2πσ1

exp

(−λm

σ1

)
< ε2

(C.31)
hold for all 0 < σ1 < δ, and

1√
2πσ2

exp
(
−
(

min
i

{
Y 2

i

}− ε1

)/
2σ 2

2

)
< ε2 and

1√
2πσ2

exp

(−λm

σ2

)
< ε2

(C.32)
hold for all 0 < σ2 < δ.

Define the set K = {(β1, β2, σ1, σ2,π1) ∈ Ξ ; δ ≤ σ1, σ2}. Now u(ξ) is trivially
bounded on K . From the construction of K and (C.29)–(C.32), we easily see that
u(ξ) is also bounded on Kc , and therefore bounded on Ξ .
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C.2 Proof of Theorem 6

The density of the complete data is given by

fc(Y,Δ|θ) =
n∏

i=1

k∏

r=1

π
Δi,r
r

(
ρr√
2π

e− 1
2 (ρrYi−XT

i φr )
2
)Δi,r

,

whereas the density of the observed data is given by

fobs(Y |θ) =
n∏

i=1

k∑

r=1

πr

ρr√
2π

e− 1
2 (ρrYi−XT

i φr )
2
,

θ = (ρ1, . . . , ρk,φ1,1, φ1,2, . . . , φk,p,π) ∈ Θ = R
k
>0 × R

kp × Π ⊂ R
k(p+2)−1,

Π =
{

π = (π1, . . . , πk−1);πr > 0 for r = 1, . . . , k − 1 and
k−1∑

r=1

πr < 1

}
,

πk = 1 −
k−1∑

r=1

πr .

Furthermore, the conditional density of the complete data given the observed data
is given by k(Y,Δ|Y, θ) = fc(Y,Δ|θ)/fobs(Y |θ). Then, the penalized negative log-
likelihood fulfills the equation

νpen(θ) = −n−1�
(0)
pen,λ(θ)

= −n−1 logfobs(Y |θ) + λ

k∑

r=1

‖φr‖1 = Qpen(θ |θ ′) − H(θ |θ ′) (C.33)

where

Qpen(θ |θ ′) = −n−1
Eθ ′
[
logfc(Y,Δ|θ)|Y ]+ λ

k∑

r=1

‖φr‖1 (compare Sect. 6.1)

and

H(θ |θ ′) = −n−1
Eθ ′
[
logk(Y,Δ|Y, θ)|Y ].

By Jensen’s inequality, we get the following important relationship

H(θ |θ ′) ≥ H(θ ′|θ ′) ∀θ ∈ Θ, (C.34)

see also Wu (1983). Qpen(θ |θ ′) and H(θ |θ ′) are continuous functions in θ and θ ′.
If we think of them as functions of θ with fixed θ ′ we write also Qpen,θ ′(θ) and
Hθ ′(θ). Furthermore, Qpen,θ ′(θ) is a convex function of θ and strictly convex in each
coordinate of θ . As a last preparation, we give a definition of a stationary point for
non-differentiable functions (see also Tseng 2001):
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Definition 1 Let u be a function defined on an open set U ⊂ R
k(p+2)−1. A point

x ∈ U is called stationary if u′(x;d) = limα↓0
u(x+αd)−u(x)

α
≥ 0 ∀d ∈ R

k(p+2)−1.

We are now ready to start with the proof which is inspired by Bertsekas (1995). We
write θ = (θ1, . . . , θD) = (ρ1, . . . , ρk,φ1,1, φ1,2, . . . , φk,p,π) where D = k + kp + 1
denotes the number of coordinates. Remark that the first D − 1 coordinates are uni-
variate, whereas θD = π is a “block coordinate” of dimension k − 1.

Proof Let θm = θ(m) be the sequence generated by the BCD-GEM algorithm. We
need to prove that for a converging subsequence θmj → θ̄ ∈ Θ , θ̄ is a stationary
point of νpen(θ). Taking directional derivatives of (C.33) yields

ν′
pen(θ̄;d) = Q′

pen,θ̄
(θ̄;d) − 〈∇Hθ̄(θ̄), d

〉
.

Note that ∇Hθ̄(θ̄) = 0 as Hθ̄(x) is minimized for x = θ̄ (see (C.34)). Therefore, it
remains to show that Q′

pen,θ̄
(θ̄;d) ≥ 0 for all directions d . Let

zm
i = (θm+1

1 , . . . , θm+1
i , θm

i+1, . . . , θ
m
D

)
.

Using the definition of the algorithm, we have

Qpen,θm

(
θm
)≥ Qpen,θm

(
zm

1

)≥ · · · ≥ Qpen,θm

(
zm
D−1

)≥ Qpen,θm

(
θm+1). (C.35)

Additionally, from the properties of GEM ((C.33) and (C.34)), we have

νpen
(
θ0)≥ νpen

(
θ1)≥ · · · ≥ νpen

(
θm
)≥ νpen

(
θm+1). (C.36)

Equation (C.36) and the converging subsequence imply that the sequence {νpen(θ
m);

m = 0,1,2, . . .} converges to νpen(θ̄). Further, we have

0 ≤ Qpen,θm

(
θm
)− Qpen,θm

(
θm+1)

= νpen
(
θm
)− νpen

(
θm+1)+ Hθm

(
θm
)− Hθm

(
θm+1)

︸ ︷︷ ︸
≤0

≤ νpen
(
θm
)− νpen

(
θm+1)

︸ ︷︷ ︸
→νpen(θ̄)−νpen(θ̄)=0

. (C.37)

We conclude that the sequence {Qpen,θm(θm)−Qpen,θm(θm+1);m = 0,1,2, . . .} con-
verges to zero.

We now show that {θmj +1
1 − θ

mj

1 } converges to zero (j → ∞). Assume the con-
trary, in particular that {zmj

1 − θmj } does not converge to 0. Let γ mj = ‖zmj

1 − θmj ‖.
Without loss of generality (by restricting to a subsequence), we may assume that

there exists some γ̄ > 0 such that γ mj > γ̄ for all j . Let s
mj

1 = z
mj
1 −θ

mj

γ
mj

. This s
mj

1

differs from zero only along the first component. As s
mj

1 belongs to a compact set
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(‖smj

1 ‖ = 1) we may assume that s
mj

1 converges to s̄1. Let us fix some ε ∈ [0,1].
Notice that 0 ≤ εγ̄ ≤ γ mj . Therefore, θmj + εγ̄ s

mj

1 lies on the segment joining θmj

and z
mj

1 , and belongs to Θ because Θ is convex. As Qpen,θ
mj (·) is convex and z

mj

1
minimizes this function over all values that differ from θmj along the first coordinate,
we obtain

Qpen,θ
mj

(
z
mj

1

)= Qpen,θ
mj

(
θmj + γ mj s

mj

1

) ≤ Qpen,θ
mj

(
θmj + εγ̄ s

mj

1

)

≤ Qpen,θ
mj

(
θmj
)
. (C.38)

From (C.35) and (C.38), we conclude

0 ≤ Qpen,θ
mj

(
θmj
)− Qpen,θ

mj

(
θmj + εγ̄ s

mj

1

)

(C.38)︷︸︸︷≤ Qpen,θ
mj

(
θmj
)− Qpen,θ

mj

(
z
mj

1

)

(C.35)︷︸︸︷≤ Qpen,θ
mj

(
θmj
)− Qpen,θ

mj

(
θmj +1).

Using (C.37) and continuity of Qpen,x(y) in both arguments x and y, we conclude by
taking the limit j → ∞:

Qpen,θ̄ (θ̄ + εγ̄ s̄1) = Qpen,θ̄ (θ̄ ) ∀ε ∈ [0,1].

Since γ̄ s̄1 
= 0 this contradicts the strict convexity of Qpen,θ̄ (x1, θ̄2, . . . , θ̄D) as a func-

tion of the first block-coordinate. This contradiction establishes that z
mj

1 converges
to θ̄ .

From the definition of the algorithm, we have

Qpen
(
z
mj

1 |θmj
)≤ Qpen

(
x1, θ

mj

2 , . . . , θ
mj

D

∣∣θmj
) ∀x1.

By continuity and taking the limit j → ∞, we obtain

Qpen,θ̄ (θ̄ ) ≤ Qpen,θ̄ (x1, θ̄2, . . . , θ̄D) ∀x1.

Repeating the argument, we conclude that θ̄ is a coordinate-wise minimum. There-
fore, following Tseng (2001), θ̄ is easily seen to be a stationary point of Qpen,θ̄ (·), in

particular Q′
pen,θ̄

(θ̄;d) ≥ 0 for all directions d . �
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